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Abstract For linear homopolymers
the linear viscoelastic predictions of
the double reptation model are
compared to those of a recent, more
detailed model, the “dual constraint
model” and to experimental data for
monodisperse, bidisperse, and poly-
disperse polystyrene melts from sev-
eral laboratories. A mapping
procedure is developed that links the
empirical parameter K of the double
reptation model to the molecular
parameter 7. of the dual constraint
model, thereby allowing the param-
eter K to be related to molecular
characteristics such as the mono-
meric friction coefficient {. Once K
(or 7.) are determined from data for
monodisperse polymers, the double
reptation model predicts that for
fixed weight-average molecular
weight My, the zero-shear viscosity
1o increases slightly with increasing

polydispersity M,,/M,, for log nor-
mal distributions, while for the dual
constraint model 7, is almost inde-
pendent of My,/M,,. Experimental
data for polystyrenes show no in-
crease (or even a slight decrease) in
no with increasing M/M,, at fixed
M,,, indicating a deficiency in the
double reptation model. The dual
constraint theory is also applied to
hydrogenated polybutadienes and
commercial high-density polyethyl-
enes, where we believe it can be used
to indicate the presence of long side
branches, which are difficult to de-
tect by other analytic methods.
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Introduction

Recently there has been a high level of interest in relating
quantitatively the linear viscoelasticity of polymer melts
to their molecular weight distributions (Montfort et al.
1979, 1986; Wasserman and Graessley 1992; Mead 1994;
Léonardi et al. 1998). Interest in this topic has been
stimulated by the prospect of inferring the molecular
weight distribution (MWD) of a melt from its linear
viscoelasticity alone (without the need for expensive
GPC analysis), and by the development of the “double
reptation” formula (Tuminello 1986; Tsenoglou 1987,
1991; des Cloizeau 1988; Milner 1996) which provides a
single formula relating the storage and loss moduli (G’

and G”) to the MWD. While reasonable success has
been obtained in extracting MWD from G’ and G”
using double reptation and related theories, systematic
studies have not yet been carried out to determine the
range of weight-averaged molecular weights M, and the
range of polydispersities over which the double reptation
theory might be trusted to give accurate results.

In addition, theories that are potentially more
accurate than double reptation have recently been
proposed that have not systematically been compared
with double reptation and with experimental data to
determine their relative accuracies. For example, while
it is sometimes assumed that, at fixed M,,, the zero-
shear viscosity 7o is independent of the ratio of
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weight-to-number averaged molecular weight My /M,,.
This assumption seems not to have been systematically
tested, nor is it known whether the experimental
dependence of 19 on M,,/M,, is predicted correctly by
double reptation or other theories.

Here we will investigate these issues by assembling
literature data for the linear viscoelasticity of well-
characterized monodisperse, bidisperse, and polydis-
perse polystyrene melts. We will compare these data to
predictions of two promising theories, namely the
“double reptation” theory and the recent “dual con-
straint” theory of Mead et al. (1997). We select poly-
styrene as our model melt primarily because of the
wealth of available literature data, and because we can
be confident that polystyrene melts lack any long side
branches. It is well known that even a very low level of
long side branching can have a dramatic effect on linear
viscoelastic properties (Carella et al. 1986; Janzen and
Colby 1999). We also make more limited comparisons of
the dual constraint model to data of well-characterized
hydrogenated polybutadienes, which are chemically
equivalent to polyethylenes.

The double reptation model is based on the original
Doi-Edward model plus a reptative constraint-release
mechanism. The predictions of this model in monodis-
perse polymers are good in the terminal regime (i.e.,
low frequency regime) but very poor in the intermediate-
and high-frequency regime. In polydisperse systems,
the predictions of the double reptation model in the
intermediate frequency regime are dominated by the ter-
minal relaxation of chains shorter than the longest ones.
The model therefore appears to give good predictions
over a wider frequency than it does for monodisperse
melts. As a consequence, the double reptation model is
considered an acceptable model for predicting linear
viscoelastic rheological properties of monodisperse
entangled polymers in the terminal relaxation regime
and for polydisperse entangled polymers even outside
this regime. Note, however, that the model is expected to
break down in the limit of long chains in a matrix of
short ones, where the long chain must then relax via the
constraint release Rouse mechanism, not captured in the
double reptation scheme.

One would like to extend the double reptation model
so that it gives more accurate predictions over a wider
range of frequencies. One would also like a model that
can apply to monodisperse and polydisperse branched
polymers, such as stars, as well as to linear molecules. To
accomplish these objectives, one must incorporate
contour-length fluctuations into the model. In addition,
it is well known that for star polymers, constraint release
has a more dramatic effect than can be accounted for by
a simple generalization of the “double reptation” idea.
This effect, called “dynamic dilution™ or “tube dilation,”
is a widening of the tube at long times after a step strain
due to the rapid relaxation of some of the constraints

that define the tube. Marrucci (1985) and Ball and
McLeish (1989) developed self-consistent calculations to
compute simultaneously both the instantaneous relax-
ation function and the instantaneous tube diameter as
functions of time after a step strain. Marrucci’s calcu-
lation was developed for linear polymers, while that of
Ball and McLeish was developed for star polymers. The
method of Ball and McLeish has proven to be extremely
accurate in the prediction of the relaxation spectrum of
monodisperse star polymers. Still, a general theory that
can predict the relaxation behavior of polydisperse linear
and star branched polymers is needed.

Recently, Mead et al. (1997) developed the “dual
constraint” model, which generalizes the double repta-
tion model by incorporating contour-length fluctuations
and constraint release by double reptation and tube
dilation, all in a single, relatively simple, algorithm. This
is accomplished through the artifice of a ‘““two-tube”
calculation, wherein the relaxation of a chain (linear or
star) in a fixed matrix is undertaken first. This calcula-
tion is then integrated to yield a single function ¢*(¢),
which is the fraction of tube segments that are unrelaxed
at a time t after the step strain. This “dilution” function
is then incorporated into a second calculation of the
relaxation, which is the same as that in a fixed tube,
except that the function ¢*(¢), calculated in the fixed
tube, is used to dilute the density of entanglements used
in the calculation of the fluctuation potential. This
approach, while not self-consistent in the way the Ball-
McLeish calculation is, nevertheless captures much of
the “tube dilation” effect. This is demonstrated in the
Appendix, where it is shown that for monodisperse star
polymers, the “dual constraint” model yields an accel-
eration of relaxation similar to that produced by the
conventional Ball-McLeish argument.

The work of Pattamaprom et al. (2000) enhanced
that of Mead et al. (1997) by devising an accurate
“cross-over” function for early-to-late time fluctuations;
this cross-over function is presented again in what
follows. In addition, the work of Pattamaprom et al.
included constraint release Rouse motion, which was
absent from the work of Mead et al. Pattamaprom et al.
(2000) showed that this revised “dual constraint” model
produces remarkably accurate predictions for monodis-
perse and bidisperse linear and star polymer melts, even
without adjustable parameters. A single, successful,
comparison was also made with broadly polydisperse
polystyrene at 150 °C (Wasserman and Graessley 1992)
with one adjustable parameter (due to the lack of a
reliable literature value of the monomeric friction
coefficient at 150 °C).

