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Abstract. We analyze the core of a class of coalition formation game in which
every player’s payoff depends only on the members of her coalition. We first
consider anonymous games and additively separable games. Neither of these
strong properties guarantee the existence of a core allocation, even if addi-
tional strong properties are imposed. We then introduce two top-coalition
properties each of which guarantee the existence. We show that these proper-
ties are independent of the Scarf-balancedness condition. Finally we give sev-
eral economic applications.

1 Introduction

Non-emptiness of the core in coalition formation games has been analyzed
by several authors including Guesnerie and Oddou (1981), Greenberg and
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Weber (1986), Demange (1994) in local public goods context and Greenberg
and Weber (1993) in political economy context. In this paper, we formulate a
general class of coalition formation problems and study core existence in this
class. We assume away alternatives available to each coalition and focus on
purely hedonic aspect of coalition formation: A coalition formation game is a
finite player game in which each player’s payoff depends only on the members
of her coalition (no spillovers: outsiders’ behavior does not affect the coalition
members’ payoffs).! A feasible allocation is a partition of the players. There
is no transferrable money. Our model is closely related to matching problems
where preferences are also hedonic but not all coalition structures are feasible.?
We choose the core (the coalition structure core) as our solution concept.
A core partition is stable in the sense that there is no profitable coalitional
deviation.

Our model can be regarded as a reduced two-stage game, where players
first form coalitions and next negotiate their payoffs inside coalitions. Once the
second step is solved, we are left with the situation described by our hedonic
model.

Unfortunately, without any restriction on preferences the core may be
empty. Consider the following example: There are three students in a college
who are trying to choose their roommates. There are only two-bedroom
apartments available on campus and these apartments are fairly expensive. So
each student wants to share an apartment rather than to live alone, but shar-
ing with two others is the last choice since one of them would have to sleep in
the living room. Suppose that student 1 likes student 2 better than student 3,
student 2 likes student 3 better than student 1, and student 3 likes student 1
better than student 2. Is there a stable roommate structure (a core partition)
in this situation? Suppose that there is one. Since sharing with two others is
the last choice for all of them, there should be at least one student who lives
alone at any core partition. Who can this student be? She cannot be student 1
since she can easily convince student 3 to share an apartment. Similarly stu-
dent 2 can easily convince student 1 and student 3 can easily convince student
2. Hence, there is no core partition in this example.

Although this game is very simple, it does not have a core partition. The
key problem is cyclical coalitional deviations. A natural question is whether
we can avoid these cycles by imposing some natural properties such as ano-
nymity and additive separability. Anonymity requires agents not to care for
identities of their partners and thus only care for the coalition size. Additive
separability requires the preferences to be representable by an additively sep-
arable utility function. Note that our motivating example lacks both proper-
ties. We investigate the existence of a core partition by imposing both prop-
erties separately. Unfortunately neither of these conditions guarantee existence
even if we impose additional strong conditions such as single-peakedness and

! This model is independently introduced by Bogomolnaia and Jackson (1998).
2 See Roth and Sotomayor (1990) for an excellent survey of matching problems.
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the intermediate preference property. In order to prove non-emptiness of the
core, the single-peakedness and the intermediate preference property have
been employed by Greenberg and Weber (1993) and in Greenberg and Weber
(1986), Demange (1994) respectively. Those properties are powerful tools in
games without congestion, but they turn out to be inessential in games with
possible congestion. (See Games 1 and 3.)

We next introduce the top-coalition property which imposes a common-
ality of preferences among the players. This condition requires that for any
non-empty subset S of players, we can find a coalition 7" < S such that all
members of T prefer T to any other coalition that consists of some (or all)
members of S. This property is a relaxed version of the common ranking
property (Farrell and Scotchmer 1988). The common ranking property re-
quires that there is a linear ordering over all coalitions which coincides with
any player’s preference ordering over coalitions to which she belongs. Al-
though both properties guarantee the non-emptiness of the core, the top-
coalition property is weaker and hence it covers more games. Indeed, even a
weaker version of the top-coalition property guarantees the existence. While
the weak top-coalition property is still demanding, it is satisfied in many in-
teresting economic applications. Examples include coalition formation games
induced by the average cost sharing rule (Moulin and Shenker 1994) in the
context of cost sharing problems, coalition formation games induced by the
competitive mechanism in the context of housing markets (Shapley and Scarf
1974), and coalition formation games induced by the uniform reallocation rule
(Benassy 1982) in the context of reallocation problems. We also show that
these conditions do not imply the Scarf-balancedness (Scarf 1967) condition
which is often used to prove the non-emptiness of the core in NTU games.

