THE UNIVERSITY OF MICHIGANTN

COLLEGE OF ENGINEERING
Department of Nuclear Engineering

Technical Report

THE HYDROSTATIC PRESSURE EFFECT ON THE EPR SPECTRA
OF CrJ* AND Ve+ IN SAPPHIRE

Alan F, glark
Richard‘ﬁ° Sands
Chihiro Kikuchi

ORA Project 06029

under contract withs
U.S. ARMY MATERIEL COMMAND
HARRY DIAMOND LABORATORIES
CONTRACT NO. DA-49-186-AMC-80(x)
WASHINGTON, D.C.
administered through:

OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR

May 1964



This report was alsoc a dissertation submitted by
the first author in partial fulfillment of the require-
ments for the degree of Doctor of Philosophy in The
University of Michigan, 196k.



ERRATA

Page
3 line 3: 1lattice sites, though possibly including
the displacements proposed in the literature, and
are subject.,..
4 line 25: spectrum of ruby. (also p. 5, line 1).
11 line 9: coulomb interactions
12 line 10: This type of analysis
18 Figure 1: upper 4F state is 4T1
28 Figure 3: Exchange coordinates x and y (Not E or H).
29 line 16: in equation 8 (also equation 12 is 12'),
45 line 20: three. The use of....
48 line 16: is vali5 iij'ﬂ' Q
54 line 8: to SteveéSSZfl?al‘
59 line 15: thrée hou:s~a;$7i¥§19§ rads/min°38
80 line 18: signal to ﬁéisé¥;é¥id,
85 line 21: miSalignﬁéhtf :‘ R
107 last two equationszﬁf:;;;,kz r2 d(kr)
109 line 18: the cubic field
116 line 12: are E, C3, and c%,
124 line 8: where Pyg = 3(3 cos? #; -1),.
145 figure: delete (D3)
155 equation F8: hu. = E[4A,(F) =41 (R, B)] =....
160 last equation: '? {JE'(Yg,O,O.






TABLE OF CONTENTS

Page
List of Tables \
List of Figures vi
Abstract viii
Chapter
I. Introduction 1
A. Motivation, Objectives, and Results 1
B, Literature Review 3
II. Theory 11
A. The Hamiltonian, Energy Levels,
and Transitions 11
B. Sapphire Crystal Structure - 33
C. The Elastic Constants for Sapphire 38
D. The Crystalline Field Model 44
E. Compressional Model and Predicted
Behavior 46
I1I. Experiment 58
A. Crystals and Crystal Orientation 58
B. Experimental Apparatus 61
C. The Two Sample Method 69
D. Experimental Procedure 74
IV, Results 78
A. Cr3* in Sapphire 78
B. V2% in Sapphire 89
C. Summary 94
V. Conclusions 95
A. Direct Conclusions 95
B Analytical Conclusions 101
C. Summary 110
D Further Studies 111
Appendices
A, Crystalline Field for Sapphire 114
B. Change in Crystalline Field with
Pressure 121

1i1i



Page

Appendices (cont'd)

C. The Elastic Constants 126
D. Data Reduction 144
E. Equipment List 152
F. Racah Parameters and Symmetry Tables 153

G. Matrix Elements for Axial and Zero Field
Splittings and g Shifts 159
References 164

iv



Table

I1.

III.

IV,

LIST OF TABLES

Location of the neighbor and next-
nearest-neighbor ions with respect to
a substitutional impurity in o< A1203

The elastic stiffness constants, Cij
and compliance constants, s, for
sapphire at room temperature’

Summary of the thepretical calcula-
tions of the change with pressure in
the crystalline field parameter as a
function of displacement along the tri-
gonal axis in Al,05.

Calibration of absorption frequency
meter HP X532A No. 15030 with a
transfer oscillator measurement.

Comparison of crystal field para-
meters for V2+ Cr3* and Mn%* in
sapphire

Page

37

42

52

77

97



Figure

10;
11.
12,
13.
14,

15.

16.

LIST OF FIGURES

Energy levels of a 3d3-%F-state ion
versus cubié¢ crystalline field

Energy levels of ruby with cubic field

Energy levels of ruby ground state
versus applied magnetic field

EPR resonances in ruby for x band
as a function of applied magnetic field

~and the field's angle to the crystalline

axis.
Octahedral coordination in ruby

Crystal coordination for aluminum site
in sapphire

Projection of oxygens in Al1,03 onto a
plane perpendicular to the trigonal axis

Relative positions of the nearest and
next-nearest-neighbor ions in sapphire

Crystalline field splitting of4F,ground
state for a 3d3 ion

Spectrometer schematic
Pressure bomb and microwave cavity

High pressure system schematic

Line center shift due to overlapping lines

Bomb, coils, and flux lines schematic

Sketch of pressure effect on Mn2* in
MgO 1lines

Zero field splitting versus pressure
for Cr3* in Al,03

vi

Page

18

20

28

32
35

36

36

53

55
62
63
64
72
72

75

81



Figures (cont'd) Page

17. g value versus pressure for cr3* in

| A1203 84
18. Zero field splitting versus pressure

for V2* in A1,0; 92

C1 Stress components 128

C2 One and two dimensional strain 131

C3 Examples of specialized strains 133

vii



Abstract

The interaction of the Cr3* and v2* impurity ions with
the ol -Al,0, crystal lattice was studied by observing the
hydrostatic 8ressure dependence of their electron paramagnetic
resonance spectra to 6000 atmospheres,

A two sample comparison method was used in which two ident-
ical samples are placed in the X band microwave resonant cavity.
One end of the cavity and one sample are subject to hydro-
static pressure. The changes in the spin Hamiltonian para-
meters are obtained by measuring the difference in the magnetic
field required for the same resonant condition in each
sample as a function of pressure,

The observed changes were:

cr3ts AQ\QDD — (/_8‘7*1‘ 0.0Q) X /O_Q//r atm,
/A(ﬁ_ﬂ")a!/ < 2.5 x/D_g/k atm.
(9—30)2
2l
-2
%9 = (177204) x 1067/ Kk atm.

where D is the coefficient of the crystalline field term in
the spin Hamiltonian which behaves under rotation like the
spherical harmonic Y and (g-go)z is the difference in the
g value parallel to %ge crystalline axis and the free ion g
value,

From this it was concluded that the ions occupy similar
lattice sites, though possibly including the displacements
proposed in the literature, and are subject to the same
compressibility, comparable to that of the bulk compressi-
bility., Comparison with the point charge model led to the
conclusion that the point charge model was inadequate to
predict the observed pressure changes. A molecular orbital
calculation as a function of surrounding ion position and
further experiments are suggested,

viii



Chapter 1

INTRODUCTION

A. MOTIVATION, OBJECTIVES, AND RESULTS

Interest in solid-state systems has become widespread
in recent years, particularly with the use of doped semi-
conductors as transistors and paramagnetically doped crystals
for MASERS and LASERS. Electron paramagnetic resonance
(EPR) utilizes a paramagnetic impurity ion in a host lattice
as a means of studying both the ion itself and its inter-
action with the surrounding lattice, The iron group ions
are particularly advantageous with their partially filled
3d electron shells and resulting net magnetic moment.
Microwaves (ca. 3 cm., wavelength) incident upon the crystal
induce magnetic dipole transitions among the magnetic sub-
levels of the ground state in a strong magnetic field
(ca. 3000 gauss). The crystalline field at the impurity ion
site due to the surrounding ions or ligands also perturbs the
impurity ion states. From the resonance absorption of
microwave power for transitions between various energy
levels, electronic and nuclear properties of the impurity
ion in its host lattice can be deduced. For texts on EPR

3,4

one may consult Low,l Pake,2 Ingram, and Shlichter,” as

well as the reviews by Bleaney and Stevens,6 Bowers and

7

Owen, ' and Jarrett.8
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The mechanism of the interaction between the crystalline
field and the impurity ion needs further study. In order
to study the interaction, the usual method is to observe
the changes in spectra between similar or isoelectronic

9,10,11 . . .
or the same ion in a series

12,13

ions in the same lattice
of lattices with similar symmetry, Hydrostatic
pressure (ca. 10,000 atmospheres) provides a means of ‘linearly
changing the crystalline field at the impurity ion site by
compressing the host lattice, Thus it is a powerful means
of studying the interaction between the two,

It is the object of this study to determine the hydro-
static pressure dependencies of the EPR spectra of the
triply ionized chromium ion (Cr>') and the doubly ionized
vanadium ion (V2+), which are isoelectronic, in the
0<=A1203, or sapphire, lattice. The results are interpreted
utilizing the crystalline field model in the hope of further
understanding the behavior of zero field splitting with a
linear lattice change for isoelectronic ions. Additional
objectives are to check onm the substitutional positions of
the impurity ions in the lattice and to determine the use-
fulness of the crystalline field model, This study is also
another step in a thorough examination of the solid state
chemistry of vanadium,
It is found that the zero field splitting for both Cr3+
2+

and V in sapphire varies linearly with pressure to 6000
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atmospheres, and the relative change for both ions is

nearly the same. From this it is concluded that the ions
occupy similar lattice sites and are subject to similar
local compressibilities, comparable to that of the bulk
compressibility., It is also concluded that the point charge
model is inadequate to predict the observed pressure changes,
and a molecular orbital calculation and further experiments

are suggested.,

B. LITERATURE REVIEW

Review of Previous High Pressure Resonance Experiments,

An S-state ion, such as Mn2* whose L = 0, should have no
low order mechanism to cause zero field fine structure
splitting., The observed splittings14 aroused a great deal

of curiosity about the effect of the crystalline field as a

perturbation on the energy levels of an impurity ion.ls’lé’17

Among the resulting papers, Watanabe suggested that the non-
zero contributions due to a crystalline field of cubic

symmetry must be from matrix elements containing only even

powers of the crystalline field.18 He also suggested that

this could be checked by a hydrostatic pressure experiment

on the EPR of such a material.19 Walsh performed such an

experiment and found a quartic dependence on the cubic field

for both Mn2+ and Fe3* in MgO20 assuming that local and bulk

compressibilities are equal., A paper by Powell, Gabriel,



.

and Johnston then suggested a mechanism for ground state

. . 21
splitting due to odd powers of the crystalline field.