Since both the double reptation and dual constraints
models work equally well in the terminal regime, the two
models can be used interchangeably in this regime and
their parameters can be found and correlated with each
other for monodisperse linear polymers. Here we
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provide a mapping scheme to retrieve the model
parameter K of the double reptation model from the
model parameter 7. of the dual-constraint model and
vice versa. This correlation could be useful especially for
high molecular weight polymers, where the terminal
regime is often difficult to obtain, thus making the model
parameter obtained from the terminal regime inaccurate.
Since the dual constraint model is capable of interme-
diate-regime prediction, the mapping between the
parameters 7, and K would give a more accurate K
value and help alleviate the experimental difficulty in
trying to reach the terminal regime either from low
sensitivity at low-frequency measurements or from
erroneous time-temperature superposition.

We also investigate here the effects of broad,
continuous, molecular-weight  distributions more
thoroughly. We compare the predictions of the dual-
constraint and double-reptation models with experi-
mental linear viscoelastic data for polystyrenes at
different values of M, /M,,. We thereby find discrepan-
cies between the experimental data and the predictions
of the models, especially the double reptation model,
which should motivate a search for improvement of the
double reptation model to account more accurately for
the effects of polydispersity.

Next, we apply the dual constraint model to predict
the viscoelastic properties of linear and star hydroge-
nated polybutadienes (h-PBD) (Raju et al. 1979), which
are the model polymers for linear and star-branched
polyethylenes, respectively. For linear h-PBD, we will
show that the zero-shear viscosities and linear viscoelas-
tic moduli agree well with experimental data for the
whole range of molecular weight studied. For star
h-PBD, however, the predictions of linear viscoelastic
moduli (G’ and G”) agree with the experimental data
only when the activation potential of fluctuation and the
plateau modulus are independently adjusted. The suc-
cess of the dual constraint prediction for polydisperse
linear polymers allows us to be able to differentiate the
effect of polydispersity from that of long-chain branch-
ing in polyethylenes.

Theoretical background

The double reptation model and the dual constraint
model will be utilized in evaluating the effect of polydis-
persity on the rheological properties of linear polymers.

The dual constraint model accounts for reptation,
contour-length fluctuation, and constraint release by
dynamic tube dilation and reptative constraint release.
The double reptation model is like the dual constraint
model except that it ignores dynamic tube dilation and
accounts for contour-length fluctuations only indirectly
by using an empirical 3.4 power-law dependence of
relaxation time on molecular weight.

The following is a brief summary of the theory and
model parameters of each model.

The dual constraint model

The dual constraint model combines two forms of
constraint release in the dynamics of entangled poly-
mers. The first form of constraint release is “double
diffusion” which augments “double reptation” by inclu-
sion of primitive path fluctuation as a mechanism of
constraint release. The second form of constraint release
is “dynamic dilution,” which was introduced by Ball and
McLeish (1989) to describe the time-dependent loosen-
ing of the effective entanglement network, or widening
of the tube. The upper limit of the combined constraint
release rate from both mechanisms is controlled by
Rouse-like motions of the tube containing the test chain;
these motions are called “‘constraint-release Rouse”
processes (Viovy et al. 1991; Milner et al. 1998). Further
discussion and description of the model are provided by
Pattamaprom et al. (2000).

The diffusion equation for the tube survival proba-
bility p; of chain type i including constraint release is
rewritten as

@Pi(si,f)_Diazpi(Si,f) pi(si 1)
o L} 0s?

2 T (s M

where p;(s;,t) is the survival probability of a tube segment
occupied by a chain of type i as a function of time 7 and
contour distance s;, where s; ranges from 0 at the center of
a polymer chain to 1/2 at the chain end of a linear, or to 1
at the chain end of a star. D;, the curvilinear diffusion

. .12 .
coefficient, is —;, where L; is the average contour length
d.i

of the tube and 74; is the reptation time constant (Doi
and Edwards 1986). 7¢; is the time constant for contour-
length fluctuations in the presence of constraint release
which, at early time and late time, can be expressed by
interpolating between two formulas for early- and late-
time fluctuations (Pattamaprom et al. 2000):

225 TR, Neni 2
Tearvs(51) = 36 ' (1= Cz’Si)4< c»1> and
! i

= %eXp(Ueff(Sht))

i

(2)

Here ¢; is a prefactor, which equals 2 for linear
polymers (since a linear polymer has two fluctuating
chain ends), and is unity for star arms. N,; is the
number of entanglements in chain i, which equals Mv
M, is the weight-average molecular weight of chain i,
and M. is the molecular weight between entanglements.
TR, 1s the longest Rouse stress relaxation time of chain
i given by tg; = %, which is smaller than the
rotational relaxation time 7, from Doi and Edwards by
a factor of two (Doi and Edwards 1986, p.115). Thus,

Tlate,i(sb t)
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TR 1s related to 7q; by Tr;=74i/(6Neni). The formula
used to interpolate between Teuyi and Ty in the
transition zone is the geometric average of the two.
Therefore, the expression for 7:; at positions in the
transition zone along the chain is given by

Tei = Tearly,i when (1 — CiSi) < C]J
T¢i = \/Tearlyi - Tiate; When Cp; < (1 —cisi) < Cyy

when (1 —¢;s;) > Coy

(3)

where C,; is the first crossover position of Tey; and
Tiate;i close to the chain end, and C,; is the second
crossover point deeper inside the tube. This expression is
reproduced from Eq. (12) of Pattamaprom et al. (2000).
(Note that the variable ¢; was incorrectly left out from
that equation, as well as from Eq. (4) of Pattamaprom
et al. 2000). The variable ¢ there is equivalent to c; in this
paper, indicating the dependence of ¢ on the chemical

Tei = Tlate,i

species.)
Uea(s,t) 1s the reduced activation energy obtained by
lSNen.i *
ey (si1) = o= = ¢ (0)(1 = cisi)’ (4)

where ¢'(t) is the dilution factor calculated from the
tube survival probability in a fixed matrix as described in
Pattamaprom et al. (2000).

The overall survival probability ¢;(t) of a tube
occupied by chain i can then be calculated from p;(s;, ¢) by

1
6.0 = [ psiods 5)
and the average survival probability ¢(t) of all tubes is

= Zwid)i(t) (6)

where w; is the weight fraction of chains of type i.

Local constraint-release events are described in terms
of the double-diffusion mechanism, developed as an
extension of double reptation (Tuminello 1986; Tsenog-
lou 1987, 1991; des Cloizeaux 1988) by Mead et al.
(1997). This theory considers the survival probability of
a binary topological interaction of a test chain with a
surrounding chain. This mechanism accounts for the
effect of the surrounding chains on the overall relaxation
process by multiplying the average survival probability
of the test chain by that of the constraints surrounding
the chain. Without the constraint-release Rouse process,
the multiplication would be ¢*(t). However, after
including constraint-release Rouse processes (Viovy
et al. 1991; Milner et al. 1998), the fraction of con-
straints ¢’(t) that block motion of a test chain at time ¢
can differ from the fraction of tube segments ¢(t) that
are still occupied at time ¢. Thus

¢'(1) = (1) when (1) > p()

¢'(1) = ¢pr(r) when (1) < ¢p(7) (7)

-1/2
where ¢g(t) = (]f)(to)(%) / . (A detailed explanation of
the constraint-release Rouse process has been given in
Viovy et al. (1991) and Milner (1996). Here, we will
merely adopt the formula from Milner et al. (1998) that
constraint-release Rouse relaxation permits relaxation
no faster with time than t™"/2.) t, is the time when ¢(t)
begins to drop faster than t™'/%, and ¢(to) is the average
survival probability at to. At time near zero, ¢’(t) equals
¢(t). After that, at each time ¢, ¢(t) is assigned the
greater of the values of ¢(t) and ¢g(t).