Three papers are closely related to ours: Bogomolnaia and Jackson (1998)
independently introduce coalition formation games and they use core as well
as individual stability (see Greenberg 1977 and Dréze and Greenberg 1980),
Nash stability, and contractual individual stability as their stability notions. A
partition is individually stable if and only if no player wants to move from her
coalition to another one (including the empty coalition) that welcomes her
unanimously. Thus, individual stability is a less demanding stability concept
than the core stability. This notion is particularly appealing if the cost of
forming a new coalition is high. Nash stability is a stronger version of in-
dividual stability where players do not need any permission to join a new
coalition. A partition is contractually individually stable if and only if no
player wants to move from her coalition to another one that welcomes her
unanimously, without hurting anyone in the old coalition. Bogomolnaia and
Jackson study an ordinal version of Scarf’s balancedness condition as well as
a weak consecutiveness property and show that each ensure the non-emptiness

3 For example, Weber and Zamir (1985) construct a four player example with empty
core when the intermediate preference property is violated in an economy analyzed by
Guesnerie and Oddou (1981) and Greenberg and Weber (1986).
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of the core.* They next show that there exists an individually stable partition
under anonymity and single-peakedness, and even a Nash stable partition
under additive separability and symmetry. Note that these conditions do not
guarantee non-emptiness of the core. (See Games 1 and 2.) They also show
that Pareto efficiency implies contractual individual stability and finally ana-
lyze the compatibility of these stability notions with several normative criteria.
Kaneko and Wooders (1986) show that the core of a coalition formation game
is non-empty, provided that (i) there is a continuum of players with finite types
and (ii) each coalition is finite in size. Their result dramatically contrasts the
core in large games with the core in our finite games. Milchtaich and Winter
(1997) introduce a model where (i) the number of coalitions is fixed, (ii) each
agent is endowed with a number, and (iii) each agent prefers to be in a group
which is most similar to herself on average. They show that a Nash stable
partition exists that is segregating and Pareto efficient.

The organization of the rest of the paper is as follows: In Sect. 2 we for-
mally introduce the model. In Sects. 3 and 4 we demonstrate that anonymity
and additive separability are inessential for the non-emptiness of the core. In
Sect. 5 we present two top-coalition properties and provide an existence result.
We also discuss the inclusion relationships between the two top-coalition
properties, the common ranking property and the Scarf-balancedness condi-
tion. Finally we present several applications in Sect. 6.

2 The model

The following model is independently introduced by Bogomolnaia and Jack-
son (1998):

Definition 1. 4 coalition formation game G is a pair (N, (=;);.y), where N is a
finite player set with i being a representative element, and = ; is a reflexive, com-
plete, and transitive binary relation on S;(N) = {S € 2V : i e S}. Strict prefer-
ence relation and the indifference relation are denoted by —; and ~; respectively
(S T[S Tand T #; S]and S ~T < [S= Tand T »; S]).

Definition 2. 4 coalition structure 7 = {S,S,,..., Sk} (K < |N| is a positive
integer) is a partition of N. That is, Sy # & for any k € {1,2,...,K}, Ule Sk
=N, and Sy S, = & for any k,/ € {1,2,...,K} with k # /. For any coali-
tion structure . and any player i let n(i) = {Sen:ie S} be the set of her
partners. The collection of all coalition structures in N is denoted by IT(N). We
similarly define II1(V) for any V. < N with V # (.

4 A coalition formation game is weakly consecutive if there exists an ordering of agents
such that any partition that is not in the core can be blocked by a set of “connected”
agents. Our top-coalition property implies the weak consecutiveness property. How-
ever there is no inclusion relation between the weak top-coalition property, the
weak consecutiveness property, and the ordinal balance property (see Proposition 1 in
Bogomolnaia and Jackson 1998).
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Definition 3. 4 coalition T € 2N\{} is a (profitable) coalitional deviation
fromm e II(N) iff T =; n(i) for any i € T. A core partition is a partition ©* that
is immune to any coalitional deviation.

In the following two sections, we present examples showing that anonym-
ity and additive separability are inessential to the non-emptiness of the core.

3 Anonymity

We first consider games in which players only care about the size of their
coalitions.

Definition 4. 4 game G satisfies anonymity iff for any i€ N, for any S, T €
Si(N) with |S| = |T| we have S ~; T.

The core may be empty even under anonymity. Indeed, it can be empty
even if additional stringent conditions are imposed following Greenberg and
Weber (1986, 1993) and Demange (1994).°

Definition 5. An anonymous game G satisfies single-peakedness on population
if for any i€ N, and any S,T,U € S;(N) with |S| < |T| < |U|, we have (i)
S=T=T=;Uand (ii) U= T=T =;S.

Definition 6. An anonymous game G satisfies the population intermediate pref-
erence property if the players can be linearly ordered by a binary relation < in
such a way that for any i < j < k,and any S, T € mte{i,j,k} S{(N), [S = T and
S =i T] = S >_‘j T. '

Although these restrictions are undoubtedly strong, they do not guarantee
the non-emptiness of the core.

Game 1. There are four type-a, one type-b, and two type-c players. Thus, the
player set N can be written as N = {ay,a»,a3,as4,b1,c1,c2}. Their preferences
are as follows (for simplicity we abuse notation and specify the preferences over
cardinalities of coalitions):

5 Greenberg and Weber (1986, 1993) and Demange (1994) assume that there is a set of
alternatives 4 on which preferences are defined, and they impose on A either single-
peakedness or the intermediate preference property:

Single-Peakedness (Greenberg and Weber 1993): There is a linear order > on 4 with
the following property: For each i € N, there exists an alternative a; € 4 such that (i)
forany a > b > a}, a =<; b <; a} holds and (ii) for any a < b < a}, a <; b <; a; holds.