In another hydrostatic pressure EPR experiment, Wait found
a square dependence on the cubic crystalline field for Mn2+
in calcite and a first power dependence on the axial
crystalline field.%2 He also pointed out that according to

2+ 3+

the theory of Powell et al. Mn should not

0,21

and Fe
necessarily have the same pressure dependence in Mg
and suggested further experiments on Fe3* in calcite as well
as studies in other host lattices. All the calcite samples
which could be obtained for study contained too low a
concentration of iron to allow a determination of the
pressure dependence, Other hydrostatic EPR experiments
have been done recently by Rimai, Deutsch, and Silverman?3

on Fe3+

, Cr3+, Gd3+, and Eu®” in cubic SrTi03. They con-
clude a local compressibility twice that of the bulk com-
pressibility about the impurity sites in SrTi03° Blum and
Benedek?? have also reported their results for the pressure
dependence of the hydrogen atom's hyperfine interactioms in
the CaF, lattice,

Recently several uniaxial pressure experiments have

been done on the EPR and nuclear magnetic resonance (NMR)

spectra of ruby but are mostly yet unpublished. Viegele

25

and Stettler have studied the effects of uniaxial stress

and temperature on the NMR spectra of ruby,. Terhune?®
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and Donoho27 have studied the EPR spectra of ruby under
uniaxial stress, and their results are correlated in
Chapter V with those obtained in this study. Tucker28
has performed a spin-phonon interaction experiment on
ruby whose results can also be correlated as a uniaxial
pressure éxperiment as will be shown later? A uniaxial
pressure experiment on the EPR of Nd3* and U3t in Can
has also been reported by Black and Donoho;29

An optical resonance experiment using uniaxial stress

3 was performed by Schawlow, Riksis, and

on Mg0 with Cr
Sugano30 to try to understand the charge compensation ‘
required when Cr3% substitutes for Mgz*;  Sturge31 followed
with a similar experiment with V2% in MgOl These optical
studies were used by Walsh in the interpretation of his EPR
experiment; Drickame¥ et al; have also done optical studies
using uniaxial pressures up to 150 kbar;32’33734 They

have found increases in the crystalline field parameter,

Dq, which are consistent with the R™° law and similar
pressuyre dependencies for various ions in the same lattice.
Also, they indicate small changes in the interelectronic

repulsion Racah B parameter.

High Pressure Resonance Experiments on cr3* and V2+

in _Sapphire. The pressure experiments which are compared

analytically or discussed qualitatively with the present

experiment are now briefly summarized. Two EPR experiments
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on ruby (Cr3* in sapphire) subject to uniaxial stress
have been done but not reported in the literature.
Terhune2® has communicated his results for the change in
the zero field splitting, 2D (2D =-;38 cm¥—l), for stress
parallel ( //) and perpendicular ( L ) to the c axis of
the crystal as followss

(%_12) = 5.2+ 03x107/katm.
I

-3
(_é_?) = 3.8 +0.3x10 / katm.
D 4

He did not observe a change in the g value. Donoho27
has indicated that he also could not observe any changes
in the g shift for uniaxial stress and his experimental

limit yields

JAN C? _'30)2 f; ;2 N /C)—:i// K atm.
(9 —Jd), :

35

A third EPR experiment has been reported in progress
but the nature of the stress and quantitative results are
unavailable,

The optical resonance study of ruby under pressure
was done by Stephens and Drickamer..36 They report a change

in the cubic field splitting, Dq (10 Dgq = 18,000 cm.°1L of

AD%) -3
—— = atm,
>, 0.6 x10 /k\ m
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and a distinct increase in the trigonal splitting parameter,
K(K = =350 cm;'l), above 60 katm; This change in Dq was

. shown to be equivalent to 30 katm; to that expected from a
simple change in the metal-ligand distance, R, from the

compressibility data and the relation
¢ 5
/O D ¢ = 4q <r :7//\3 R

where q is the ligand charge and < r4 > is the integral

of r4 over the radial 3d wave functions. From the

change in Dq they determine a change in the interelectronic
-1

repulsion parameter, B(B = 630 cm, ), of

_——ABB = =0.32510">/ & atm.

They also conclude that the decrease in B shows an increase
in covalency and the change in K indicates the onset of
distortion above 60 katm.

The effect of uniaxial stress on the electric field
gradient, q, at the impurity was reported by Viegele and

Stettler?d from an NMR experiment in ruby. They report

(%ﬁ)} = + 3.2 %10 /K atm,
/
and
(i_%_) = -27 %107/ k atm
g /1

but their analysis of these values has not been published.
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One other experiment which can be correlated with
this study as a pressure experiment is the spin-phonon
interaction in ruby performed by Tucker .28 He analyzes the

perturbation, 2#5/, with the form
A

/
&Z 2662%52

where G is defined as the magneto-elastic coupling const-

ant and €, is the strain. He reports values26 of G2

-3 2
GQ = 4.8 x /0 ° ergs
/

2 -30 2
G, = l.&a~xlo ergs

for longitudinal waves parallel and perpendicular to the
c axis;

To the author’s knowledge there are no pressure-
resonance experiments for V2% in sapphire and no others for
ruby.

Studies of Crs* and v2* in Sapphire. A great deal

of work has been published for ruby because of its wide
application in recent LASER and MASER technology Summarized
below are only those fundamental studies and related

works which are used in the analysis of this problem.

A summary of the crystal field parameters of the iso-

electronic ions is given in Table V,
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3* and V2* in sapphire are

37

The EPR spectra of Cr

- 38

reported by E.O. Schulz-DuBois and Lambe and Kikuchi>",

respectively. More recent evaluations of the spin Hamilton-

39 for

ian parameters are summarized by Laurence and Lambe
an ENDOR (electron nuclear double resonance) experiment
to study the quadrupole interactions in sapphire, The
electric field gradients determined in their experiment
are also used in the discussion in Chapter V,

The optical spectrum of ruby was studied by Sugano

and Tanabe40

and interpreted with qualitative success
(except for the zero field splitting) by crystal field
theory. More recent discussions of the optical
spectrum of ruby and similar structures and ions are by

113 41 From his

Wood, et a and Weakliem and McClure,
studies of the optical spectrum McClure?2 has suggested

that the chromium ion is not substitutional for an aluminum,
The optical spectrum of ve* in sapphire is reported by

3

Sturge4 along with the collected optical parameters for

the other isoelectronic ions, cr3* and Mn**,

Molecular orbital theory was used by Lohr and Lipscomb44
to study theoretically the spectra of Cr3+ in various
crystals, including sapphire. Using a semiempirical
LCAO-MO method they qualitatively predict the observed

spectra with some improvement over the crystal field theory

in the value of the zero field splitting. Their theory
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45 to analyze electric

was used by Royce and Bloembergen

field effects on the EPR spectrum of ruby with good success.
The sapphire crystal structure was obtained from

Wyckoff46 and the most recent compilation of elastic

47 One other reference that

constants is by Bernstein,
should be mentioned is a discussion of the expansion of
the impurity ion wave functions upon insertion of the

ion into a lattice by Marshall and Stuart,48 since
according to them, this would be expected with lattice
compression, They show that the reduction of the spin-
orbit coupling parameter, A , of an ion upon insertion
into a lattice is due to radial expansion of the electron

wave functions and support their arguments with neutron

scattering form factors and super-hyperfine experiments,



Chapter 11

THEORY

A. THE HAMILTONIAN, ENERGY LEVELS, AND TRANSITIONS
A phenomemological Hamiltonian called the *"spin

Hamiltonian"49’5o

is usually used to interpret fhe
experimental results of current research in electron para-
magnetic resonance; It arises in the following manner; A
®free ion™® Hamiltonian is obtained much in the manner of
the helium atom”) by a summation of the electron momenta,
the coulomb interactions between the nucleus and individual
electrons and the coulomb interations between electrons;
This Hamiltonian can be used to obtain the wave functions
for the determination of the perturbation caused when this
"free ion" is inserted in a crystalline field and an
external magnetic field. The crystalline field is produced
by the charges or dipoles from the surrounding ligands; The
perturbing Hamiltonian -- due to the crystalline field,
the external magnetic field, and the remaining intra-
ionic interactions -- to which the free ion wave functions
are applied becomes with simplification the spin Hamiltonian;
In the freeﬁion case the wave functions are the product
or a linear combination of permutations of the product
(Slater determinant) of one electron ¥orbitals." The

equations for the one electron orbitals, Hartree or

=1]1=
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Hartree-Fock equations respectively, are determined by
applying a variational method to the Schroedinger equation
of the free ion; A more inclusive approach is to allow some
"linear combination of atomic orbitals®” (LCAO) with orbitals
from a neighboring ligand or excited states of the impurity
ionl This allows the wave functions to contain contribut-
ions of higher lying states of the ion of the proper symmetry
and wave functions from neighboring ligands, as in the
"molecular orbital® calculations currently in such wide
use'.52’53’44 This type analysis is not used here
primarily because the shift in the Hamiltonian parameters
is of concern rather than the exact determination; (In
fact, the comparison analysis used precludes a prior know-
ledge of the parameters, and that their previous determin-
ation has fit the spin Hamiltonian well.)

An outline of the usual derivation of the spin Hamilton-
ian is shown below, It is followed by the restriction of
the spin Hamiltonian to a 3d3 ion in sapphire and the
resulting energy levels and transitions are then derived.

The General Hamiltonian. From the general Hamiltonian

for a single electron moving in electric and magnetic
fields obtained from Dirac’s theory, one can generalize
further to obtain a Hamiltonian for many electrons in an
atom with external perturbations by appropriate summa-

tions of interactions with the nucleus and other electrons?
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Specification of the external perturbing fields and pot-
entials then allows for the interactions of the atomic
system when placed in the crystalline environment and
magnetic fieid; This method does not include effects of
the nucleus interacting with the external fields; The
interaction of the nuclear electric quadrupole moment
with the crystalline electric field and the nuclear
magnetic dipole interaction with the external magnetic
field must be added as further perturbations? Only the
electrons in the unfilled shell, such as the 3d shell for
the iron group transition elements, usually are considered:
Because in resonance studies only the effects of the crystal-
line field and the magnetic behavior of the electrons and
nuclei are of primary interest this general Hamiltonian
can be further simplified as will be shown.

Following the above discussion one obtains the

Hamiltonian shown in equation 1,

;%4 ::/%f +V%f; +/%f; fVZ?; 4-;§é +;%¢ 4-/%L +.;@L (1)

N n Q
where
2
Xy' E : P: 2:eQ a 5 LA
== - + & r.
o - m r. . ik
¢ k>

7V§F = - e\éF =-c (Kuﬁéc-rvﬁxia./)
22 ) (s

1

s
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L

= 2 D50 - 360 05

3 ki £k
N, =p H- ZL:(L +ds;)

.1;(?£+/) ; |
M =daped L S LT T A

{

—3NPN H-I

aI(:<1—/ Z{I I+) ’3(4__-'_*2)&'1" j
4 3eQ évCF{I _ I(I+I)}

4I(2I-1) =

Ry
|

,34\:

where Vg is the crystalline field and the rest of the
symbols are standard notation. The terms in equation 1 and
the order of magnitude of the resulting energy level
separations are as follows in order: the well known Hamil-
tonian of a many particle system with coulomb interactions,

10° cm,'lg the crystalline field term, widely variable,

. . . -1
but in our case of iron group series 103 - 104 cm. :

spin-orbit interaction 102 cm.“lg spin-spin interaction,

1 cm.al; the electron Zeeman interaction with external

magnetic field, 1 cm.'lg the interaction of the nuclear
magnetic moment and the magnetic field produced by the

electrons, 10-2 cm."l; nuclear Zeeman interaction with the
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external magnetic field, 1073 cmo’1; and the nuclear electric

quadrupole interaction with the electrons and the
crystalline field, 1074 cm."l, in which axial symmetry has

been assumed.