Constraint-release Rouse processes are introduced so
that when relaxation is relatively rapid, i.e., faster than
the square root of time, relaxation due to constraint
release is controlled by the rate at which the test chain
can explore the widening tube. This typically happens
when chains undergo terminal relaxation due to repta-
tion, since terminal relaxation is exponentially fast.
However, it can also occur during rapid early-time
fluctuations. Hence, to cover all cases, we introduce
constraint release Rouse relaxation whenever the func-
tion ¢’(t) relaxes too rapidly for the chain to explore
fully the widening tube, that is, whenever the relaxation
rate is faster than the square root of time.

Thus, the overall survival probability of the binary
interactions between the test chains and the surrounding
chains becomes

(1) = p()$' (1) (8)
The relaxation modulus G(t) from the contributions
of reptation, contour-length fluctuations, and constraint

release can be obtained by multiplying ®(t) by the
plateau modulus G%:

G(1) = Gy®(r) = Gy (1) (1) ©)

The high-frequency Rouse processes, which are
distinct from the low-frequency ‘‘constraint-release
Rouse” processes, are incorporated via the Rouse
relaxation modulus Gg ;(t) using an approximate “frag-
mented Rouse” spectrum proposed by Milner and
McLeish (1998):

n,i N
N ; |

= —GOE a3
N2 p(mz >+ Py exp(ml> Neni

en,i

GRI

(10)

(It should be noted that this same equation that
appears in Pattamaprom et al. (2000) mistakenly left out
the factor g'-)

Finally, the total stress-relaxation modulus Gy
combines G(t) from Eq. (9) with the contribution from
high-frequency Rouse processes (Eq. 10) giving

Gtotal + ZthRl (11)

The input parameters for the model are the same as
those required for the original Doi-Edward model: the
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plateau modulus G, and the Rouse relaxation time of a
segment of a chain 1.. 7. is theoretically relateg to
molecular characteristics of each polymer by . = 357 :fMO
where { is the monomeric friction coefficient, a is the tube
diameter, M, is the molecular weight per entanglement
segment, and My is the molecular weight of monomer. kg
is the Boltzmann constant and T is the absolute
temperature.

Our expression for 7, contains one power of the
entanglement molecular weight M, explicitly, and an-
other power of M, implicitly, through the Ilinear
dependence of a> on M,. Since it is only the Rouse
time, and not 7, that appears in the original equations,
the definition of 7, is just a convenience, and does not
affect the final equations. There are some real differenc-
es, however, between our expressions for 74 and ey
and those of Milner and McLeish (1997). One difference
is that Milner and McLeish used a first-passage-time
derivation of the pre-factor for 7,,,., which depends on
the form of the potential, which, in their calculations, is
known analytically. In our approach, the potential in
dilating tube is derived numerically, and so there is no
first-passage solution. Therefore, we have elected to use
as a prefactor in both 1,4 and 7. simply the Rouse
relaxation time for the stress, which is one-half the
Rouse ‘“‘rotational” relaxation time, as discussed in
Pattamaprom et al. (2000) and in Doi and Edwards
(1986, p. 115). These choices are not rigorous ones, but,
as shown in Pattamaprom et al. (2000), they yield very
good predictions for a wide variety of linear and star
polymers. There is also the factor of ¢; that appears in
Eq. (2), which is unity for star arms, and has the value 2
for linear chains. This is because linear chains can
experience fluctuations from both ends. Please note also
the inconsistency in the values of the entanglement
spacings M., used in Milner and McLeish (1997). In their
theoretical expression for 7,4, the equation is derived
using Ferry’s definition of M. (Ferry 1980),

M, = ”G[,T , which should also be applied in their calcu-

lation. Instead they use the value of M. reported by
Fetters et al. (1994), which are 4/5 as large as that
defined by Ferry (1980) (e.g., M, of 1815 for 14
polybutadiene)’.

Double reptation model (Tsenoglou 1987, 1991;
des Cloizeaux 1998)

The normalized relaxation modulus of the double
reptation model is given simply by

"Please note the typo in the value of G, for 1,4 polybutadiene in

Table 1 of Pattamaprom et al. (2000). The correct value of G for
1,4 polybutadiene as reported in Fetters et al. (1994) is 1.25 x 10°
Pa.

- [Z w,~<r>p,-<r>]
(12)

where my(t) is the average survival probability of
entanglements at time ¢, w; is volume fraction of chain
i. pi(t) is the tube survival probability of chain 7 at time ¢,
which in the form of double reptation considered here is
calculated from the original theory of Doi and Edwards
(1978, 1979) with a single relaxation time by

1) = Z ZWA(f)WB(f>PA(l>PB(f)

o0

1
pi(t) = D 5 eXPI=Kt/Trepi] ~ eXP[/Trep ]
k=odd

(13)

where 7., the longest relaxation time of chain i, is
obtained from an empirical dependence on molecular
weight:

3.4
Mw,i
s = (57
e

= KM} (14)

Here K, an empirical parameter, can be set equal to MM
The stress-relaxation modulus Gy (t) is directly pro-
portional to my(t):

- 2
Growal(t) = Gyma(t) = GY, Zwi(f)l?i(f)] (15)

For monodisperse polymers,

Gtotdl(t) - G eXp |:

Gioral(t) simplifies to

, and 15y, the zero-shear vis-

)]
cosity, is simply related to 7., by
Mo Tep K 34

R ey V54 16
G?\/ 2 2 w ( )

The parameters for the double reptation model are
the plateau modulus G%, and the empirical parameter K.

The stress-relaxation modulus Gyy(t) from either
model can then be converted to the storage modulus (G”)
and the loss modulus (G”) by

G (w) = w/oo Giotai (2) sin(wt)dt  and
oo (17)

G'(w) = w/ Gioral (t) cos(wt)dt
0

Experimental

Two monodisperse polystyrene melts were tested in our labs, one
with the weight-average molecular weight (M) of 4.11 x 10° (M,/
M, =1.06) obtained from Pressure Chemical, the other with
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Table 1 List of experimental properties of monodisperse polystyrenes from several literature sources and the model parameters K, 7., and

K calculated from . (Kca)

Literature Mw Nen® Temp. of Te (s) K (s) Keal® (5)
experiment (°C)

Schausberger et al. (1985) 289.97 K 17.44 180 C 0.0013 5% 107 5915 % 107%
750 K 45.11 180 C 0.00098 5% 107 4.459 x 107"
3000 K 180.45 180 C 0.00045 25x 107" 2.048 x 107
Graessley and Roovers (1979) 275 K 16.5 169.5 C 0.00196 8.8 x 107 8.918 x 107
860 K 51.7 169.5 C 0.00196 8.8 x 107" 8.918 x 107
Montfort et al. (1979) 160 K 9.62 160 C 0.01 4.6x107'% 4.55x 1078
670 K 40.3 160 C 0.01 4.6 %1078 4.55x 1078
Our Laboratory 363 K 21.83 150 C 0.05 2.25x 107" 2275 % 107V

*Using M. = 16,625 for polystyrene (Fetters et al. 1994) —~where M, = pRT /G, (Ferry 1980)
®Ka is calculated from the mapping between the double reptation model and the dual constraint model

M,, =3.63 x 10° (M/M, = 1.03) from Polymer Source Inc. The
GPC analyses of the M,,/M, were obtained from the manufac-
turers.