The Intermediate Preference Property (Greenberg and Weber 1986, Demange 1994):
There is a tree ¥(N) defined on the set of players (see the next section) and if player
m is on the path between i and j (i # m, m #j), then for any a,b € A with a # b,
[a=;band a>; b= [a*x, b

In both papers the authors define a feasibility correspondence ¢ : 2M\{Z} — 24,
which means that a coalition S can choose an alternative from ¢(S). The correspon-
dence ¢ is assumed to satisfy monmotonicity: For any S,T e 2"\{@} with S < T,
@(S) < ¢(T). Thus, in their games, there is no congestion effect besides possible coor-
dination failures.
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Typea: 6,544,342, 1>,7,
Typeb: 5=p4=p3=p6=p2=p1=57,
Typec: 4=.3=.5=.6=.2>.1%.7.

Note that Game 1 satisfies anonymity, single-peakedness on population,
and the population intermediate preference property.®

Claim. The core of Game 1 is empty.

Proof of the Claim. Let k be the cardinality of the largest coalition in a coali-
tion structure. We show that there is no coalition structure which forms a
core partition by exhausting all cases. First consider all cases with k < 4. Then
coalition {ay, ay, a3, as, b1} deviates from any such coalition structure. Second,
if k = 7 then every singleton coalition deviates. Third, if £ = 6 then coalition
{b1,c1, 2} deviates. Thus, if there is a core partition then & = 5. There are five
representative cases (which are unique up to type composition):

. a1, @z, a3,a4,b1}, {c1,¢2}}: In this case {a1,ay, a3, a4, c1, ¢} deviate.
. Hay,a2,a3,b1,¢1},{as, c2}}: In this case {aq, c1, ¢, } deviate.

. Hay,a2,a3,¢1,¢2}, {as,b1}}: In this case {aq, by, ¢y, 2} deviate.

. Har,a2,a3,a4,¢1},{b1,c2}}: In this case {by, 1, c,} deviate.

. {{a1 ,ar, by, ¢y, Cz}, {03, a4}}: In this case {613, ag, C1, Cz} deviate.

(T SRS I\

Hence, there is no core partition in this game. <

4 Additive separability

We next consider games where players have additively separable preferences.
Definition 7. A game G is separable iff for any i € N, for any S € S;(N) and for
anyj ¢ S,wehave [SU{j} = S< {i,j} = {i}]and [SU {j} =: S & {i,j} =
{i}].
Definition 8. A game G is additively separable iff for any i € N, there exists a
function v; : N — R such that for any S,T € S;(N), S = T < >, svi(Jj) =
Zke T l),'(k).

Additive separability is a very strong notion of separability on preferences.

Despite this, it does not guarantee the non-emptiness of the core even with
additional strong conditions.

Definition 9. A game G satisfies mutuality iff for any i, j € N, we have [{i, j} =;

{i} & {i,j} = {j}) and [{i, j} =i {i} < {0, j} =5 {/}].

 The population intermediate property is satisfied for the following linear ordering of
agents:

ap = ay =az = as by =cy >



Core and coalition formation 141

Mutuality requires that if player i likes j then player j likes 7 and if player i
dislikes j then player j dislikes i. We need additional notation in order to define
the last two conditions in this section.

A (nondirected) graph % on N is a set of unordered pairs of distinct ele-
ments of N. A pair (i, j) € ¥ is called an edge between i and j. A path of ¥ is a
sequence i, Iy, . . . , [y where the pairs (i, ix+1) are edges for k =1,2,...,5—1
and are all distinct. A graph ¥ is connected if any two distinct elements of N
are linked by a path. A graph & is a tree if any two distinct elements are linked
by a unique path. A tree ¥ is star-shaped if every edge contains the same ele-
ment of N.

Definition 10. 4 game G satisfies single-peakedness on a tree iff for any i€ N,
any tree G on N, any path iy, iy, ..., iy on 9 emanating from i (iy = i), and any
1 <k</<s,wehave {i,ir} =; {i,is}.”

Definition 11. 4 game G satisfies the tree intermediate preference property iff’
for any i € N, any tree G on N, any path iy,i,...,ison 9, any 1 <k </ <
m < s, and any j € N\{ix, iz, in}, we have [{ir,j} =i {ix} and {in,j} =i, {in}]
= {ir,j} =i, {ir}.®

The following game satisfies additive separability and mutuality:®

Game 2. N = {1,2,3,4,5,6} and the additively separable preferences are sum-
marized by the following table (v;(j)):

vy 0 3 2 —10 2 2.5

() 3 0 2.5 -6 | -10 | -6

03 2 2.5 0 3 2 —10

vg | =10 | —6 3 0 2.5 —6

ve | 2.5 -6 | —10 | —6 3 0

7 Single-peakedness on a tree is considered in Demange (1982) in a voting (public
goods) problem.

8 Qur tree intermediate preference property is one-sided in the sense that we do not
restrict players’ preferences when they dislike another player. A game G satisfies the
two-sided tree intermediate preference property iff for any i € N, for any tree 4 on N,
for any path ij,i,...,i; on 4, for any 1 <k </ <m <s, for any j € N\{ik,is,in},
() [} = {ick and {ims} =, {in}] = {irsj} =, {i/} and (i) [{ie.} =, {ic} and
{im,j} =i, {im}] = {ir,j} =i, {ir}. Game 3 below does not satisfy the two-sided tree
intermediate preference property. It is an open question whether two-sidedness would
help us obtain a positive result.