The Wave Functions. For most transition metal ions

the first term, ;5% , in the total Hamiltonian is
used to obtain wave functions to use in determining the
perturbation due to the remaining terms. The last term in

;@é , the inter-electron coulomb repulsion, prevents
exact solutions for the radial part of the wave functions,
which are left as empirically determined parameters.
Certain combinations of these radial integrals resulting from
a spherical harmonically expanded interelectron potential

are the empirical Racah A, B, and C parameter555 which
are used experimentally later on. (See Appendix F;)

The angular part of the wave functions is soluble

and group theory provides a pbwerful means of simplifying

the problem of the impurity ion in the cryétal before
solving by eliminating the need to consider many combinations
of wave functions. This arises because the total Hamil-
tonian must be invariant under the coordinate transformations
which preserve symmetry since a physically observable quantity
must not depend upon the choice of coordinates. For a

free ion any inversion or infinitesimal rotation or

combination preserves the symmetry, but in a crystal it
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. is only that group of symmetry operations that preserve
crystal symmetry about the impurity ion. Thus simplification
arises if one uses those combinations of wave functions which
transform among themselves according to the

irreducible representations of the symmetry group of

the impurity ion site. Other representations are just
combinations of the irreducible representations; The
transformation properties of these irreducible repre-
sentations are represented by a matrix for each of the
symmetry operations., Since only the trace, or character,

is used in applications, these properties are given in a
character table. (For example, see HeineFSé)

These group theory arguments can still be used when
considering only part of the total Hamiltonian because an
energy perturbation is also a physically observable quantityl
In these cases the product of representations in the matrix
element evaluation of %lpert. ( Hpert. also transforms
as one of the irreducible representations) must contain the
identity representation or the energy perturbation would not
be invariant under a symmetry preserving transformation
of coordinates and the matrix element would have to be
zero. Examples will be shown as they arise and the character
tables of the cubic Op group and the trigonal C3 group
are shown in Appendix F along with the O_ irreducible

h
representation product table,
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If a simple ionic model of the lattice is assumed, the
wave functions, i@ , are made up of products of one
electron impurity ion orbitals, Qbé . If the covalent
nature of the 1aftice is to be accounted for, the or-
bital of an unpaired electron must contain some of the

ligand orbital, %? , Or

¢=O<¢°'+PC& (2)

2~ . “ 2
where ocp‘-*—ﬁ = 1 if the overlap is small. Thus fé ’
or the amount of mixing of the ligand orbital, is a measure
of covalency.

The Cubic Field. It is generally useful to decompose

Vof into a higher symmetry V, and a lower symmetry V, and
determine the energy levels of ;eg-mevl with the free

ion wave functions and then apply Vz plus the rest of the
terms in equation 1 as a perturbation on these 1evels?

As will b e seen later, sapphire is primarily cubic with
some axial distortiom so V; and V, become chb and Vax’
respectively. The result of the first part of this

3+ and V2* is shown

procedure for a 3d3 ion such as Cr
as a function of cubic crystalline field strength, Dq,

in Figure 1.13 The free ion energy levels are indicated
at Dg = 0. [?he notation of the levels corresponds

to the transformation properties of the wave functions

(i.e. the irreducible representation of the cubic group
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Figure 1. Energy levels of a 3d3-4F-state ion
versus cubic crystalline field,
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to which the wave functions belong) which result in that
energy levei when applied to the Hamiltonian %é —-evl;
The superscript is the spin multiplicity, 2 S + lﬂ]

The value of Dq for ruby, for example, is 1,800 cm',—1

and the resulting energy levels are shown in Figure 2,
where the usual optical transitions are indicatedl As
will be shown later, the additional noncubic or axial
crystalline field and spin orbit coupling will cause further
small splitting; In fhe4A2 ground state this becomes the
Mzero field splitting® of about 0;38 cm“l, and for the

2E level a splitting of about 29 cm.™1 results in the well
known Rl and R2 red lines of ruby. The result is similar

for the V2* ion,

The Spin Hamiltonian. It remains now to apply the

perturbations of V,x and remaining terms of equation 1,2%5

X
and on , to the wave functions of the 4A2 ground state.
Since there is only one combination of wave functions
which transforms like the A, irreducible representation,
this state is effectively an orbital singlet and thus it
has an orbital expectation value of zero. Also, since &ﬁs is
a smaller perturbation than the inter-electron repulsion
term of 772 an LS type coupling scheme is applicable and
Ml and Ms are good quantum numbers. Assuming constant
total L = Z’—Z-u and _S_ = Z s; Stevens®’ has shown that

L A

the position coordinates can be replaced by the components of L

and the individual electron spin variables by the components



4Tl

-20-

4T2 ‘

(55604)

4A2

2T2
(40004) /
.
(WSOK)
2Tl
°E
R
(69304)

Figure 2,

Energy

levels of ruby with cubic field.
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of §; With the further assumption that the next higher
cubic field level to the 4A2 ground state is far away
(optical transitions as compared to microwave), the change
in energy of the ground state can be calculated to second
order using only the orbital part of the wave functionl

Thus we have the eigenvalue problem

z/ %mxjmr - E;/ ms, Mz %m:) "z (3)

where %L' are those combinations of the free ion wave
functions, j? , which transform as the irreducible re-

presentations of the cubic point group, where

= f\z(r) _K %: g N\

, r”‘z‘
Z"":;"‘:r ¢4

and q stands for the quantum numbers p, L, S, I, and my,
and R(r) is the radial dependence and Y, ¥ , and A are
the eigenfunctions of the angular momentum operators L,
S, and I, respectively. With
A= -cl + I
o cuB PERT (4)
one obtains
= m
E‘m:mr Ez +<Z J'MI/%ERT/iMI mI > (5)
—— [ ' ]
? <&M m-f/%t”é’"/i e ”I><,’M~f’ Mz /%ERT/} me g >

E - E—?l

g'ms'me # g e 4



- 2D =
Lu &

&

. .
where Eq are the eigenvalues of Aé - ¢ Z;a’

the small changes in the ground state due to the crystal-

Since only

line and magnetic fields are of interest, Eq can be
dropped. The calculation performed to second order over
the orbital part of the wave function for the orbital

singlet ground state yields

' /
< m,m,/%””/m:’mr > = < 0w, "”r/ Z/PE,Q.,/O m mg >

+ Z <2rerald yﬁsm—/F”’”JH”;I><Z/;’“f‘/”§l/7vf°epr Jom me > (6

f"”‘:“’”z“ # g me My é—% - ég " ,

This eliminates the orbital operator and leaves only

spin operators in the "spin Hamiltonian® as followsL
Considering the last six terms in equation 1 as the

perturbation one obtains

(7

where spin-spin interactions among the electrons and the
electronic interaction with the nuclear quadrupole moment
have been neglected. (For a more general discussion see
Bleaney and Stevens,b) Since Vax will be shown to be of

2 )
the form [J-a - é-L(L+!lj its matrix element with the
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orbital singlet ground state, 4A2 is zero; Also, since
Vax transforms as the irreducible representation E of the
cubic group and the products T1 x E x Az and T2 x E x A2
do not contain the identity representation (see Appendix F),
the axial field does not connect the excited orbital states
4T2 and 4T1 in the second order perturbation which follows;
Therefore it is dropped from the spin Hamiltonian but must
be applied to the higher orbital states before the second
order perturbation calculation.

Since the expectation value of L, for the orbital
singlet ground state is zero the first order part of the
spin Hamiltonian from equations 6 and 7 is

(%

] 2
| = 2pHs +AIS ~gup HI~Q[L-42(E )]
SFIN,:T -
The second order contributions from ‘%afﬁT will arise
through L and will contain terms quadratic in the components
of H and S or
2 f )
—_ ’\S'S'-'. ’ |S|+ A"H‘H'
where the djj, fij
the orbital matrix elements connecting the i and j

, and A\ jj are matrices made up of

components with the excited states. (For example,

the calculation of the dij

and performed in Appendix G.) The last term, quadratic

is outlined in Chapter II - E

in H, represents a constant energy and can be dropped.
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Combining t he first and second order contributions

2
in a tensor notation in which 2 = A dtj and 9 = ? S;J' +A f"j

yields

2y =pHgS +S DS +TAS+I1°9T-pH g1

e = - (8)

The g's, D, A, and Q are tensors whose principal axes

are assumed to coincide; This spin Hamiltonian when
diagonalized will yield all the energies arising from

the various perturbations and therefore show all the
resonance properties of the system. The first, or Zeeman,
term in equation 7 contains the gyromagnetic ratio or
spectroscopic splitting factor, g, which will differ

from the free electron value of 2.0023 due to admixing

of higher orbital states. Anisotropy of g may arise through
the mixing of the spin-orbit and crystalline field inter-
actioné. The second, or fine structure, term is a measure
of the further splitting, D, of the ground state from
asymmetric or non-cubic contributions of the crystalline
field. This also arises through spin orbit coupling

as detailed in Chapter II-E, and is called the "zero

field splitting." The third, or hyperfine, term

gives a measure, A, of the interaction of the nuclear
magnetic moment with the magnetic field of the electrons;
The nuclear electric quadrupole and magnetic dipole
interactions with the crystalline and magnetic fields,
respectively, are expressed by Q and g, in the last two

terms.
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The Spin Hamiltonian for a 3d3 Ion in Sapphire. The

spin Hamiltonian must have the same symmetry as that of
the crystalline field, in this case axial symmetry. It
will be seen later that the crystalline field can be

expanded in the spherical harmonics, Y with many

1m?
restrictions on the number of terms. The expansion of
the axial field about a 3d3 ion with § = 3/2 yields only
the one spherical harmonic, Y,q, so the spin Hamiltonian
spin operators that obey axial symmetry must also trans-
form under rotation like YzO; bRacah noted58 that the

vector operator Té, which has the same transformation

properties as Y, £ , obeys the recursion relation

1m

U feteermie] [ S, T

with the angular momentum operator §. From this one can
obtain linear combinations of the spin operators which have
the same transformation properties as the spherical
harmonics, assuring the same symmetry for the spin Hamilton-

ian as the crystalline field. Examples of such linear

combinations, S_ , are
im
— Rt s(s+
Sgc> 'SE 3 ( )

and
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5, = - 35S0 S 25 ksl r) 356

0 - /180

Thus equation 7 with the crystalline field axis as the

Z aXis becomes

A = p[9.H: S 49, (HS K 5]+ D S22 565+

SPIN (AX)
PALS +iB(T, 6 +1.8)+ Q[ -31(r+)
",f,,[am_HlIé +3’3~L(MI-*H- I‘+)] 9)
= F [9, H, S, + 5_,_(“xsx * L/,%)]-#D[S:*é 55*/)]
SPIN(hX)