The dynamic oscillatory measurements of the polymer samples
were measured from an Ares rheometer, a strain-controlled
rheometer equipped with a force-rebalanced transducer from
Rheometric Scientific Inc. We used cone and plate fixtures with a
cone angle of 0.1 radians and a radius of 1.25 cm. The frequency
range of the measurements was from 0.001 to 100 s™', and the
measurements were done at 160 °C for the polystyrene with
My =4.11x 10> and at 150 °C for the polystyrene with
M,, =3.63 x 10°, under nitrogen atmosphere to prevent degrada-
tion of the polymers.

Results and discussion

The discussion is divided into two parts: the first
examines the validity of the dual constraint model and
the double reptation model for thermorheologically
simple polymers, and the second extends the dual
constraint model predictions to linear and star-branched
polyethylenes.

Test of the dual constraint model and the double
reptation model for thermorheologically simple linear
polymers

Monodisperse polymers: mapping of the dual-constraint
model onto the double reptation model

For monodisperse linear polymers, both of the models,
as expected, work well in the terminal regime, the regime
where the zero-shear viscosity 179 can be found. In
addition, over a wide range of molecular weights, the
dual constraint model predicts a dependence of 7, on
M,, that approximates the 3.4 power law that is assumed
by the double reptation model. Therefore, in the
terminal regime the two models can be used inter-
changeably and their parameters can be found and
correlated in this regime. We can therefore develop a

mapping scheme to retrieve the model parameter K of
the double reptation model from z. of the dual-
constraint model by matching the normalized zero-shear
viscosity (7°) as a function of molecular weight for the
two models.

o
o V8 M,,

from the dual constraint model is superposed onto

In Fig. 1, the normalized viscosity, 1}, =

ni(M,) from the double reptation model, which is

.o K (M 3.4_C w3
Nar = e 2t \ M, =~

K KMSA

The value of C =5 = 5

superposition of 1, and #;. equals 0.051, and this value
should be independent of the chemical composition of
the polymer and of the temperature. Thus, the general

obtained from the

relationship between K and 7. becomes K = 0.102 747

Since 7. can either be obtained from the literature (if the
monomeric friction coefficient is available) or from
fitting the predictions of the dual-constraint model to
experimental data, the parameter K for each specific

10'2[ T T v
| Double Reptation Model
10" — « - Dual Constraint Model i
108} |
G o] :
104} |
100 | 4
1 L ' L i
10’ 102 108 104
M /M
w e

Fig. 1 Mapping of the predictions of the dual constraint model (dash
line with symbols) onto those of the double reptation model (solid line)

) 34 34
=£ (%—) =q (%) . The value of C,

obtained from the superposition equals 0.051, independent of
temperature or chemical composition of the polymer

using the relationship
NTe
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polymer can then easily be calculated. We test our
method of mapping the dual constraint model parameter
7. onto the parameter K in the double reptation model
using eight monodisperse polystyrenes listed in Table 1.
As can be seen, the predicted K (K,,;) from the mapping
procedure (col. 7) agrees well with the actual best-fit K
obtained directly from double reptation model (col. 6).
We note that for the data of Schausberger et al. (1985),
the best-fit value of 7. at 180 °C varies with molecular
weight. In our earlier paper (Pattamaprom et al. 2000),
we noted that for a constant value of 7., the dual
constraint model frequently underpredicts somewhat the
moduli at low molecular weights (less than 20 entangle-
ments per molecule) and over predicts them at large
molecular weights (over 150 entanglements per mole-
cule). Thus, a best-fit value of 7. varies somewhat if the
molecular-weight range is very broad.

Polydisperse polymers: rheological predictions
of the dual-constraint and double reptation models

Although the terminal-zone predictions from the two
models are the same for monodisperse polymers, their

1DE L] Ll ! I L] T T T

5| (a)

10 E

10* | ;]

G
(Pa) 1000 L 4
PS8, linear
100 | leNIM=9.62 ]
w:dﬂﬂ
10 . L L i L

Nnn_lu
T

G

(Pa) 1000

0.001 01 10 1000
w (sec’)

Fig. 2a, b Comparison of the dual-constraint-model predictions (solid
lines) of: a storage modulus, G’; b loss modulus, G”, with
experimental data for linear binary blends of polystyrenes
My, =1.6x 10° and 6.7 x 10°) at 160 °C (Montfort et al. 1979),
The volume fractions of the high-molecular-weight component (x;)
from right to left are 0.0, 0.05, 0.1, 0.2, 0.5 and 1.0, respectively. The
model parameters are G% =2 x 10° Pa (Fetters et al. 1994) and
7.=0.01s

predictions differ in the cases of bidisperse and polydis-
perse polymers.

Bidisperse polymers. A comparison of the models with a
set of bidisperse polystyrene experimental data at 160 °C
from Montfort et al. (1979) is shown in Figs. 2 and 3 for
a mixture of linear polystyrenes (PS) with molecular
weights 1.6 x 10° and 6.7 x 10° at volume fractions
x;=0.05, 0.1, 0.2, and 0.5. The model parameters are K
(for the double reptation model) =4.6 x 107'® s and 7.
(for the dual constraint model)=0.01 s. These were
taken from the best fits of the model predictions with the
experimental data for monodisperse PS. As can be seen
in Fig. 2, the dual-constraint model captures the exper-
imental data well for both the monodisperse polysty-
renes and their bidisperse mixtures. On the other hand,
the predictions of the double reptation model are
reasonably good only in the terminal regime. The
inaccuracy of the double reptation model in the high-
frequency regime is due to the omission of early-time
fluctuations, dynamic tube dilution, and Rouse motions.
Polydisperse polymers. For polymers with continuously
distributed polydispersity, the shapes of the G” and G”
curves predicted by both models in the linear viscoelastic
regime qualitatively resemble those of the experimental
data at low frequencies. Quantitatively, however, there
are still some discrepancies in the predictions from both
models when using the same model parameters as in

10"

10% |
4
g 10
(Pa.)
1000

100

10

10°

10* |
ai
(Pa) 1000 |

100

0.001 0.1 10

w (sec’)
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Fig. 3a, b Comparison of the double-reptation-model predictions
(solid lines) of: a storage modulus, G”; b loss modulus, G”, with the
same experimental data as in Fig. 2 using the model parameter G,
2 x 10° Pa (Fetters et al. 1994) and K=4.6 x 107'% s
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Fig. 4a, b Comparison of the dual constraint and the double
reptation model predictions of: a storage modulus, G’; b loss
modulus, G”, with experimental data for polydisperse polystyrene,
M, =3.9 x 10° and M,,/M, =2.9 at 160 °C. (Montfort et al. 1979)
The solid lines are the dual-constraint-model predictions and the
broken lines the double-reptation-model predictions using the same
model parameters as in Figs. 2 and 3, respectively

monodisperse case. Figure 4 compares the predictions of
G’ and G” at 160 °C by the two models to experimental
data from Montfort et al. (1979) for polydisperse PS
(PS8) with M, =3.9 x 10° and M/M, =2.9 from GPC.
The polydispersity was included in the model calcula-
tions by discretizing the GPC curve found in Montfort
et al. (1979) into 20 discrete components. As can be seen,
the model comparison using the same time constant as
for the monodisperse and bidisperse PS, i.e., 7.=0.01 s
and K=4.6 x 107'® s, predicts the shape of the exper-
imental data well, but there is a shift in position of the
predicted curves relative to the experimental ones.
Quantitatively, however, the prediction of the dual
constraint model is more accurate than that of the
double reptation model. In order to investigate the
terminal-regime predictions more thoroughly, we will
next focus on the zero-shear viscosity predicted from the
models and compare it with experimental data from the
literature.