® Indeed, Game 2 satisfies symmetry: For any i, j € N, v;(j) = v;(i). Clearly symmetry
is stronger than mutuality.
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Claim. The core of Game 2 is empty.

Proof of the Claim. Note that no pair of even players can be in the same co-
alition, since otherwise their payoffs would be lower than standing alone.
Note also that player i and player modg (i + 3) (the opposite player on a circle)
can not be in the same coalition by the same reason. Thus, there are only a
few candidates for a core partition:

1. {{1,2,3},{4},{5,6}} and its finer refinements: In these cases {3,4,5}
deviate.

2. {{1,2,3},{4,5},{6}} and its finer refinements: In these cases {5, 6} deviate.

3. {{1,2},{3,4,5},{6}} and its finer refinements: In these cases {5,6,1}
deviate.

4. {{6,1},{2},{3,4,5}} and its finer refinements: In these cases {1,2} deviate.

5. {{5,6,1},{2},{3,4}} and its finer refinements: In these cases {1,2,3}
deviate.

6. {{5,6,1},{2,3},{4}} and its finer refinements: In these cases {3,4} deviate.

7. {{1,3,5},{2},{4},{6}} and its finer refinements: In these cases {1,2,3}
deviate.

Hence there is no core partition. <

The following game, which builds on Game 2, not only satisfies mutuality
and additive separability, but also single-peakedness on a tree and the tree
intermediate preference property.

Game 3. N = {1,2,3,4,5,6,7,8} and the additively separable preferences are
summarized by the following table:

1 2 3 4 5 6 7 8
vy 0 3 2 —-10 2 2.5 5 =20
() 3 0 2.5 -6 | —10 | —6 5 -20
v3 2 2.5 0 3 2 —10 5 -20
vy | =10 | —6 3 0 2.5 —6 5 -20
vs 2 —-10 2 2.5 0 3 5 -20
ve | 2.5 -6 | -10 | —6 3 0 5 -20
v7 5 5 5 5 5 5 0 100
vg | =20 | =20 | =20 | =20 | =20 | —20 | 100 0

The restriction of this game to {1,2,3,4,5,6} is Game 2. We add two more
players 7 and 8. We complete the preference specification as follows: Everyone
likes player 7 the most but player 8 is “hated” by anybody except player 7.
Finally players 7 and 8 “love” each other.
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Claim. Game 3 satisfies additive separability, mutuality, the tree single-peaked
property, and the tree intermediate preference property. Nonetheless its core is
empty.

Proof of the Claim. 1t is easy to see that Game 3 satisfies all the conditions. The
tree intermediate preference property can be checked by using a star-shaped
tree ¥ = {(i,7) : i e N\{7}}. We will show that any coalition structure in core
must contain {7, 8} as a component. It is easy to see that none of the first six
players can be in the same coalition with player 8. They would rather be alone
than having player 8 as a partner. It is also easy to see that players 7 and 8
should be partners since either player is more valuable for the other than the
sum of everyone else. Therefore the coalition {7, 8} is a component of any core
partition. But since (i) the restriction of Game 3 to remaining players is Game
2 and (ii) Game 2 has an empty core, Game 3 has an empty core as well. <&

5 Two top-coalition properties

Farrell and Scotchmer (1988) show that the following condition guarantees
the non-emptiness of the core:

Definition 12. ( Farrell and Scotchmer 1988) A game G satisfies the common
ranking property iff there exists an ordering = over 2N\{ &} such that for any
ieNandany S,T € S;(N) we have S =; T < S = T.

Next consider the following relaxation of the common ranking property.

Definition 13. Given a non-empty set of players V = N, a non-empty subset
S < V is a top-coalition of V iff for any ie S and any T <V withie T, we
have S =; T. A coalition formation game G satisfies the top-coalition property
iff for any non-empty set of players V < N, there exists a top-coalition of V.

This condition requires that, for any group of players V there is a
subgroup that is mutually the best for all its members. The top-coalition
property reduces to a-reducibility (Alcalde 1995) in roommate problems (Gale
and Shapley 1962).'° We finally have a positive result with the top-coalition
property. Indeed, even the following weaker version guarantees the existence.

Definition 14. Given a non-empty set of players V = N, a non-empty subset
S < V is a weak top-coalition of V iff S has an ordered partition {S',... S'}
such that (i) for any i€ S' and any T <= V withie T, we have S =; T and (ii)
forany k> 1, any ie Sk, and any T < V withie T, we have T =; S = T N
(Um S") # . A coalition formation game G satisfies the weak top-coalition
property iff for any non-empty set of players V< N, there exists a weak top-
coalition of V.

19 Tan (1991) provides a necessary and sufficient condition for the non-emptiness of
the core for roommate problems.
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A coalition S is a weak top coalition of V'if it has a partition {S',..., S’}
such that:

1. Any agent in S! prefers S to any subset of V,

2. any agent in S? needs cooperation of at least one agent in S' in order to
form a better coalition than S,

3. any agent in S3 needs cooperation of at least one agent in S' U S? in order
to form a better coalition than S,

I. any agent in S’ needs cooperation of at least one agent in Um ~;S" in order
to form a better coalition than S.

Theorem 1. Suppose game G satisfies the weak top-coalition property. Then it
has a non-empty core.*!