'*'HIiSa +B(I;(SX +I>'Sy) +Q'[I;'3"-I(I+ )-7

) [3M9 Hy Lz + 9y, (HX I+ ”7 Iy)] (10)

where g, equals the 8,2 component of the g tensor and

€L 7 Bxx T Byy-
The Energy Levels for a 3d3 Ion in Sapphire. It

remains only to apply this spin Hamiltonian to the eigen-

value problem
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Foow T re = Empmy T

m. me me mo me Mo (11)
where %ﬁ/ now only need contain 2( and /\ This
memy me mo
yields the eigenvalues to second order in the hyperfine

interaction with the magnetic field parallel to the

crystalline field axis of
Eppn = 9P HM 2[11%~ 4 5(5+)] + Al = 3uu o

2 2 [s(s+) -M/M+/)MI(T"’)" m(m-/)_]
+Q[’-” 'LI(I ] 9l' -9, H-D @M+) +/7(M-m~;7)_ 2

2 [s(s+1) = M-)ILT(z+1) = mim+i)]
afH + D(M=1) + A (m-M+))

!
+7 8

where m  and mp  have been replaced by M and m,
respectively, to conform to standard notation;

The gross structure of these energy ievels for
S = 3/2 and different M with the magnetic field parallel
to the grystalline axis are shown in Figure 3. These are
plotted with the coordinates
& 9, H
D’ -D

X =

and

£, _ E.
Yo = o7 T Tp

2’ -D
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O

Figure 3. Energy levels of ruby ground state versus
applied magnetic field.
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3+

This is done so that the plot is the same for Cr and

Vet

which both have S = 3/2 but have different D valuesl
In addition, vanadium has an I = 7/2 and one isotope of
chromium has an I = 3/2 which will split these levels
further into 2 I+1 levels as shown in the inserts

in Figure 3.

EPR Transitions for a 3d° Ion in Sapphire. To

induce transitions among these magnetic sub-levels
with different M, a time dependent H'(t) must be added to
the steady field, H. Physically, this can be thought of as
adding perpendicular to the steady field, H, an oscillating
magnetic field vector, H'(t), whose freduency is equal to
the Larmor precessional frequency of the spin angular
momentum; The transition probability is then proportional
to the square of the matrix elements of the first and last
operators in equation 7, with H?(t) substituted for H;
These levels of different M are connected only by the S,
and S_ operators (St =S t iSy) if the hyperfine splitting
is small and the field is parallel to the crystal axis.
Their matrix elements are
- '/2

< M[ScMzl > = [s(s+)-M(MF)]
- (12)
Thus, the selection rule for EPR is AM = + l(Am=0)?
With this selection rule the resonance condition for the fre-

quency of H'(t), which now must be perpendicular to H, becomes
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in our case

h)/ = E(M#‘/,M)-E(Mlm) = ﬁzﬁ// +D(QM+I) + F om

) e ) ] S@+0—(MQ+3M¢U
ty B [I(I+') m(m /)] -yip/-/-D(éM+3)+F7(M-mE) (14)

sE+) = (M3+m) -m/)} - B?[I(r-:-/) - m(mw)]

-ﬁﬁH+D&Mﬂ+A@

s(s+) = (M3+n) _ sfs+) = (M2-mM)

5o p M 7 D(RM) + A1) 92 fH + DEM=I) ¢ Afm-M+)) |
This is the equation used to analyze the results of this
study. (It should be noted that usually D and A are much
smaller than giﬁ H and the second order terms can be
further simplified. For cr3* and V2% in sapphire D is
of thé same order of magnitude as 3;F'4 and this is not
the case.) At X band microwave frequencies (9-10 Gc/sec)
and with D~ )/ , it can be seen from Figure 3 that
three fine structure transitions will occur at ~ 100 gauss,
~ 3500 gauss, and ~ 7000 gauss.

For ruby a check was also performed with the magnetic

field not parallel to the crystalline symmetry axis. The
dominant isotope of chromium in ruby has I = 0, so the

?

spin Hamiltonian of equation 10 simplifies to

K =plate < oS w4 S« 2[5 =3 s(5)] .
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Going to the case where the field is no longer parallel

to the quantization axis, one can either transform the spin
Hamiltonian to a coordinate system whose axis is parallel
to the appliéd field and use combinations of the original
eigenfunctions, or perform a perturbation c§1cu1ation
which yields second order terms il]ﬂN%9 i:%%T‘ where %

is the angle between the field and the crystal axis; For
ruby D> 9, g H and the latter doesn't convergevn The

former yields the following spin Hamiltonian37

7V( = (ge cosa'ﬁ- - 9.1. >S/M=-9> p /'/ SE-
+D eos‘—&-—é:au“-ﬂ)[%:-g :(s-+/)]
-C ;f
+ Dﬂ’c‘o:'&sw-ﬁ[@ 45?5_25* +S+S})+c (5}5_4-5‘_ S,)] (16)

+Dg s ‘e ( -t ¢ 6045.2)

The energy levels, eigenfunctions, and transitions are
calculated by Schulz-DuBois3? and the X band transitions as
a function of magnetic field and the angle, %, are shown
in Figure 4. The transitions marked forbidden are for-
bidden only at zero degrees,
The off axis check was done primarily at the angle,

-4 = 54.740 where cos®4 = 1/3 and the second term in
equation 16 is zero and the coefficients of the last two
are equal. This angle was used because the transition

energies are relatively simplified to37
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a Iy l/l
=), = L, " Vi = [/4- -5:;—( +(3xa+x.,)a]

. (3x“+x7)’/“]l/2 (17)

|
—

3
44?

and

sxt 2 Y ﬂﬁ-yhe
‘Zo,a}"- '?[’*'T "(3" "'X) (18)

where
E, n,gpu < < <
yM = :—f )‘ X = _ D J‘ and 3'2:-9é cisi® +j-L sV '19"

(NOTE: 1In equation 18, x is double valued.)
To understand the source of symmetry about the ion

the sapphire crystal structure is next discussed.

B. SAPPHIRE CRYSTAL STRUCTURE

Sapphire is the commercial name for synthetic
corundum which is chemically pure aluminum oxide in the
alpha phase, or just oK - A1203. The gem sapphire is
naturally occurring corundum with various coloring impurities
to give it gem value, such as cobalt which gives the blue

sapphire, vanadium the green, and chromium the red

sapphire or ruby.
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46 can be generated by placing

The crystal structure
A1203 molecules at the corners of a cubg and stretching
the cube along one of the body diagonals. Another A1203
molecule which is rotated 180° about the molecular axis
with respect to the others is inserted in the center of
the distorted cube; Without distortion each aluminum ion
would thus be at the center of six oxygens in octahedral
coordination as shown in Figure 5. This results in the
cubic crystalline field. The distortion along the body
diagonal yields the axial or trigonal crystalline field
from the inequivalent sets of three adjacent oxygens as
shown in Figure 6. Three of the oxygens lie in a plane
1.372 away from the aluminum site. The aluminum-oxygen
(A1-0) distance is 1.98 & and makes an angle of 46° 27°¢
with the crystalline c axis, The other three oxygens are
in a plane 0.80 R away and the Al1-0 distance is 1.84 X
and makes an angle of 64° 10' with the ¢ axis; In addition,
the two sets of oxygens are not rotated exactly 180°
with respect to each other. A projection of one set on
the plane of the adjacent set (Figure 7) shows an ad-
ditional rotation of 4° 227,

- 6
The crystal belongs to the 3 m (or D - Shoenflies)

3d
space group and the aluminum occupies a site which has the
symmetry of the 3 (or C3) point group. The four degree off-
set is often neglected for which the symmetry becomes

3 m (or C3V)°
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®o—
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Figure 5. Octahedral coordination in ruby,



Figure 6. Crystal coordination for aluminum site in
sapphire,

4°22

Figure 7. Projection of oxygens in Al,03 onto a plane
perpendicular to the trigonal axis.
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In the crystalline field calculation the next-nearest-
neighbor aluminum ions are accounted for; A list of the
14 next-nearest-neighbors, their distances from the substit-
utional site, and approximate angles (cosines are exact)
with the crystalline c axis are shown in Table I. The

oxygens are also included for completeness.

TABLE 1

Location of the neighbor and next-nearest-neighbor ions

with respect to a substitutional impurity in o< ~A1203,59
Site # of ions Distance R cos approx,
Impurity 1 0.0  eeseceo- -
01 3 1.84937 0,43575 64°
02 3 1.98828 -0,68899 1339
Al 1 1 2.73273 =1.00000 180°
Al 2 3 2.80912 =-0,20072- 1010
Al 3 3 3.18581 0.50374 60°
Al 4 3 3.50390 0.61893 52°
Al 5 3 3.50390 -0,61893 128°
Al 6 1 4.67959 1,00000 0°

It should be noted for later reference that if one moves
along the c axis of the crystal, one adjacent octahedral
site will contain an aluminum but the other is empty.

It is the change of position of the surrounding ions
with pressure that causes t he crystalline field to change.
The displacement of the ions with hydrostatic pressure
can be obtained from the following discussion of the

elastic constants,
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C. THE ELASTIC CONSTANTS FOR SAPPHIRE

For any elastic deformation there is a linear relation

between the stresses applied and the resulting strains. These

relations are derived in Appendix C and put into the notation
for which the values are usually reported in the literature

In the usual matrix notation this relation is expressed
6

L,
.= C.. U-
PL j:/ <) J (19)

where the c.. are the elastic "stiffness® coefficients,

p; are the stresses, and uj the resulting strains.

Similarly,
6

. 1
o= )

.

J=1 (20)
where the sjj are the elastic "compliance” coefficients,

The stresses, p;, are related to the components of the

stress tensor Crij as follows:

P = Txx Py = %9z = 0’3)/
P = CFYY Pr = %%a :='a;x

- (21)
Pz = %22 P¢ = 6;7 = G;x

The strains, u,, are related to the components of the strain

tensor € - as follows

‘J
u, = €, u, = €,, * 62)/
Uy = 6/) Ug = €, ¢ é;x
= — (22)
uj 62% Mg - éxy + éyx
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A component, O, . , of the stress tensor can be thought of

as the tensile force per unit surface area in the ith

direction applied to a surface whose normal is in the jth
direction. Similarly, a component, ééj , of the strain
tensor can be thought of as the elongation per unit length
in the i'P direction for j = i and the change in the angle
between the ith and jth axes for i # j.