The values of zero-shear viscosity as a function of
molecular weight and molecular weight distribution for
both the double reptation model and the dual-constraint
model are shown in Fig. 5. The distribution considered
here is a log-normal distribution. As can be seen, when
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Fig. 5a, b The predictions of the normalized zero-shear viscosity vs
the average number of entanglements per chain (My/M,) from: a the
dual constraint model; b the double reptation model

M, /M, <2, the predictions from both the double-
reptation model and the dual-constraint model are
insensitive to polydispersity; hence, we expect the
mapping depicted in Fig. 1 to still be valid in this
regime. However, when M,/M, >2, the predictions
from the two models are different and the mapping
procedure is invalid. The double reptation model shows
significantly higher zero-shear viscosities for higher
polydispersity, while the predictions from the dual
constraint model show the opposite, though much
weaker, trend. This prediction of the double reptation
model was also recently shown by Tuminello (2000). The
difference between the predictions of the two models
contributes mainly from the tube dilation mechanism.
Without tube dilation, the predictions of the dual
constraint model becomes similar to those of the double
reptation model, as can be seen from Fig. 6.

Next, we test the predictions of the models by
comparing their predictions to experimental data for
monodisperse and polydisperse samples from several
literature sources (listed in Table 2). Some of the data at
170 °C were shifted to the reference temperature of
160 °C using WLF shift factor from Schausberger et al.
(1985). (We avoid shifting the data from temperatures
lower than 160 °C, since 5, is extremely temperature
sensitive at low temperature.) The 5, values from the
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Fig. 6 Comparison of the normalized zero-shear viscosity vs the
average number of entanglements per chain (M,,/M,) using the dual
constraint model with tube dilation (gray lines) and without tube
dilation (black lines). The lines in grey-scale are the prediction of the
model with tube dilation reproduced from Fig. 5a

experiments were compared against the predictions of
the dual constraint model in Fig. 7a and against the
double reptation model in Fig. 7b. The distribution
considered here is again a log-normal distribution. In
order to identify the polydisperse polystyrene data
points that were obtained from the WLF shifting, we
use open symbols (O), while closed symbol (@) are used
for polydisperse samples at 160 °C with no shifting. As
expected, both models predict 1y for monodisperse PS
reasonably well. The 5y data of most polydisperse PS
samples appear to be slightly lower than those for the

monodisperse counterparts, which agrees with the
predictions of the dual constraint model. Nevertheless,
the scatter in the data and the lack of clear correlation
between M,,/M,, and the magnitude of the decrease in 7,
leaves open the possibility that 5, might be independent
of My/M, at fixed My, This finding at least partially
supports the prediction of the dual-constraint model and
disagrees with the double reptation model. However,
there is ambiguity in this result due to possible
imperfections in the GPC analysis of the polydispersity
of the samples and the fact that the dual-constraint
model may be inaccurate at low molecular weight, i.ec.,
when the number of entanglements per chain is less than
ten.

To eliminate ambiguity due to the GPC analysis, the
experimental data at 150 °C obtained from a polydis-
perse polystyrene (My, ave =357 K, M/M, =2.3) pre-
pared from a mixture of 11 monodisperse components
by Wassermann and Graessley (1992) is investigated
together with experimental data from a monodisperse
PS having similar weight-average molecular weight
M,, =363 K, M,;/M, =1.03) tested in our laboratory
(see Experimental section). By fitting the dual constraint
model to the experimental data for the monodisperse PS
at 150 °C, we obtain a good fit using 7.=0.05 s; the
model parameter K of the double reptation model
obtained from the mapping correlation mentioned
earlier, i.e, K =0.102+% is K=2.27 x 1077 s Com-
parisons of the predictions of these models to the

Table 2 Summary of the
experimental monodisperse,
bidisperse, and polydisperse
polystyrenes from several

literature sources used in Fig. 7

Literature M., Nen® M/ M, Temp. of Ho.ref At
Experiment 160 °C (Pa-s)
°C)

a) “Monodisperse” PS

Montfort et al. (1984) 35K 2.11 1.06 160 3.02 x 10°
100 K 6.0 1.06 160 5.75 x 10*

110 K 6.62 1.05 160 7.94 x 10*

200 K 12.03 1.06 160 6.03 x 10°

390 K 23.46 1.10 160 436 x 10°

900 K 54.14 1.12 160 6.92 x 10°

2700 K 162.4 1.20 160 1.59 x 10’

Montfort et al. (1979) 160 K, 9.62 na' 160 1.35 x 10°
670 K 40.3 na" 160 3.18 x 107

Our Laboratory 411 K 24.72 1.06 160 4.82 x 10°

b) Polydisperse PS

Miinstedt (1980) 219 K 13.17 2.3 160 3.7 % 10°
253 K 15.22 1.9 160 8.6 x 10°

Leonardi et al. (2000) 326 K 19.6 34 160 2.67 x 10°
Montfort et al. (1979) 390 K 23.46 2.9 160 2.3 % 10°
Montfort et al. (1986) 227 K 13.65 2.17 160 5.0 x 10°
Laun (1984) 398 K 23.94 2.9 170 2.93 x 10°
Laun and Schuch (1989) 205.3 K 12.35 1.28 170 7.52 % 10>
1306.7 K 78.60 2.49 170 2.31 x 10%°

2 Using M, = 16,625 for polystyrene (Fetters et al. 1994) —~where M, = pRT/GY, (Ferry 1980)
"na — a nearly monodisperse polymer with no M,,/M,, reported in the literature
* No.rer 18 shifted from the reported temperature of 170 °C to 160 °C using WLF parameters from

Schausberger et al. (1985)
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Fig. 7a, b Comparison of #, predicted from: a the dual constraint
model; b the double reptation model, with the experimental data for
monodisperse (plus sign in square) and polydisperse (filled circle)
polystyrenes reported in Table2 at a reference temperature
T,=160 °C. The data points with (open circle) indicate the
polydisperse polystyrene data that were shifted from 170 °C. The
model parameters for the dual constraint and the double reptation
models are the same as those in Figs. 2 and 3, respectively

experimental data are shown in Fig. 8a. The same model
parameters (i.e., 7.=0.05 s, K=2.27 x 1077 ) are then
used to predict the polydisperse PS experimental data of
Wassermann and Graessley. (Fig. 8b) As can be seen,
the prediction of the dual constraint model agrees well
with the experimental data, while the double reptation
model slightly overestimates the terminal relaxation time
(implying that #q is predicted to be too high). Since the
dual constraint model predicts a slight decrease to no
change in viscosity as the polydispersity increases, and
the double reptation model predicts an increase in
viscosity with increasing polydispersity, this result
supports the notion that the zero-shear viscosity is
nearly independent of polydispersity.

We believe that the failure of the double reptation
model to predict quantitatively the zero-shear viscosity
of polydisperse polymers is due to the lack of tube
dilation as a mechanism of constraint release. As can be
seen in Fig. 6, once the dynamic dilution mechanism is
removed from the dual constraint model, the prediction
shows an increase in 7, as the polydispersity increases,
similar to that predicted by double reptation. Neverthe-
less, for bidisperse polymers with a small amount of long

(a) 107 T T T T 1 T L L}
Dual Constraint
108 | — — - Double Reptation i
10° > -
G, G" ‘A
(Pa) 10*
1000 _ PS, monodisperse -
Nsn= 21.83
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7
(b) 10 i 1 ) 1 L) i T T
10| Dual Constraint
| — Double Reptation
10 _'
G G .
Pa) 10 _
1000 ~
100 .
PS, polydisperse
10 N, =21.46 -
1 i [l 1 1 1 I3 1 1
10° 107 10™ 10" 10°
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Fig. 8a, b Comparison of the dual constraint (solid lines) and the
double reptation (broken lines) model predictions of storage modulus
(G") and loss modulus (G”) with experimental data for: a a
monodisperse polystyrene (M,, = 363 K); b a polydisperse polystyrene
My ave =357 K, M/M,, =2.3) (Wasserman and Graessley 1992) at
T, =150 °C. The model parameters are G% =2 x 10°> Pa. (Fetters

et al. 1994), t.=0.05 s, and K =2.275 x 1077 s

polymer chains in matrix of short chains, the failure of
the double reptation model is also attributed to the lack
of another constraint release mechanism called con-
straint release Rouse relaxation.