Proof. Let Vo = N, S; < V; be a weak top-coalition of Vj, and {S . Sll(l)}
be its partition as defined in Deﬁmtlon 14. Let V7 = Vo\S1, S» < V7 be a weak
top-coalition of V7, and {S;,.. S } be its partltlon as defined in Definition
14. Similarly, define the triple (Sk, {Sk,..., k }, V) for each k. Since the set
of players N is finite, this procedure terminates in finite steps (i.e., there is an
integer K such that Vx = ¢ and Vg_; # ). Let n* = {S},..., Sk }. We show
that the coalition structure 7* is a core partition. Consider the following
sequence of groups: S}, ..., Sll(l)7 Sh ..., 52/(2)7 . SL . S0 Observe that
no agent in S could profit from joining a coalitional deviation. Without the
help of agents in S}, no agent in S? could profit from joining a coalitional
deviation. In general, without the help of agents from earlier groups in the
sequence, a profitable coalitional deviation is not possible. Hence there is no
profitable coalitional deviation and z* is in the core. <

Moreover, the core is a singleton provided that the top-coalition property
is satisfied and the preferences are strict.

Theorem 2. Suppose game G satisfies the top-coalition property and the prefer-
ences are strict. Then it has a unique core partition.

Proof. For any V = N define M(V)={Se2”\& : S is a top-coalition of
V'}. Under strict preferences M (V) is a collection of disjoint sets for any non-

empty = N Define Vo = N and let M(Vy) = {S},...,5""}. Next define
N\U 'S/ and let M(V}) = {Sz,.. sy, Slmlldrly define 7 =
N\szlk Slﬁ and let M (Vi) = {S},,,... k+l } for each k. Since N is finite,

this procedure terminates at some point (1 e., there is an integer K such that

1 One does not need to use the full power of the weak top-coalition property to prove
this result. As long as there exists a partition {Si,..., Sk} such that Sy is a weak top-
coalition of N\(lJ,,_, Sw) for all k (i.e., Sy is a weak top-coalition of N, S, is a weak
top-coalition of N\Sj, and so on), the core is non-empty.
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Vk = & and Vk_; # ). This procedure uniquely determines the coalition
structure n* = {S),..., SV sl 87 5L P} We next show
that 7* is the only core partition. First note that a core partition should have
S{ as a component for any j € {1,...,m(1)} since otherwise Sj could profit-
ably deviate. Given that, a core partition should have S; as a component for
any j € {1,...,m(2)}, and so on. This completes the proof. <&

It is easy to see that the common ranking property implies the top-
coalition property. However the converse relation does not hold. The fol-
lowing game makes this point:

Game 4. There are two type-b players and one type-a player. Thus, the player
set N can be written as N = {ay,b1,by}. Suppose that their preferences satisfy
anonymity and let their preferences on cardinalities of coalitions be as follows:

Typea: 1>=,2%>,3,
Type b: 3 =52 > 1.

Claim. Game 4 satisfies the top-coalition property but not the common ranking
property.

Proof of the Claim. First observe that if ¢ € V' then {a;} is a top coalition of
V, and otherwise V' is a top-coalition of V. Thus, the top-coalition property is
satisfied. On the other hand, the common ranking property is not satisfied: We
have {al,bl} ~a {Cl],b], bz} and yet {Cl], bl, bz} b, {ah b]} O

It is also clear that the top coalition property implies the weak top-
coalition property. Example 3 in Section 6.6 shows that the converse relation
does not hold.

The final issue that we investigate in this section is whether the top co-
alition properties imply the Scarf-balancedness condition in NTU games. An
NTU game is a correspondence ¥ : 2¥\{F} +— RRY such that: (i) for all u,v €
RY, [VieS:u=v]=[ueV(S) e ve V(S)], (i) V(S) is closed, (iii) V(S)
+RY = V(S) and (iv) there is an upper bound on the projection of ¥ (S) on
S for each S e2V¥\{F}. A balanced family of coalitions # is a collection
of non-empty subsets of N such that there is a (balanced weight) function
0:% — [0,1] with Y ¢, g0(S) =1 for any ie N. An NTU game V is
Scarf-balanced (Scarf 1967) if for every balanced family # of N we have
Nsen V(S) = UneH(N) Nren V(T) where UneH(N) Nren V(T) denotes the
superadditive cover of V.

Game 5. N = {1,2,3}, and the preferences are as follows:
Player 1:  {1,2} >, {1,3} »=; {1,2,3} > {1},
Player 2: {1,2} = {2,3} =5 {1,2,3} =, {2},
Player 3: {1,3} =3 {2,3} =3 {1,2,3} =3 {3}.

Claim. Game 5 satisfies the common ranking property (and thus, both top-
coalition properties as well) but not the Scarf-balancedness condition.
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Proof of the Claim. In this game we have the following common ranking:
{1,2} = {1,3} = {2,3} = {1,2,3} - {1}~ {2} = {3}.