It is shown in Appendix C that the symmetric matrices
Sij
the crystal symmetry restricts this number further, The

most general compliance tensor for the sapphire lattice

which has 3 m symmetry has the six independent components

showns
u, S, Qa Sn Qq o) Q P,
u‘.? . SH 513-5/" o o Fq
“2 — 533 o © 0 F3
W, , Sy © © P, (23)
Mr SYmM. 57723;‘! F;
“, 25,54) P,
In the case of hydrostatic pressure
Fr=Pa=P="F
(24)

and

P, =Ps =P, = 0

The compressional analysis done later utilizes the x and

and cij generally have 21 independent components and that

z displacements, Ax and Az, of ions neighboring the impurity
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ion. These are then related to the elastic compliance

constants by the followings:

AX
b= = = (s 5 5a)
(25)
U, = €;5 = 2 '3 s2) P -
For uniaxial compression
/o,:-.—fj /D.z:/DJ‘:PV:PI:/né = 0 -
. (26)
The displacements are then calculated with the elastic
compliahce constantss
M’ = —Snf
U, = = 3,F (27)

Then for both cases the x and z displacements are simply

Ui X and u3z.

The most recent compilation of elastic constants for

sapphire is that of Bernstein47 who quotes the values

12 2
c, = 4.92 x 10 prwE [ cm.
c,, = .92
Cpy = .17 ” (28)
Ca=1.68 "
Chp = 116 ’ )
C = -0.a234 M "

A
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Since the compliance constants are used to determine strain,

the reciprocal matrix of these cij values must be obtained.

For a crystal of 3 m symmetry the inversion is simplified t060

S, * S, = €3;/¢
S, — Sia = Sy /
S, = — Cin/c (29)
S, = — Cu / c’
S,, = (c.+cu)/c
Sy T (C” - C"‘)/C’/
where
c = Gy, (C” M C'a) - C»:Q
c' = Cuy (¢ -¢cu) =R C/"q ]
This yields the following values
s, = 0.4/ x 10~} (D)’NE'/CM.A) -
S,, = 0,222 " :
S,, = 0.697 " !
Sq = —0.0755 " !
2 = T 0.0370 y ! (30)

S
S,y = -~ 0.0503 " Y
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These are the compliance constants used in the analysis of
this experiment and are summarized with the stiffness

constants in Table I1.

TABLE 11
The Elastic Stiffness Constants, Cé}’ and Compliance
Constants, SJJ , for Sapphire at Room Temperature.
( ¢ from B.T, Bernstein, J. Appl. khys. 34, 169 (1963);

S, by inversion.)
<

4.92 x 1012 dyne/cm® sy; = 0.241 x 10712 cn2/dyne

c11 = =
c33 = 4.92 " s33 = 0.222 "
Cqq = 1.47 " S44 = 0.697 L4
c1, = 1.68 " sy, = -0.0755 #
C13 = 1.16 U 513 = -0.,0390 L
C14 = =-0.234 " Sl4 = -0,0503 ,

Since these constants are for the bulk crystal and the
local compression about the impurity site is of concern,
the bulk compressibility must be related to the "local
compressibility® about the impurity ion, The usual
assumption 1is tﬁat they are equal.zo'zz This implies that
the neighboring ions will compress about the impurity ion
as if they were all imbedded in a medium with the bulk
elastic properties of sapphire. There will be "local
relaxation”™ if the compliance constants of this“hypo-
thetical medium are larger than for sapphire and "local
tension® if they are smaller, i.e., local relaxation
implies that the neighboring ions displace more than

expected for a given stress,
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Local relaxation could be expected if the atomic forces
between the impurity ion and the ligands were less than for
an original lattice ion. For example, this would be
the case on a purely ionic b asis for a substitutional
atom with a 1lower valence state. Since covalency effec-
tively reduces ionic charge, it would be expected to lead
to local relaxation also, but to what extent the covalent
bonding strengthens the interatomic force to compensate
for this is unknown. An estimate of the combined effects
can be obtained from bulk compressibilities. Kittel
has shown that the bulk compressibility is generally in-
versely proportional to the interatomic force, 1In general,
highly covalent structures such as diamond (f*= %‘%HTH7'=O./6)
silicon (0.32), SnO, (0.49), and germanium (1.42) have
lower bulk compressibilities than highly ionic structures
such as AgBr (2.74), NaCl (4.18), KCL (5.65), and RbBr
(7.97). This implies that a higher degree of covalency
for the impurity ion than the normal lattice ion could
lead to local tension, Local tension would also result
if polarization effects are significant since added dis-
tortion is necessary with compression,

Now it is necessary to determine the crystalline field at

the impurity ion site and predict the changes due t o the

above displacements., This is done in the next two sections.
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D. THE CRYSTALLINE FIELD MODEL

The crystal field model will be used in which the
crystalline field is determined by a calculation of the
potential at the impurity ion site when approximating the
surrounding ions as appropriate point charges at the ionic
lattice sites, In view of the criticism of the crystal
field model®? and the failure of the simple theory to
satisfactorily predict the zero-field splitting of the

4A2 ground term of the Cr3+ 40

ion in ruby, the use of this
model must be justified. First, a more recent expansion of
the crystal field analysis to include distortion of the wave
functions by the trigonal field through configuration mixing
and the covalent 7r bonds has shown good agreement,63
Also, the crystal field calculations to fit optical spectra
show reasonable agreement when some displacement of the
impurity ion is assumed.?2 This assumption is supported

by ENDOR (Electron Nuclear DOuble Resonance) experiments.39
Thus a model that can reasonably predict the splitting
should be able to predict changes much more accurately.
Finally, the point charge model has worked before for
trigonal calcite,?2 With these justifications the crystal
field model is used with the idea that the results will
give some indication of its validity.

If it is assumed that the impurity ion is surrounded

by point charges and that the impurity ion charge does
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not overlap those of the surrounding ligands, then
Laplace's equation holds

viv =0

(31)
and the crystalline field potential due to the point ‘
charges can be expanded about the impurity ion site. 1In
this region Laplace's equation has general solutions of
the form
Vir) = Z Xt rl Y/m(9'¢)

4 m (32)
where r, 6 , and ¢ are the spherical coordinates of I
centered at the impurity site, Equating this to the pot-

ential

_ e
Vie) = e Z |r —r. (33)

l

5

at the position [\ , due to the sum of the charges qj
at the surrounding ion sites [ ; at the coordinates

Cre, 9‘/ @, ), results in the coefficients

/ {7 1; X
alm - 6(2[—*/) L Vgl*l fm (64./ ¢") . (34)

L
(The details of t his and the following analysis are

carried out in Appendix A.) The C; symmetry of the crystal
lattice restricts the m values to integral multiples of
three and ‘f values to even integers. The use of 3d wave

functions for which I = 2 cuts the series at f = 4 and



-46-

allows only even values of [ . The aoo term is just a

3+ 2+

constant and since Cr and V both have S = 3/2, only

the term in a0 remains, This coefficient becomes, w here
the spherical harmonic is put in terms of Legendre

polynomials,

! -3
20 = € yaom Z 7, Ro (o5 8 1
;

In the next section D is shown to be proportional to

(35)

ayy and the change in a,, with lattice compression is also
derived., Calculations of a,y are included in Appendix A
and a'summary of the results in Table III are also in

the next section.

E. COMPRESSIONAL MODEL AND PREDICTED BEHAVIOR

In order to evaiuate the results of this experiment with
respect to the crystalline field model, some model of
change of the crystal lattice with hydrostatic compression
must be assumed. This, then, must be related to the
changes in thec rystalline field spin Hamiltonian para-
meters,

Assumptions. The following assumptions are made and

discussed in turn:
1. The local compressibility is the same as the lattice

compressibility,
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This implies that the surrounding ions will compress
about the impurity ion site in the manner as if they were
imbedded in a material wifh the same elastic constants as
bulk sapphire, Local relaxation, or greater compressibility,
about.the impurity ion site was‘deduced in several other
materials. There has been some evidence of local relax-

23

. . 34 ) ) 36
ation in MgO and SrT103 , but Drickamer has shown

that none exists for cr3*

or V3* in sapphire. This is
probably due to its stiffness.
2. The impurity ions are substitutional.

This assumption is under serious question both from
optical studies42 and ENDOR results.39 It is also suspected
that the vanadium and the chromium do not occupy the same
site., It is one of the objectives of this study to check
on this assumption.

3. The changes in the spin Hamiltonian parameters are due
primarily to changes in the intensity of the electrostatic
crystalline field.

The spin Hamiltonian parameters could also be af-
fected by changes in covalency (or the degree to which
ligand orbitals must be used in determining wave functions)
and changes in the distribution of the 3d wave functions
as shown later in this section., A direct measure of both

55,64

of these parameters is the Racah B parameter, It is

shown in Appendix F that both an increase in the degree of
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covalency and an expansion of the radial distribution of the
wave functions, which would be expected with increasing pres-
sure, will tend to decrease B, Drickamer's optical
experiment36 shows that the change in the Racah B para-
meter is very small in our pressure ranges., The de-
crease in B observed in ruby is 0.03% as compared to
observed shifts in the crys;alline field parameter of
about 0.2%. Therefore this assumption seems reasonable.
4, The point charge model can be used to describe the
changes in the electrostatic field.

For a crystalline field which is cubic and in which
the compression has the effect of simply shrinking the
distance to the surrounding ions, this assumption is exact.
For this reason the point charge model was used in the work

20 and Wait.22 BEven for a distributed ligand

by Walsh
charge this assumption is valid of the compression is
®conformal® or angle preserving and the charge distribution
lies outside the ion, This is shown in Appendix A. One

of the reasons for choosing such a model for ruby, which

has trigonal symmetry and nonconformal compression, is that
it was used with success for trigonal symmetry before,22
even though the calcite compression was also far from
conformal, Also, the agreement that Drickamer39 obtains
with a simple point charge analysis supports this assumption.

However, one of the motivations in choosing the sapphire

structure was to check this agreement and that for calcite,.
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Change in the Coefficient 350" The method used will
be to determine the rate of change of 350 with change in the
position of a surrounding ion and simply multiply by the
change in position per unit pressure as predicted by the
elastic constants and the first assumption.

As is easily seen from Figure 6, by taking the z axis
as the axis of trigonal symmetry, the contributions to the
crystalline field on the axis from each of the three
oxygens in a plane are equal and any dependence on ¢
can be neglected, It is easiest now to consider only one
of the oxygens, namely the one lying on the positive axis.
The effect of this ion will then be one third of the effect
of all three for any symmetry preserving motion of the one,
Thus, if one were considering only the effect of the
oxXygens, the sum in equation 35 would be over the two

values 1i;

L r, =y
/ .84 B 6?‘°/O’/
2 /.98 A 46°27 (36)

where .

L and CH are obtained from Table I and then

a
2: P, (cos &)
oxYy. 3 (37)

where Q is just a combination of constants, and ?'oxy is

the charge on an oxygen ion. A similar condensation can be
performed for the fourteen nearest neighbor aluminums when

the sites listed in Table I contain more than one ion.
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To get the change in aso with pressure it is easier to
transform to a rectangular coordinate system with the same
z axis but with the x axis through an oxygen site., Then

we can determine a change in ayq as

Aaao:_‘__ Z i&jﬂx\+&3Az.}
0‘20 a-;o 7 3 x ¢ Q2 ¢ . (38)

The Axi and Azi are obtained from the elastic constants (See

Section C) and are respectively u, x; and u3z;. In this
coordinate system there is no need to consider Ayj

since Y; for the ion is zero. Thus the compression is
symmetry conserving, allowing the condensation above.