Investigation of hydrogenated polybutadienes
and polyethylenes

In the previous section and in Pattamaprom et al.
(2000), we tested the dual constraint theory with
polystyrenes, polybutadienes, and polyisoprenes. The
dual constraint model captures the rheological behavior
of these polymers well for both the linear and star
architectures. In this section we will discuss the validity
of the dual constraint theory for linear and star
polyethylenes, the latter of which are notorious as
thermorheologically complex polymers. Described be-
low are investigations of model monodisperse linear
polyethylenes with 2% ethyl branches, namely
hydrogenated polybutadienes (h-PBD), polydisperse
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commercial polyethylenes (PE), and model star-

branched h-PBDs.

Monodisperse linear h-PBDs

For linear h-PBD, we present comparisons of the
predictions of the dual constraint theory with the G’
and G” experimental data and with the zero-shear
viscosities 79. In general, the dual constraint model
predictions agree well with the experimental data as also
seen with the other polymers investigated.

Figure 9 shows that the G” experimental data for
linear h-PBD at 190 °C from Raju et al. (1979) agree
well with the dual constraint model predictions for the
whole range of molecular weight studied, using the best-
fit model parameter ,=7 x 10~ s, and the literature
value G =2.31 x 10° Pa. (Raju et al. 1979).

In Fig. 10, the experimental zero-shear viscosities 7
for linear h-PBD from several sources (Pearson et al.
1994; Tao et al. 2000; Raju et al. 1979) are compared
with the predicted values from the dual constraint model
at the reference temperature of 190 °C using the afore-
mentioned model parameters, i.e., T,=7 X 1077 s,
G% =2.31 x 10° Pa. The experimental data from Tao
et al. (2000) and Pearson et al. (1994) were shifted to
190 °C using the average value of the Arrhenius
correlation proposed by Arnett and Thomas (1980)
shown below:

2
Inng,_pap = In M3 4 @exp[(l%) x b)] — 37.04

(18)

where M is the molecular weight of a linear polyethyl-
ene, T is the absolute temperature (K), and b is the
fraction of ethyl branches in a polymer chain. The
h-PBD considered here contains 2% ethyl branches,

10° 10* 10" 10" 10, 10* 10" 10' 10of
w (sec )

Fig. 9 Comparison of the prediction of the dual constraint model
(lines) with G” experimental data for linear h-PBD at 190 °C (Fig. 2
of Raju et al. 1979) using the model parameters G% = 2.31 x 10° Pa.
and 7,=7x 107 s

thus giving b equal to 0.02. Also shown in Fig. 10 is the
empirical correlation between 1, and M for linear
h-PBD (with 2% ethyl branches) at 190 °C from Eq.
(18) (-.-.-). As can be seen, the prediction of the dual
constraint model agrees well with the experimental data
and to within 20% with the correlation for h-PBD from
Arnett and Thomas.

Polydisperse linear PEs

In this part, we progress toward the predictions of
polydisperse commercial linear polyethylenes. We com-
pare the predictions of the dual constraint model with
experimental data for several polyethylenes at 190 °C
from different literature sources including a metallocene-
catalyzed linear high-density polyethylene (HDPE)
(Rohlfing and Janzen 1999), conventional linear HDPEs
(Wood-Adams and Dealy 1996), and branched PEs
(Shroff and Mavridis 1999). The polydispersity of these
polyethylenes was included in the model calculations by
discretizing the GPC curves reported in the correspond-
ing literature into 20 discrete components. The model
parameters for high-density polyethylene were taken
from Fetters et al. (1994) for GY,ie., G =2.6 x 10° Pa

and M, = % = 1035. 1, was obtained by matching 7,
from Arnett’s correlation (Eq. 18) with that of the dual-
constraint model prediction for polyethylene, leading to
7e=7x 107" s at 190 °C (same value as 7. for h-PBD).
For linear low-density polyethylene (LLDPE), data
fitting shows that 7. is slightly larger, To=11 x 107 s,
than for HDPE, as might be expected, since LLDPE
contains short side branches, while HDPE is nominally
free of side branches.

The dual-constraint-model prediction of the linear
metallocene-catalyzed HDPE is compared with the
experimental data reported by Rohlfing and Janzen

6
10 T T LA B | T é
10° -
n ]
0 10t -
(Pa-s)
1000 | g ’ B from Raju et al. (1979) .;
2 - B  fromPearsonetal. (1994) 3
L ;N N  from Tao and Lodge (2000) 7
100 N TR | X N N L )
410" 610" 810" 10° 310° 510°

M

w

Fig. 10 Comparison of #, predicted from the dual constraint model
(solid line) with 5o data obtained experimentally for monodisperse
linear h-PBD at T,=190 °C from several literature sources. Also
shown is the correlation proposed by Arnett and Thomas (1980) (-—)
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(1999) for HDPE with M,,=98,840, M,,/M,=3.57
(from GPC) at 190 °C in Fig. 11. As can be seen, the
prediction agrees well with the linear metallocene HDPE
(@). Also shown are data for the branched HDPE (0J)
produced by treating the linear HDPE with peroxide.
The comparison in Fig. 11 illustrates that the effect of
long-chain branching is dominant in the low-frequency
regime. The same indication is also observed from the
comparison of the dual constraint model predictions
with the experimental data for linear and branched
LLDPEs at 190 °C (Gabriel and Miinstedt 2000)
(Fig. 12). These experimental data cover seven decades
of frequencies, and were able to reach the terminal
regime, even for the branched sample. These two
polymers have almost the same molecular weight
distribution, as indicated by the GPC curves in the
insert to Fig. 12a. As can be seen, the prediction for the
linear LLDPE can be fit quite well to the experimental
data (Fig. 12a) by choosing t.=11 x 107 s, while the
prediction of the theory for linear polymers with this
same value of 7. deviates from the data for branched
LLDPE at low frequencies (Fig. 12b), as is also the case
for the branched HDPE in Fig. 11.

Figure 13 shows a comparison of the dual-constraint
model prediction with the experimental data of the
conventional HDPE synthesized using Ziegler-Natta
catalyst with unknown amount of antioxidant
My, =4.11 x 10*, My/M, =29, and M, =3.19 x 10°,
M, /M, =31) at 190 °C (Wood-Adams and Dealy 1996).
The model parameters are the same as in Fig. 11. As can
be seen, in Fig. 13 the predictions agree qualitatively
with the experimental data; however, the magnitudes of
the experimental #* value are lower than the predicted
values. We suspect that the presence of antioxidant and

T ! !
Metallocene HDPE
Branched M = 98840
N w
. (peroxide treated) M /M =3.575
o'l o g W on |
. O o
n ® g
(Pa-s.) Linear
1000 ' n ;
107" 10° 10' 102 10°
o (sec™)

Fig. 11 Comparison of the dual-constraint-model predictions (/ine) of
the frequency-dependent dynamic viscosity #* with experimental data
(filled circle) for metallocene-catalyzed linear HDPE (M,, = 9.88 x 10*
with My/M,=3.6) at 190 °C. The model parameters are
Gy =2.6 x 10° Pa (Fetters et al. 1994) and t.=7x10" s. The n* for
branched HDPE (open square) obtained from treating the linear
HDPE precursor with peroxide is also shown for comparison. The
experimental data are from Rohlfing and Janzen (1999)

degree of short-chain branching might play roles in
decreasing the plateau modulus.