Thus, the common ranking property is satisfied. Now, we construct an NTU
game from our game by appropriately assigning vector values to each coali-
tion (see Shapley and Scarf 1973 and Quint and Shubik 1998):

V({i}) = {xeR®: x; <0} foreachie N
V({1,2}) = {xeR3: x; <3,x, <3},
V({1,3}) = {xeR%: x; <2,x3 <3},
V({2,3}) = {xeR?¥: x, <2,x3 <2}, and
V({1,2,3) ={xeR>:x; <1, xp < 1,x3 < 1}.

Next we check whether this NTU game is balanced. Observe that £ =
{{1,2},{2,3},{1,3}} is a balanced family with a balanced weight 1/2 for
each coalition. Moreover (2,2,2) e ﬂsw’g V(S) HoweYer, (2,2,2) ¢ UneH(N)
NsezV(S). In other words, there is no partition that yields the payoff vector
(2,2,2). Thus, the game V is not Scarf-balanced. <

Although the weak top-coalition property is demanding, it is satisfied in
many interesting applications. We present several such applications.

6 Applications

6.1 Anonymous and separable games

In Sects. 2 and 3 we discussed anonymity and additive separability. Here, we
impose these two conditions together. (Note that separability together with
anonymity implies additive separability). In such games the top-coalition
property is satisfied and hence the core is non-empty.!?

Corollary 1. Suppose that the game G is anonymous and separable. Then it has
a non-empty core.

Proof. We classify players using anonymity: Let N* = {ie N : {i, j} =; {i}
foranyj #i} and N~ ={ieN:{i,j} <;{i} foranyj #i}. By definition
NtUN- =N and N* n N~ = (. For any player i € N, the top choice is
staying alone by separability. Let V' < N. If VVn N~ # ¢ then any singleton
subset of V' " N~ is a top coalition in V. Otherwise V' = Nt and V itself is
a top coalition in V. Thus, the top-coalition property is satisfied and G has a
core partition 7 = {N*, ({i}),.y-}. <

12 The common ranking property is not necessarily satisfied for such games. See Game
4 for an example.
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6.2 Residential segregation with snob effects

There are K income classes {1,2,..., K} where each class k has n; > 0 agents.
Class 1 is the richest, class 2 is the second richest, and so on. Agents can form
exclusive jurisdictions (coalitions). Each jurisdiction can be described by a
list (my, my, ..., mg) that specifies the number of agents in each coalition. All
agents have an identical utility function

_ Z,f:l Wiy
Zlf:l myc

where w; > wy > -+ > wg > 0 are weights of different income classes. That
is, everyone wants to live in a rich jurisdiction. Coalition formation games
induced by such problems satisfy the top-coalition property: For each IV < N
members of its richest class is always a top coalition. Therefore a core par-
tition exists. Moreover there is no mixed coalition at any core partition.
Equivalently, perfect segregation occurs.'?

u(my,my,. .., mg)

6.3 Becker’s (1973) marriage game

Let M = {m;,my,...,my} be the set of men and W = {wy,wy,...,w,} be the
set of women. All men have identical preferences: they like w; the best, w, the
second, ..., and w, the last. All women have identical preferences in an anal-
ogous way. For simplicity, we assume that staying single is the last choice for
all agents. Becker (1973) suggests that m; and w; should be matched for any
i=1,2,....n

We can generate Becker’s proposition as the unique core partition of the
corresponding coalition formation game where players m; € M and w; € W
have the following preferences:

{mh Wl} ~m; {mi> WZ} Ty {miu Wn} ~m; {Wl,} ~m; (others),
{wi,mi} o=y, {wi,ma} =y, - =y, {wi, my b =, {wi} =, (others).

This game satisfies the top-coalition property. That is, for any non-empty co-
alition V' < N there is a top coalition: If VN M # & and V n W # & then
{m;,w;} = V is a top coalition, where k > i for any man my € V and / > j for
any woman w, € V. That is because, m; and w; are the most attractive man
and woman in V respectively. If on the other hand VW = or
V n M = &, then every singleton subset of V' is a top coalition. By Theorem
2 the coalition structure z* = {{my, w1}, {ma, wa},..., {m,, w,}} is the unique
core partition.

6.4 TU Games with proportional sharing

Let N be a finite set of players and v : 2¥\{@} — R, be a real-valued func-
tion. The pair (N, v) is called a TU game and for any S = N, v(S) is called the

13 Rose-Ackerman (1977) analyzes a two class economy with exclusion that generates
residential segregation.
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worth of coalition S. Suppose that the worth of each coalition is allocated
among its members based on the proportional rule for some given list of shares
(9i);c y- Therefore when a coalition S forms, the payoff to its member i € S is

o

ZjeS &%;

Example 1. Consider a village where the main industry is sugar cane production.
Land is common property and it is in abundance. Each farmer i € N owns o; > 0
units of labor. Sugar cane can be produced via labor using a common pro-
duction function f : IR, — R,. Market price of sugar cane is normalized to
one. Therefore the worth of coalition S is v(S) = f (3,5 %). Finally, the worth

j
of a coalition is shared among its members proportionally to labor inputs.

u;(S) = x v(.S).

Note that, any TU game together with a proportional rule naturally indu-
ces a coalition formation game. This game satisfies the common ranking
property and hence its core is non-empty. !4

Corollary 2. Consider a simple coalition formation game G that is induced by a
proportional rule implemented on a TU game. Game G has a non-empty core.