The rate of change of a0 with position can be obtained

from equation 35, For xyx = X,z one obtains

I J Pao(cos 6;)
= Q [r’ @ase) + s
Z ‘)X ° "k - (39)

2 4

a—

1
Since r = (Xi + y;3 ziz)z the following relations holds
i .

r; o v x
-é——~‘ = —F = — = SIN B,
9 X é)(‘: re
(R ré Z
E—_& = 9r = ¢ = cos g,
9 2 9 2 v ‘

One now obtains by substitution into equation 38

Aa +L 3R,
Z a0 _ Zg‘ [u xb r" sing; R+ = j;-'L.)
A aao ‘t ¢

20
P
+u2< - COS 6, P0+L-3i'“’)]

v J2

(40)
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where
A4 s*e. —/ ) cos O,
_é_._P'Z_Q — s) R(3C0 % ) — 3 cos Q‘: _3____._..
b
éXk d X/’( K
and
d cos & < 24) _ -siNB; cosE;
3 x J re r:
3 cos B, R (-Zo) — ar-y
d = T oz A\ re v

The substitution of the structure constants for the
six oxygens and fourteen nearest neighbor aluminums from
Table I and the elastic constants from Table II is shown
in Appendix B, Since there was suspicion that the impurity
ion was not substitutional but displaced along the tri-
gonal z axis by about 0,1 X toward the empty octahedral
site (i.e. toward the top of Figure 6), these calculations
were performed at various positions in this direction.
One calculation was done in the opposite direction as a check.
A summary of the values obtained are shown in Table III,
The contribution of the fourteen nearest neighbor aluminums
is relatively small and is therefore sometimes neglected,
It is interesting to note that this contribution becomes
negligible at a position 0,15 R towards the empty octahedral
site, If one plots the relative positions of the
surrounding ions from Table I as shown in Figure 8, it
can be seen that t his is about where the aluminum contribution

is symmetric,
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TABLE 111

Summary of the Theoretical Calculations of the Change with
Pressure in the Crystalline Field Parameter as a Function of
Displacement Along,the Trigonal Axis in A1l,05;. (ajg is in
units of Q x 10-2 A~3 where Q = 1/eJao™ 2nd Aapp/azg is in
units of 10-3/katm. Positive displacement is towards the
empty octahedral site.)
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Figure 8. Relative positions of the nearest and
next-nearest-neighbor ions in sapphire,
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Predicted Behavior. Before predicting the pressure

dependence of the zeroﬂfield splitting due to changes in the
crystalline field, the dependence of the splitting on the
crystalline field must be determined. With the restriction
to only the a,, term, equation 30 becomes

V = a "zﬁo = a‘ao(32a-ra)

%% 20 . (41)
Substitution of orbital angular momentum operators accord-
ing to Stevens46 yields

- —_— R !
V = 2 a,,< r"?>[3 L:— L(L+/)]=Qg[L; ":TL(L"’/)]

Ax 105 (42)

where g is the axial field splitting and the integral
is already performed on r2. As shown in Appendix G, Vax
splits the excited states 4T2 and 4T1 but not the 4A2 ground
state. The matrix elements are evaluated in Appendix G and
result in the splittings of 15 § ( or 3/2 K) shown in Figure 9.
Since there is no splitting of the ground state due only to
the axial field, the observed splitting arises through second
order spin-orbit coupling to the higher states,

Evaluation of the matrix elements of the second order

perturbation X L:S, as the third term in equation 5, to

the axial split excited states in Figure 9 becomes

K
L <ofL*S|n><n|L-S) o>
_ Z (43)

AL =

h = h fo)
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Figure 9. Crystalline field splitting of 4p ground state
for a 3d3 ion.
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where the sum is over the axial split excited states and o
refers to the unsplit 4A2 ground state, Since L transforms
as the irreducible representation Ty of Oh and the product

resulting from the 4

T, excited state matrix elements,
T; x Ty x A, (see product table Appendix F), does not
contain the identity representation, its matrix elements
are zero and only those of the 4T2 state are considered.,

These matrix elements are calculated in Appendix G and the

result is

pol
)Z #( S +5ya)]
/10 + /10Dg - 5
.Dg /10§ g $ (a4)
where the excited states due to the excited doublet 2T2

with its larger energy denominators have been neglected.
The other excited doublet states do not couple directly

4

with the ground state as in the case of the T1 state.

Since § is much smaller than Dg, equation 44 can be

approximated as

_ Q
pEz X [0- £ 50+ 55,)]

or

e

n

+ sy2~+ S;° = S(s+1)

or since sz
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AE = /;Dj [s[s+/)— 2—%2{35;‘~s(5+/)}]

47)
The first term is simply the isotropic part and adds a “
constant to all levels, The coefficient of the term

33,2 - 8(s*1), or D, is

S )
D= 5(32)1 (48)

where § contains the 250 of the previous section. Thus,

for small changes, the relative change in D is

AD . 45 24} | 24Dq
= $ A D¢ . (49)

Similarly, the spin orbit coupling will shift the g
value from the free ion value, g, and an equation analo-

gous to equation 48 is (see Appendix G)

-8)

(9-3s = 10Dg + 108 : (50)
For small changes then
A(9-9)z ______)_‘_ _ ADg
(9 -3, = D< . (51)

These equations (49 and 51) can then be used to pre-
dict the shifts in the spin Hamiltonian parameters D and
(g-go) if pressure data is available for the changes in Dq
and A . Only the change in Dq with uniaxial pressure is
known from Drickamer’s worko36 Further analysis from the
available data and the data from this experiment will be

performed in Chapter V,



Chapter III1

EXPERIMENT

For this experiment an electron paramagnetic resonance
spectrometer for studying crystals under high hydrostatic
pressure has been constructed®? having many distinct
advantages over earlier such instruments.®9,07,35 The
advantages are the ease of cavity coupling adjustment
under pressure, the use of a two sample comparison, and
the resulting simplicity of data analysis. Also, the
pressure is hydrostatic and a precise pressure measurement
is possible,

In Section A the crystals and crystal orientation are
discussed, in Section B the principles of operation and the
construction of the apparatus are described, in Section C
the advantages of the two sample system and the solution of
the ®cross talk®” problem are discussed, and in Section D

the method of taking data is included.

A. CRYSTALS AND CRYSTAL ORIENTATION
The crystals used in this experiment were identical

pairs of washer-shaped single crystals of Al +0.1%

203
Cr,05 and A1203+0°1%V203 obtained from Linde Optical Company,
The crystalline c axis was in the plane of the washer + 2,0°.

Their dimensions were

-58-
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I1.D., - .090" .005"
0.D. - .240% ,005"
Thickness - ,060% .005"

The naturally occurring chromium has a 9.5% . abundance
of the Cr°3 isotope whose nuclear spin is 3/2, but all other
isotopes in natural chromium have a nuclear spin of. zero.
The chromium substitutes for the aluminum in a plus three

3+

valence state. The A1203§Cr crystals were used as

obtained from Linde and gave clear strong signals.
Naturally occurring vanadium is primarily the V51
isotope whose nuclear spin is 7/2. The vanadium also sub-
stitutes for the aluminum in the plus three state with
a very small amount occurring in the plus four state.
The plus three state is not discernible with microwave
spectroscop& at room temperature and the plus four state
does not interfere with the observed plus two spectra.38
To obtain the doubly ionized vanadium, the crystals were
subjected to 50 kev, X-rays for a period of three hourso38
Because the conversion efficiency to v2* is small and the
signal strength is spread over eight lines (I = 7/2)
instead of one as in ruby, the signal strengths were con-
siderably weaker.

The crystals were oriented spectroscopically. As
will be seen in the next sections, the cylindrical axis of

the washer shaped crystals is coincident with the axis of

rotation of the magnet, The plane of the washers is thus
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perpendicular to this axis and held in the plane of
rotation by the sample holders to much better than the
* 2° quoted by the crystal manufacturer. No further
attempt was made to orient the c axis in this plane.

Using Figure 4, which is a plot of the resonant magnetic
field values as a function of angle, two points were used
to orient the crystalline c axis of the ruby crystals
with respect to the magnetic field. At ¢ = 54,74°
two levels cross and can be observed by the recordings
to + 0.5°. This was used as a check, Principally, the
crystals were oriented by using the maximum for the high
field line at ¥ = 0°, Observing the maximum of the resonances
on the oscilloscope while rotating the magnet allowed
orientation to the readability of the magnet scale or
+ 0,2°, The vanadium crystals were oriented by observing
the disappearance of the forbidden transitions which occur
between the eight high field hyperfine lines when the c
axis and the magnetic field are not exactly coincidento43
This allowed orientation by observing the spectra to
about + 0,5° and there was no indication that the
alignment in the plane of the washer was significantly

worse than this,
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B. THE EXPERIMENTAL APPARATUS

The principles of operation are as followsz The two
samples are placed in the atmospheric and high pressure
sections of the microwave resonant cavity (Figure 11),
which is located in a DC magnetic field. The magnetic
field about each sample is modulated at a different
frequency. The microwave power absorbed by the cavity is
then fed as signal to two phase sensitive detection systems,
each of which is sensitive to one of the two modulation
frequencies, The signals from both samples are thus
separated and plotted out on a pgir of identically driven
recorders. Thus the percentage change can be directly
determined, and with a calibrated field sweep the relative
shift can be directly measured in gauss. This not only
reduces the error (formerly the dif ference between two large
numbers) but greatly simplifies the analysis and procedure
by reducing the need for considering second order cor-
rections, hysteresis effects, and ambient changes.,

The high pressure is generated by a hand pump, magni-
fied with a piston intensifier (Figure 12),and fed to a
beryllium-copper bomb through thick walled stainless
steel tubing.

Spectrometer. The spectrometer is of the homodyne
68

type and utilizes X band (8-12 kMc/sec.) frequencies and

phase sensitive detectors. Reflected power from the cavity



-62-

- N AF
bl ¢ RECORDERS
ISOLATOR A 5
v METER PREAMP A L
A B
— ATTEN ¢ SHIFT CRYSTAL PHASE
SENSITIVE
DETECTORS
ATTEN ~3db A 5
MODULATION
BELOW CUTOFF
AT TENUATOR
WAVE GUIDE TO <— FEEDBACKH
COAX COUPLER
SAMPLE A
— &
MAGNET '5' MAGNET
, g
SAMPLE B

Figure 10.

CAVITY

HIGH PRESSURE FEED

Spectrometer schematic.