Finally, we compare the dual-constraint model
predictions with two more polymers that contain long-
chain branches in Fig. 14. Although we expect the dual-
constraint model to fail in this case, the discrepancy
between the predicted and the experimental viscosities
will provide us with information on the effect of
branching. The values of #* for linear polymers with
small degree of long-chain branching were reported in
Bersted et al. (1981) to be higher than those of the linear
polymers at low frequencies, and lower at high frequen-
cies. The branched polymers investigated here consist
of a metallocene branched PE (Dowl1140) with
M,, =8.5 x 10%, M, /M, =2.4, and long chain branching
index LCBI=0.51, and a branched LLDPE (Dow2045)
with M, =13.8 x 10*, M/M,,=4.2, and LCBI=0.13
(Shroff and Mavridis 1999). The comparisons between
the dual-constraint model predictions and these exper-
imental data agree with those reported in Bersted et al.
in that at low frequencies, n*, of both polymers is higher
than predicted for linear polymers of the same molecular
weight. Also the metallocene polymer with LCBI=0.51
shows not only enhanced viscosity at low frequencies but
also a reduced viscosity at high frequencies, relative to
the prediction for linear polymers of the same molecular
weight distribution, which is also similar to the obser-
vation of Bersted et al.

Star-branched h-PBDs

For star-branched h-PBD, we find anomalous behavior
when comparing the experimental data from the litera-
ture with the predictions of the dual constraint model.
As described in detail below, we find that the star h-PBD
has a lower plateau modulus GY, than that of the linear
counterparts, and that the effective energy of fluctua-
tions (Ugy) for the 3-arm and the 4-arm stars are
different.

The experimental 7, data were taken from Table II
of Graessley and Raju (1984). These data are compared
with the predictions from the dual constraint model for
star polymers shown in Fig. 15. As can be seen in
Fig. 15a, the 3-arm stars have lower values of 7, than
that of the 4-arm stars at the same arm molecular
weight My, ,rm; the viscosity differences are as high as a
decade at high My, ;m. Also, although both 3-arm and
4-arm h-PBD stars seem to have an exponential
dependence of 7y on My am, the steepness of the
exponential dependence of 7, seems to be lower for the
3-arm than for the 4-arm stars. This implies that the
effective energy of fluctuations (U.g) incorporated in
the exponential term of the dual constraint model (Egs.
2 and 4) for the 3- and 4-arm stars are different.
Although a lower viscosity for the 3-arm than for
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4-arm stars has also been found in several other agree with ours that the molecular weight between
polymers (e.g., polyisoprene stars) (Fetters et al. 1993; entanglements for star polymers is effectively bigger
Klein 1986), the decrease in viscosity is not as dramatic than that of the linear polymers, and the plateau
as it is for h-PBD. Strangely, the 7, values for star modulus for star polymers needs to be adjusted to
h-PBDs seem to correlate better with the total molec- obtain good fits with experimental data. Nevertheless,
ular weight My, g than with the arm molecular the difference between the molecular weight between
weight My arm, as shown in Fig. 15b. The correlation entanglements for 3-arm and 4-arm star h-PBD was
with the limited data shows a power law of 6.4 for star not reported in their paper.

h-PBD compared to the power 3.4 for linear h-PBD. For star h-PBD, Uy defined in Eq. (4) can be
This phenomenon is at odds with simple polymers like adjusted by changing M. from that of the linear
polyisoprenes, where 7, of the 3-arm stars were h-PBD (i.e., M. =1250) to account for the difference in
reported to be only 20% lower than that for higher the effective energy of fluctuations for the 3-arm and
numbers of arms at the same arm molecular weight the 4-arm stars from that of the linear counterparts.
(Fetters et al. 1993), and the dependence of 19 on Hereafter, the adjusted M, that provides the best fit to
My arm follows the same exponential power for any the #7p-My am relationships will be called M. As
number of arms, as shown in Fig. 16. The anomalous shown in Fig. 15a, good agreement between the dual
behavior of the star-branched h-PBD was also constraint model predictions and the experimental data
addressed in Levine and Milner (1998). Their findings can be achieved when Mg is 3000 for the 3-arm
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Fig. 13 Comparisons of the dual-constraint-model predictions of
dynamic viscosity #* with experimental data for two linear HDPEs
treated with antioxidant; HDPEI (M, =4.11 x 10* with M,,/M, =
2.9) and HDPE2 (M,,=3.19 x 10° with M,/M,=31) at 190 °C.
(Wood-Adams and Dealy 1996). The model parameters are the same
as in Fig. 11. The broken line and the solid line are the predictions for
linear HDPE having the same My, and M,,/M,, as for HDPEI and
HDPE?2, respectively
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Fig. 14 Comparison of the dual-constraint-model predictions of
dynamic viscosity n* with experimental data for a metallocene-
catalyzed branched PE (M, =8.5 x 10* with M,,/M,, = 2.4, LCBI =
0.51) (filled triangle) and LLDPE (M, =13.8 x 10* with M,/
M, =4.2, LCBI=0.13) (filled circle) at 190 °C, where LCBI is a
long-chain branching index indicating the amount of long chain
branches defined in Eq. (11) of Shroff and Mavridis (1999). The model
parameters are the same as in Fig. 12 for LLDPE. The broken and
solid lines are the predictions for linear PE having the same M,, and
M,/M,, as the metallocene-catalyzed branched PE and the LLDPE,
respectively

stars, and 2000 for the 4-arm stars. Note that the
higher M. o implies lower exponential power, and thus
lower U,g.

A comparison of the dual constraint predictions with
the G” and G” experimental data for star h-PBDs (Raju
et al. 1979) shows that after adjusting U.g correspond-
ingly for the 3- and the 4-arm stars as mentioned above,
the predictions agree with the experimental data only
when the plateau modulus is set to 5 x 10° Pa, 4.6 times
smaller than that of the linear counterpart. (see Fig. 17)
The reduced G% and the difference in Ugy found in

—
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Fig. 15 a Experimental #, for 3-arm (filled circle) and 4-arm (filled
diamond) star h-PBDs at 190 °C (Graessley and Raju 1984) plotted as
a function of My, compared with the predictions from the dual
constraint model for the 3-arm (—) and the 4-arm (—) stars,
respectively, using Gy = 5.0 x 10° Pa. For the 3-arm stars, Mqx =
3000, and 7.= 1.4 x 10~ s, and, for the 4-arm stars, M, e = 2000, and
Te=6x 107® s. b The same experimental data as in a plotted as a
function of My, o agrees well with the 6.4-power correlation (---).
Also shown is the 1 for linear h-PBD at the same temperature (-)

h-PBD are anomalous in that these adjustments are not
required for other sets of polymers previously investi-
gated (i.e., polystyrene, polybutadiene, and polyiso-
prene) (Pattamaprom et al. 2000). The decrease in the
activation energy of fluctuations of star h-PBD is an
indication of lower entropic activation barrier for
fluctuations in branched polyethylenes compared to
other branched polymers. We are inclined to conclude
that these anomalies as well as the thermorheological
complexity observed for branched polyethylenes (Gra-
essley 1982; Carella et al. 1986) are related to the
contour-length-fluctuation mechanisms specific to poly-
ethylene with long-chain branches. However, the avail-
ability of experimental data for star h-PBD is too limited
to reach a definite conclusion.