Proof. Consider player i € N. Forany S, T € S;(N) with S # T,

o

o
S Te —=——xv(S) > x v(T)
EjeSaf jeT %
L S ()
ZjeSaj ZjeT(xj
v(S) ) .
Define ¢(S) = For any ie N and any S,T e S;(N), S>; T iff

Z‘ES {xj.
o(S) = o(T). We Jnext show that there is a top coalition for each V' = N with
V£ Let M(V)={Se2"\{T}:0(S)=¢(T) for any T e2"\{Z}}.
Each element S of M (V) is a top coalition. This is because, for any i € S
and any T € 2"\{} we have ¢(S) > ¢(T) or equivalently S =; 7. Thus, the
common ranking property (and therefore the top-coalition properties as well)
is satisfied. Theorem 1 implies that there is a core partition. <

We can cover Farrell and Scotchmer’s (1988) partnership game and Moulin
and Shenker’s (1994) average cost sharing problem as special cases of TU
games with proportional sharing.

6.4.1 Farrell and Scotchmer’s (1988) partnership game

Let N ={1,2,...,n} and each player j € N has ability ¢; > 0. The produc-
tivity of each coalition S e 2V\{Z} is #(|S]) x >, ge;, where 7: N — RR.

14 Jackson and Wolinsky’s (1996) technique to prove existence of a stable network is
an application of this argument. See also Dutta and Mutuswami (1997).
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When a coalition S forms, its output is shared equally among its members
and hence the payoff to each member is

(IS x> jes e
S| '

Farrell and Scotchmer’s partnership games is a specific application of TU
games with proportional sharing where v(S) = #(|S|) x > s¢; for all Se N
and (o;);.y = (1,1,...,1). Therefore partnership games satisfy the common
ranking property (as was shown in Farrell and Scotchmer 1988) and thus it

has a non-empty core.

6.4.2 Moulin and Shenker’s (1994) average cost sharing problem

Let N ={1,2,...,n} and each player i € N be endowed with divisible money.
There is one divisible commodity besides money which can be produced by
money with a common production technology that is accessible by anybody
or any coalition. The technology is described by a cost function C : R, — R
that is a mapping from the amount of commodity production to the amount
of money needed. Each player i € N has a fixed demand a; > 0 for the com-
modity. Players have monotonic preferences on money. Players are allowed
to form coalitions and produce the commodity jointly using the common
production technology. For a non-empty coalition S = N, amount of pro-
duction needed is 3 ;g a; and therefore the cost of production is C(}_; 5 4)).
The cost is shared based on the average cost sharing rule. That is, each player
in a coalition pays the average cost of the coalition times her demand. Moulin
and Shenker’s average cost sharing problem is another application of TU
games with proportional sharing where v(S) = —C(}_; sa;) for all SN
and (o). y = (ai);c - Therefore a coalition formation game that is induced
by the average cost sharing rule satisfies the common ranking property and
thus has a non-empty core.

6.5 Shapley and Scarf’s (1974) housing market

Let N ={1,2,...,n} and each player i€ N own one indivisible house #;.
Thus, the set of houses can be denoted by H(N) = {hy, hy, ..., h,}. Similarly,
we can define H(V) for any V' = N with V' # . Each player i can consume
(or live in) at most one house, and has a strict preferences P; over H(N). An
allocation is a one-to-one and onto mapping x: N — H(N). A weak coali-
tional deviation from y is a pair (S, v) such that (i) S = N with S # &, (ii) v :
S — H(S) is one-to-one and onto, and (iii) v(i)P;u(i) for at least one i € S
and v(i) = u(i) for others. A strict core allocation is an allocation g that is
immune to any weak coalitional deviation. Shapley and Scarf (1974) show
that the core is non-empty and Roth and Postlewaite (1977) show that the
strict core is singleton and coincides with the unique competitive allocation.
David Gale invented the following top trading cycles algorithm that yields
the competitive allocation: Pick any i € N and let her point her most favorite
house in H(N), say house ;. If i = j then i — i is a top cycle. Otherwise, j # i



150 S. Banerjee et al.

and let j point her most favorite house, say ;. If k =i theni — j — i is a top
cycle and if kK = then j — j is a top cycle. Otherwise let k point her most fa-
vorite house, say h,. If / =i then i — j — k — i is a top cycle, if / =/ then
j — k —jisatopcycle, and if / = k then k — k is a top cycle. Otherwise, let
¢ choose her most favorite house, and so on and so forth. Since the number
of players is finite, by continuing this procedure we find at least one trading
cycle. Let the set of players in the first top trading cycle be S;. Remove them
out of the market together with their assignments. We now have a reduced
group of players V; = N\S; and houses H (V). Among the remaining play-
ers V7, there is a subset S5 that forms a top cycle. Again remove them from
the market together with their assignments and proceed in a similar way. This
algorithm yields the unique competitive allocation that coincides with the
unique strict core allocation. Given any housing market, the competitive
mechanism naturally induces a coalition formation game: For any non-empty
subset of players V, let i, : V' — H(V) be the unique competitive allocation.
Then, for any player i and any two coalitions S, T € S;(N), we have S =; T
< ut(i) Ry (i). By the dynamics of the top trading cycles algorithm S} €
M(N), and S} € M (V) for each k with Vj # (. Therefore the top-coalition
property is satisfied for the induced coalition formation game. Note that the
common ranking property is not necessarily satisfied for such games.