-63-

"A1TABD 9ABMOIOTU pUB quWOoq 3INSSard TI 2an3ty

(ssedgq)

Jejj0 uoydeIPg |0 %m nn_w__ﬁwmv

(Juawad
03NQ UM |[eM PU3 0} PaN|9) 8PIM , 2€]€

pini3 %EN bury {

ainssald ybiy Joj guediuy \ sselgq W

1 N NN \

% 2 SN NNy

85 9L e @\w\w\\\w\\w@\ﬁﬂ/x//, /s/ffa

k | i §§\§ﬁﬁwv////// N\
il YN Q

AANANANANAN

(311d090TH4 d0N14
|ewJou passald) v IW d118YuAs ,6lo°

bury pieng
azuoug Jouydsoyd

A

V

nj ag

€

L
N\ -

|

L 77 —lrw////////////m%sf//%///////m%%qh//ﬂd 0
i /////\V////w//m///\l\w. aping aAepm
7 pueg-x__| o
NN abue:
ade| 4 Oju| paiap|os %///w%/// .,. (3 82 EvV
ue papeaJy buign W =< -
_,_sw%mz_%_mmm.ww_ %/%//// I

9 -9 uolpag g - g uoipsg v -y uoiag



Charging System
(Low Pressure)

-64-

Figure 12.
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is used for detection68

at present, however, and the bypass
arm in the microwave system has been built in for future
use. Referring to Figure 10, the microwaves are generated
by the klystron and coupled through the electric field

into the co-axial (Figure 11) cavity with the coupling
adjusted by a below cutoff attenuator. The reflected

power is then detected by a crystal detector. The micro-
wave frequency is locked to the cavity by an automatic
frequency control which uses a 10 kc frequency modula-

tion and signal feedback,

The cavity is coaxial and built into one of the plugs
of the high pressure bomb as shown in Figure 11. The
cavity entrance is at the wave guide to coaxial converter
and about 8 wavelengths from the high pressure sample.
Just the last portion of the cavity, shown in detail in
Figure 11, is at high pressure; this not only allows the
coupling to be changed readily with pressure but keeps
the volume and consequently the stored energy and the
cavity's resonant frequency change with pressure at a
minimum. This portion is sealed from the atmospheric
portion by a beryllium-copper cone which is seated on an
insulating cone of synthetic mica (pressed normal fluor
phlogopite). The sealing cone is part of the center

conductor of the coaxial cavity,
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The high pressure sample is located at the end of the
cavity. It is usually in the shape of an annulus about the
center conductor and surrounded by pentane, the high pressure
fluid, The identically oriented low pressure sample is
placed part way up the cavity, and the rest of the cavity
is filled with teflon.

The location of the second sample was determined by
three requirements, First, it had to be beyond the cone
and yet in a comparable magnetic field. The fields do
not have to be exactly identical since it is the change
in one absorption line with respect to the other that is
measured. The magnetic field homogeneity was increased
tenfold with the addition of simple ring shims which
yielded a 3" diameter region in which the field was
constant to within 0.1 gauss. (A 9" diameter Varian
rotable magnet with a 3.25" gap is used). Second, the
modulation of the magnetic field at one sample due to the
modulation of the other had to be at a minimum. This was
accomplished by placing each sample in the null of the
modulating field of the other modulation coil. Third,
the sample had to lie near a maximum of the microwave
field., These requirements fixed the separation at 1.87",
The frequency dependence of the cavity with pressure is
small (ca. 2.5 Mc/sec, per 1000 atm). If one uses a

thicker and shorter mica cone than indicated in Figure 11,
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filling the rest of the space with Teflon, the cavity "Q"
is about 500, The Teflon is primarily used to hold the
long center conductor motionless to prevent modulation pick-
up. Teflon, however, has a broad resonance about g = 2
and for sensitivity in this region a system of washers
can be used,.

The absorption signal is fed into a preamplifier and
then to two phase sensitive detectors whose first stages
are twin-tee filter amplifiers adjusted to the two
modulation frequencies, 228 cps and 800 cps. (The
modulation frequencies have to be low in order to penetr-
ate the bomb.) These are followed by the lock-in
amplifiers. The outputs are then plotted by two
identical recorders with synchronized charts driven by

the same chart drive shaft.

High kFressure System. The components of the high

pressure system are shown schematically in Figure 12, Most
of the components were manufactured by Harwood Engineering.
The system has a low pressure charging section and high
pressure generating equipment, Hand pumps are used with

a 20:1.5 piston intensifier used to obtain the high pres-
sure, The pressure is determined with a manganin cell and
bridge circuit using a precision four decade resistance
box and galvanometer, The sensitivity of the measurement

circuit has been determined to be less than 1 atmos-
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phere. The accuracy is thus limited by the pressure de-
pendence of the resistance of the magnanin wire, which is
linear with pressure to within 0.5%. The measuring system
was calibrated by observing the 3% volume change as mercury
freezes at 7420 atmospheres and 0°C. This was done using

a specially constructed Invaro oil hardening steel bomb
with a much larger volumé than the experimental bomb.

The high pressure is transferred to the bomb through
thick walled, cold worked stainless steel tubing with a
0,0075" inside diameter and 0,125" outside diameter. The
bomb, shown in Figure 11, is 2.5" O.D. and 11/32%" I.D,
and open on both ends. The bomb, the two end plﬁgs, and the
sealing cone are made of Berylco 25, a nonmagnetic, high
strength beryllium copper alloy which is machined in the
annealed state and heat treated afterwards. The plugs are
sealed with rubber, teflon, and phosphor bronze ring seals
of the unsupported type69 and the unit is designed to hold
a pressure of 10,000 atmospheres. Because of the seals a
practical limit is about 8,000 atmospheres., Normal pen-
tane is used as the transfer fluid and at these high
pressures it becomes viscous. As much as 15 minutes is
necessary for the pressure to be transmitted through the
tubing.

The bomb is clamped into the magnet by means of

brass clamps attached to circular brass caps which are
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clamped over the magnet’s pole pieces. These brass caps
also hold the ring shims and the modulation coils. The
clamps permit motion only in the vertical direction along
the two-sample axis, which is also the axis of magnet
rotation, This allows precise centering and accurate

repositioning.

C. THE TWQ SAMPLE METHOD

Perhaps the most practical advantage of comparing the
spectra of a sample under high pressure to one at atmospheric
pressure is that during the course of the experiment one
can see at a glance that a pressure shift in the spectra
is indeed there, estimate its order of magnitude, and
determine its direction without any calculations or analysis
whatsoever., The fact that the two channels are similar
reduces the need to consider electronic distortion of the
line shape. It also eliminates any consideration of ambient
changes since the difference is always what is measured.
Hysteresis effects in the magnet, except for homogeneity,
can also be ignored unless a set of lines is being con-
sidered,

Flacing both samples in the same cavity so that the
transitions in each occur at the same microwave frequency
provides many advantages, Second order frequency corrections

in unshifted parameters are completely eliminated.
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Also if the pressure perturbations are small, and they
usually are, most second order perturbations can be neglected
since these would be second order corrections to a pressure
shift which is already second order. The fact that both
samples are at the same frequency allows some very helpful
simplifications in t he analysis, For example, consider

the spin -4 to i transition for Cr3% in A1,0; with the
magnetic field along the c axis of the crystal, from equation

14 with I = 0

’

by = g.pH = 3/ H

(52)

where the primes indicate under pressure, Solving for

/
49.= 9, ~ NS is simplified by the equality above to

H-H' AH
A9, = Je T T T3 T (53)

Thus, a precise measurement of a g shift involves only an
ordinary field measurement and no frequency measurement, In

a similar manner the % to 3/2 transition

/
hv =g,6H+2D =g p(H+2H)+2(d+2D)
simplifies to (since g shifts are very small)

D = - AH
<4 = F y (55)
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Also, if there is a close set of lines that falls within the
sweep range so that the unshifted spectra can be used to
calibrate the shifted spectra (See Section D), no field
measurements whatsoever are needed. In this case, however,
linearity of the field sweep to first order is necessary.

The only disadvantage of the two sample method and
the major problem of any two signal system is the channel
separation or "cross talk®, In our case, this is electroni-
cally quite simple and narrow band amplifiers and phase
sensitive detectors assure that signals carried on each of
the two modulation frequencies are definitely separated. To
be certain that the signal carried on one of the modulatiom
frequencies is purely due to one sample is not as simple,

If one defines a measure of cross talk, K,, as the
ratio of the signal from sample A that is carried through
on channel A to the signal from sample B that is carried
through on channel A, then KA and KB can be measured ex-
perimentally by using two different samples. A lower limit
must then be set for K. The center of the absorption line,
which is what is measured in this experiment, will be shift-
ed most by a second signal when the second signal is %
line width away, as shown in Figure 13, so that its maximum
slope occurs at the true center. The observed center of

the sum (or difference, depending on polarity) of the two

signals will then be shifted by 1/4K times the line width.
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The choice of minimum permissible K is thus determined
by the line width and the expected pressure shifts and
in our case was about 10,

The primary criterion in determining the location of
the second sample was that it be at a maximum in the micro-
wave fields in the coaxial cavity, yet be as close as
possible to the high pressure sample so that they both
remain in the homogeneous portion of the DC magnetic field.
This separation then determined the size of the modulation
coils so that a pair of coils centered on one sample had
a null at the other as shown in Figure 14, Without the
pressure bomb and with proper orientation of the coils,

Ky, = 10 and Ky = 103 were obtained, However, with the
bomb, KA = 10% and Kg = 1. Consideration of these
values and the bomb shape (schematically shown in Figure
14) and the fact that the skin depth at these frequencies
is considerably smaller than the bomb thickness, lead to
the conclusion that the modulation was being caused by
induced currents., Therefore another method had to be
used to eliminate the cross talk in channel B, Since
this was due to the field modulation about sample B being
carried up to and around sample A, but not vice versa, a
portion of the B modulation signal can be inverted and
fed into the A modulation to exactly cancel the cross

talk., Thus Ky can be set by a phase and amplitude adjust-
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ment of this feedback to be as large as desired or even
infinity. In this manner, cross talk was reduced to

less than one part in 104,

D. EXPERIMENTAL PROCEDURE

When there is more than one line falling within the
sweep range of the DC magnetic field, the data taking
is extremely simple, The known line separations on the
atmospheric pressure chart provide a calibration for the
high pressure chart. Using identical chart paper on
recorders driven by the same shaft assures equality of
recordings. (It was found, however, that the chart paper
grid spacings and drive hole spacings are not always
reliable.) Figure 15 shows a sketched pair of
recordings for the first three fine structure lines for
Mn** in MgO. 1In actual practice the signals are driven
a long way off scale in order to more accurately determine
where the center of the absorption line falls (derivatives
are what are plotted and constant line shape is assumed,

t.22) 1In this method

which is supported by the work of Wai
magnet hysteresis can be a problem unless a field sweep
(as opposed to current sweep) is used or the sweep is
calibrated.