Summary and future directions

Since for linear monodisperse polymers the linear
viscoelastic rheological predictions of the double repta-
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Fig. 16 Comparison of 1, predicted from the dual constraint model
with experimental data for monodisperse star-branched polyisoprenes
at a reference temperature of 60 °C from Fetters et al. (1993) . Model

parameters: GY =4.34 x 10° Pa. (Pearson etal. 1983) and
T.=12%x107s
6
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Fig. 17 Comparison of G” predictions from the dual constraint
model (—) with experimental data for star h-PBD at 190 °C using the
same model parameters as in Fig. 15a. Also shown is the best-fit
predictions using the same GY% as for h-PBD,

Gy =231x10°Pa., t,=1.3x 107 s (........ )

linear ie.,

tion and the dual constraint models are equally accurate
in the terminal regime, we have developed a mapping
procedure whereby the parameter K of the double
reptation theory can be obtained from the Rouse
relaxation time of an entanglement segment 7., of the
dual constraint model as K = 0.1027%5. In turn, 7. can
be obgazined from the monomeric friction factor { by
Te = 3;&3]‘;{1@\/1(. where a is the tube diameter, M. the
entanglement spacing, and M, the monomer molecular
weight. This mapping procedure was found to work well
when the polydispersity ratio M,,/M,, is less than 2. For
bidisperse polymers, with parameters fixed using mono-
disperse data, the dual constraint model is more accurate
than the double reptation model even in the terminal
regime. For polydisperse polymers with the molecular
weight distributions obtained from GPC, the dual
constraint model provides better quantitative agreement

with the experimental data than does the double
reptation model using the same model parameters as
were found for monodisperse polymers. For polydis-
perse linear PS and PE, the dual constraint model
provides good agreement with the experimental data,
while the double reptation model is somewhat inaccu-
rate. The majority of experimental zero-shear viscosities
for the polydisperse PS samples appear to have the same,
or slightly lower, zero-shear viscosities than monodis-
perse polystyrenes of equal weight-averaged molecular
weight. This result agrees with the prediction of the dual
constraint model, while the double reptation model
predicts the opposite trend. The success of the dual
constraint model in predicting accurately #* for linear
polydisperse polyethylenes allows us to distinguish the
effect of polydispersity from that of long-chain
branching.

From our investigation on monodisperse h-PBDs,
which are the model monodisperse polyethylenes, we
find that linear monodisperse h-PBD follows the 3.4
power law dependence of 1y on molecular weight and the
dual-constraint model can predict the linear viscoelastic
properties of these polymers well. On the other hand, for
star-branched h-PBD, we need to adjust separately the
plateau modulus and Mg for the 3-arm and 4-arm
stars to get a good fit, which is thought to be related to
the observed thermorheological complexity of branched
PE. The increase in M for star h-PBDs implies a
lower entropic activation barrier for contour-length
fluctuations in branched polyethylenes compared to
other polymers.

Acknowledgement This research was supported by the NSF (DMR
9807262). CP is grateful for a Royal Thai Fellowship from the
government of Thailand.

Appendix: Comparison of dual constraint model
of dynamic dilution with Ball-McLeish theory for stars

Here we explore the relationship between the dual
constraint “two-tube” model for dynamic dilution and
the self-consistent theory of Ball and McLeish for
monodisperse, highly entangled, star polymers. We
begin by noting that the relaxation time of a piece of
the star arm in a fixed, undiluted matrix is given by (Ball
and McLeish 1989; Pattamaprom et al. 2000):

T =13 exp{vNen(l — s*)z}

where s* is the coordinate of the fixed tube, running
from 0 at the branch point to unity at the branch tip, tz
is the Rouse time for relaxation of the arm, N, is the
number of undiluted entanglements of the arm, and
v=15/8 is a constant. In the diluted tube, the relaxation
time is assumed by the dual constraint model to be
(Pattamaprom et al. 2000)

(A1)
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T=1g exp{vNen(l - s)2q’>*(t)}

where s is the tube coordinate in the diluted tube and
¢*(t) is the fraction of unrelaxed arm in the undiluted
tube. The function ¢*(t) is calculated from the relaxation
of an arm in a fixed tube.

The Ball-McLeish theory assumes a clean separation
of time scales — that at any time during relaxation the
arm can be divided into two pieces, an outer piece that is
completely relaxed, and an inner piece that is not at all
relaxed. The tube survival probabilities p*(s*,t) and
p(s,t) in the fixed and dilating tubes are then inward-
traveling waves whose shape is a Heaviside step
function. Since the ratio of the relaxation time of the
core of the star branch to that of the tip increases
exponentially with M, the molecular weight of the arm,
this approximation becomes progressively better as M,
increases. Within this approximation, the “two-tube”
model gives for the tube segment survival probability
function p*(s*,t) in the fixed tube:

(A2)

pi(s,t)= 0, forsi(t) >s" >0
and
p(s*,t)=1, for0>s">si(t) (A3)

where s *(t) is the position along the fixed tube that
separates the relaxed from the unrelaxed part of the arm.
The dilution function ¢*(t), which is the fraction of
unrelaxed arm in the fixed tube, is therefore given by
*(t) =s* (V).

In the diluted tube, the tube segment survival
probability p(s,t) in the limit of high arm molecular
weight is described by a similar Heaviside step function

p(s,t) =0, forsc(t)>s>1
and
p(s, t) =1, for 0 >s > s(t) (A4)

We now compute the longest relaxation time 7; from
our “two-tube” model in the high-moleculag—weight limit.
During relaxation, the dilution factor ¢ (t) decreases

from unity to some as yet unknown value ¢; = ¢ (#) at
time t;, where the time t; corresponds to complete
relaxation. Because of the wide spectrum of time scales
in star relaxation, one can take t; = 1y.

The value of 7 is set by the condition that relaxation
of the arm in the fixed tube must have progressed to the
point that only the fraction ¢; =s’(tr) of the arm
remains unrelaxed. Since this occurs at time t; ~ 17, we
have from Eq. (Al):

tr = 1R exp{vNen [1- sé(tf)]z} = 1R exp{vNen(l - (j)f)z}
(A5)

Now, the time t; corresponds to complete relaxation

in the diluted matrix, so that sc(ty) = 0. From Eq. (A2)

we then have that the longest relaxation in the dilated
tube is

tr = TR exp{ VNen; } (A6)
Equating Eqgs. (A5) and (A6) gives
(1-¢7)’= ¢; (A7)

The solution to this quadratic equation is
¢f = (3 —+/5)/2=0.382. Using this diluent arm frac-
tion ¢, the longest relaxation time can be calculated
as 1y = 1R exp(0.382vNe, ), which is close to the Ball-
McLeish result, g exp(vNen/3). The diameter of the
outer tube at the completion of relaxation can be
ap
\/E.
grows modestly over the course of the fluctuation-
driven relaxation process. This result provides a direct
contrast with the Ball-McLeish description where the
tube diameter becomes infinite when the arm has
completely relaxed. Nevertheless, the similarity of the
longest relaxation time of the dual constraint model
with that of the Ball-McLeish theory shows that, for
predicting the effect of dynamic dilution on stress, the
dual constraint model is a good approximation to the
Ball-McLeish theory.

calculated as a = Thus, the outer-tube diameter
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