Example 2. N = {1,2,3} and the preferences are as follows:
hy =1 h3 =1 hy,
h3 = hy =2 hy,
hy =3 hy >3 hs3.

Let V ={1,2}. We have

St 23y L (12
W o om) T o)

Therefore uj,(1)Piuy (1) and uy(2)Pruy(2) which implies V >y N and
N >, V violating the common ranking property.

6.6 Benassy’s (1982 ) uniform reallocation

Let N ={1,2,...,n} and each player i € N be endowed with an initial en-
dowment w(i) € Ry of a perfectly divisible commodity. Each player i has a
single-peaked preference relation R; over R, . That means she has a best con-
sumption b(i) € R such that: for all x,y e Ry, [x < y < b(i) or x > y > b(i)]
= yP;x. Whenever z(i) = b(i) — w(i) > 0 we say agent i has an excess demand
and whenever z(i) = b(i) — w(i) < 0 we say she has an excess supply. Simi-
larly, a coalition ¥ = N has an excess demand if z(V) =), ; z(i) > 0 and
it has an excess supply if z(V) =>",_, z(i) < 0. For any coalition V" = N, a
feasible allocation is a vector x € R”, such that 3, x(i) = 3, w(i). When
a coalition V' = N forms, its members reallocate w(V) = )", w(i) based on
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the uniform reallocation rule: For allie V|

min{b(i),w(i) + A} if z(V) =0
{max{b(i),a)(i) +4} ifz(V)<0

where 4 € R solves >, Uy (i) = o(V).

A detailed analysis of the uniform reallocation rule is beyond the scope of
this paper.!® However the following feature of its is of particular importance
to us: Whenever the coalition 7 has an excess demand, the uniform rule Uy
allocates (i) each agent i € I who has an excess supply, her best consumption
b(i) and (ii) each agent i € IV who has an excess demand, at least her endow-
ment w(i). Similarly whenever the coalition V" has an excess supply, the uni-
form rule Uy allocates (i) each agent i € V who has an excess demand, her best
consumption b(i) and (ii) each agent i € ¥ who has an excess supply, at most
her endowment (7). This feature implies that, whenever all agents have ex-
cess demand (or whenever all have excess supply), the uniform rule allocates
them their endowments.

For any given triple (N, (w(i));.y, (Ri);cn), the uniform reallocation rule
induces a coalition formation game: For any player i € N, and any two coa-
litions S, T € Si(N), we have S =; T < Us(i)R;Ur (7). This game satisfies the
weak top-coalition property and hence has a non-empty core.

Uy (i) =

Corollary 3. Consider a coalition formation game G that is induced by the
uniform reallocation rule. Game G has a non-empty core.

Proof. We show that, for any V' = N the coalition V itself is a weak top-
coalition. Suppose without loss of generality that coalition } has an excess
demand z(V) > 0 (the other case is similar). Define V! = {ie V :z(i) <0}
and V2 = {ie V : z(i) > 0}. We have two cases to consider.

Case 1. V! # &. Let i € V!. The uniform rule Uy allocates agent i her best
consumption b(i). Therefore, for all T < V we have V »; T. Next consider
an agent i € V> and suppose T < V is such that T >=; V. We will show that
T n V' # @ which in turn implies that V is a weak top-coalition. The uni-
form rule Uy allocates agent i at least her endowment w(i). Since z(i) =
b(i) — w(i) > 0 and the preferences are single-peaked, the relation 7 »; V
implies Ur(i) > Uyp(i) > w(i). But that means, there is at least one agent
j €T with z(j) < 0 since otherwise the uniform rule Uy allocates all agents
in 7T (including agent i) their endowments. Hence 7N V' # ¥ and V is a
weak top-coalition with { V!, 72} being the associated partition.

Case 2. V! = (&. In this case all agents in } are excess demanders. Therefore
no matter which subcoalition 7" < V forms, all its members are also excess
demanders and the uniform rule Ur allocates each member her endowment.
As a result all agents in 7 are indifferent between all subsets of V. Hence V is

15 Sprumont (1991) initiated a large literature that analyzes the uniform rule. See also
Ching (1992, 1994), Thomson (1994a, 1994b, 1995) and Klaus et al. (1998).
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a top coalition (and thus a weak top-coalition as well). Therefore the weak
top-coalition property is satisfied and the coalition structure {N} is a core
partition. <

Finally note that, the top coalition property is not necessarily satisfied in
these coalition formation games.

Example 3. N = {1,2,3}, (o(1), 0(2), 0(3)) = (5,5,5), and (b(1),b(2),b(3))
= (1,8,8). The following table gives the outcome of the uniform rule Ur, for
any T < N:

123
Uy | 5]|-1-
Uy | -|5]-
Us, |-|-153
Uny |28 ]-
Uns |2|-18
Uny |-|515
Unasy | 1717

We have
N T forall T = NwithleT,
{1,2} = T forall T Nwith2eT,
{1,3} =3 T forall T =< Nwith3eT,

and therefore there is no top coalition for the grand coalition N.
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