If no close set of lines is available, the procedure

is to stop the sweep exactly when the recorder shows the
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derivative to be zero and measure the field with a nuclear
magnetic resonance probe. Similarly, the field is measured
for the shifted line. The difference between the field at
the probe and that at the sample is of no concern as long
as it is constant since the difference between resonance
conditions is what is measured. The nuclear magnetic
resonance probe used the proton resonance of a 0,2 molar
solution of CuCl2 in water for the low field lines and the
deuteron resonance of a 1.0 molar solution of CuCl, in
99.9% pure heavy water for the high field lines.

The only other necessary measurement is that of the micro-
wave frequency. The frequency does not appear in equations
40 and 42 but it is necessary to correct for any residual
field difference between the two samples at atmospheric
pressure, This difference must be subtracted from the
pressure shifts and since the frequency changes a little
with pressure, this zero pressure difference must be
corrected with frequency as is explained in the data re-
duction in Appendix D. Since accuracy to better than one
part in 104 was not necessary a previously calibrated
absorption type wavemeter was used. This allowed frequency
measurements to 0,001 Gc/sec out of about 9.4 Gc/sec. Table IV
shows the calibration of the frequency meter when a transfer
oscillator was used to measure the microwave frequency to

better than one part in a million,
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TABLE 1V
Calibration of Absorption Frequency Meter HP X532A

#15030 with a Transfer Oscillator Measurement.

Actual Frequency Gc/sec. Frequency Meter Reading Gc/sec.

9.0468 9.0470
9.1792 9.1790
9.2157 9.2160
9.2234 9.2230
9.2345 9.2350
9.2614 9.2620
9.2951 9.2950
9.,3433 9.3430
9.4003 9.4000
9.5073 9.5070

A list of all the electronic equipment used is

given in Appendix E.



Chapter 1V
RESULTS
A. cr3* IN SAPPHIRE
Data for the resonant field conditions as a function
of hydrostatic pressure were taken for the single resonance

line of the I = 0 Cr3+

ion at five positions of angle
and field. These were the low field and midfield lines
with the magnetic field parallel to the crystalline axis,
the higher two lines at 54.7°, and one midfield line at
30°, The last three "off-axis" resonances were used
primarily for a check; For thé principle chromium isotope
no hyperfine interaction exists and the resonance condition
for the magnetic field parallel to the c axis shown as
equation 14 in Chapter II becomes
by =g gH + D[aM+] o
The most significant pressure dependence was observed for
D,70 the crystalline field parameter in the spin Hamiltonian.
It will be discussed first followed by the results for
g, and A. All shifts were determined relative to the para-

37 39

meters obtained by Schulz-DuBois and Laurence and Lambe,

g, = 1.9840 + .0006
2D = -11,493 + 6Mc/sec. (57)
A = B = 48,5 Mc/sec,

~78=
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which agreed with those obtained here, g, = 1.9850 + ,001
and 2D = -11,492 + 10 Mc/sec,.

D Shift. The pressure dependence of the zero field
splitting, D, was determined with the low field line with the
magnetic field parallel to the crystal axis and checked
at three non-parallel positions. The low field line is
due to the M = +3/2 to +1/2 transition for which
equation 56 becomes

hy = gifafJ +2D
: (58)
Because the change in g, was expected to be very small
compared to that in D from previous pressure experiments
and, indeed, showed to be small (5 x 10~°/katm as opposed
to 2 x 10'3/katm.) from this study, it was neglected in
obtaining the pressure shifts in D, Since both samples
were subject to the same microwave frequency, the above
resonant condition held for both the high pressure and
reference samples so that
g, g +2D =g, pH 3D
(59)
where the primes indicate the high pressure condition.

Solving for the change in 2D gives

A2D = -9,p4H . (60)
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The analysis of the experimental data is explained in
Appendix D, The results are shown in Figure 16. Note
that since D is negative, the results were plotted with
increasing magnitude downward so that the negative

slope implies a relative increase in magnitude. The
A2D obtained from this experiment was added to the value

37

of 2D obtained from Schulz-DuBois. A least squares fit

to the straight line y; = a + bxj gives a slope
b = -21.15 Mc/sec. katm. (61)

The error in the plotted values can be due to the field
measurement, the pressure measurement, and the location of
the zero condition of the absorption derivative. The field
was measured to * 0,15 kcP ("Proton” kilocycles/sec. for
proton NMR probe, see Appendix D), or + 0.1 Mc/sec. The
pressure measurement was to +1 atmosphere in several thousand
and is therefore neglected. The accuracy of the absorption
line zero determination can be estimated from the line width,
about 10 gauss, and the signal to noise ration, which was
about 400:1., (The signals were driven off the recorders in
order to enhance this accuracy in the zero determination.)
Assuming constant line shape and linearity of the second
derivative between the two points of maximum derivative
yields an accuracy of *+ 0,025 gauss, better than the accuracy
of'the-field measurement, This was experimentally confirmed.

Thus the error in A2D becomes
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= 20.l Mefsce. £ 0.1 Mefsec. = £ 0.2 Mc/see,

Eaa
aap (62)
This yields a relative change in 2D of
ARD - -3
—_ ) + 0.02)x10 k atm,
2T (1.84 2) /
(63)

The method used to check this value for other resonant
conditions was to use the pressure dependence determined above
and check for agreement in the transition energies, such
as equations 17 and 18 in Chapter II, with the experimental
data. This was done because of the extreme complexity
in solving for D from these equations. In all cases the
agreement to thé second significant figure in the pressure
shift was excellent,.

g Shift. The pressure dependence of g,, the impurity
ion's gyromagnetic ratio, can be obtained directly from the
midfield line with the magnetic field parallel to the c
axis. The midfield line is the M = -3 to M = %
transition and equation 56 simplifies to

hy = g,pH
(64)
Again, since both samples were in the same cavity and
subject to the same microwave frequency, the resonant

condition for both samples was the same and
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/
H = q.pH

3ap — gEP (65)

where the primes indicate pressure., This leads immediately

to the result

/ H=H' _ AH
L9, = 9:7%, = 9, T T T T C (66)
Analyzing the results of the experiment as detailed in
Appendix D led to the plot shown in Figure 17, 1In this
plot the Ag, determined experimentally was added to the
g, value from Shulz-DuBois,37

As can be seen from Figure 17 there is an initial
first step of about 1 x 10~% and the remaining points fall
on an approximate line that has no slope outside of the
experimental error but has a‘slight general upward trend.

In the following discussion it will be shown that neither
of these is significant.

The initial step between one and a few hundred atmos-
pheres was reproducible and occurs in the region of the
largest physical changes in the microwave cavity as indicated

by the changes in the cavity frequency. For example,
the total change in a 9.5 Gc/sec. frequency between 1
and 7000 atmospheres is about 120 Mc/sec. Of this,

about 60 Mc/sec. occur in the first 100 atmospheres and

100 Mc/sec. in the first few hundred atmospheres. Because
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of this and the fact that the step maintained the relative
sign and proportional magnitude of the remaining field
difference when both samples were at atmospheric pressure,
it is felt that this step was due to either rotational or
vertical motion of the high pressure sample with respect
to the reference sample. The rotational motion could arise
from a circular motion of the pentane as it enters the
sample holder in the initial compression but is not likely
to be reproducible., The vertical motion arises from com-
pression of the high pressure sealing cone shown in

Figure 11 to which the sample holder is attached., This
would be readily reproducible,

An order of magnitude of the effect can be estimated
as follows., The sealing cone of mica has a thickness of
0.030" and a very small conical angle, ¢ . A combression
of Ax in thickness will result in a vertical mot ion of
Ax/sin $ . Since the angle is small, a vertical
motion of about 0.030" can be taken as a reasonable upper
limit. The samples are 1-3/4" apart so this is a 3%
change., The zero pressure field difference due to slight
misalighment or inequivalent fields at the two samples
was 30 kcP., Assuming that this difference is linear a
3% change would allow a 1 kcP change which is equivalent

to 2x10™4 in Ag,, larger than the observed step.
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Rotational motion would make the magnetic field no
longer parallel to the crystalline axis and would allow
mixing of the very large D term. This would add a correction
term of the order of IDQ:M/"B'/g*F H where % is now the
small rotation, From the magnitude of the step, about one
part in 2 x 104, an estimate of the necessary rotation can
be found. Both g _gH and D are on the order of 104 Mc/sec.

Thus, one part in 2 x 104 of gz H is 0.5 Mc/sec., or
Q

D 2 D? R
|
- M AN = SN A il
RE TP H .72FH
4y R
7]
-~ —'—"—<, ‘_’) 79’2 MC
/D

M e
—91 ~ I/ ax;ov
-5

L
a
(67)

(]

~ 1 /140 ~ 1 /3

Thus a rotation of a few tenths degree could introduce
such a step.

A check for rotation of the sample with cycling of the
pressure was performed, The change of crystal orientation
was observed by the motion of resonance lines as explained
in Chapter III, Part A. This could be done to 10°2°
and no motion was observed. This does not preclude,
however, that this effect does not contribute, but is an

indication that it is less likely,
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The slight slope shown in Figure 17 is well inside the
experimental error, In spite of this an effort was made
to see if it could be significant. As shown in Appendix D
the zero pressure field difference correction was normalized
to the zero pressure condition. This correction is not
the same when normalized to a different pressure. Re-
normalization to the next lowest pressure decreased the
siope somewhat. This, coupled with the fact that in re-
checks of the g shift the slope disappeared and in one
case was slightly negative corresponding to a larger
negative initial step, led to the conclusion that the two
effects are interconnected and the slope is not significant.
In any case, an upper limit can be put on the change
in the g, value or change in the dif ference in gz from
the free ion value of g, = 2.0023., By far the largest
error occurs in AH since gz is fixed and H' is measured

to one part in 102, From Appendix D

AH = be’ - {Hav * —:_:'('L/Ao - ”4-0)}

where all the fields are measured to *+0.,15 kcP in 1.5 X 104

(68)

kck and ) to five parts in 10°, It is assumed that the
field inhomogeneity does not change. The factsthat the
step was reproducible within other experimental errors and
the field was always cycled repeatedly before measurements

support this assumption,
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Therefore an error estimate for AHwould be

- 27 %
E = i‘/D_r:':/o-;: [(s'xm-j)a-r(sxlo'f)z-i—(/o 5+/a"7_7 A

OH
- (69)
—_ + =% 4 /-5' = -7
E, = TR&xi0" 2 Ixi0 = /0 .
Thus
NE ) xi0" -5
n = S = Sxeo (70)
* .
. . -2
or since g -gz 1S about 2 x 10
-5
a(g-4J), 5x/0 ) -3
7"‘"“"‘)"' S Zxor TN (71)
9792

over a range of several thousand atmospheres. Therefore
it can be said that the change in the difference between
g, and the free ion value of go is certainly less than 2.5
x 1073 and probably on the order of 1 x 10"3/katm° or less.
A Shift., An attempt was made to observe a shift in

the hyperfine splitting due to the Cr53

isotope which is
9.5% abundant and has an I = 3/2. Only the two outermost
hyperfine lines, m = + 3/2, were observable and only at

the midfield line with the magnetic field parallel to the

crystalline axis, They w<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>