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Abstract It is uncertain whether elevated atmospheric
CO, will increase C storage in terrestrial ecosystems
without concomitant increases in plant access to N. Ele-
vated CO, may alter microbial activities that regulate
soil N availability by changing the amount or composi-
tion of organic substrates produced by roots. Our objec-
tive was to determine the potential for elevated CO, to
change N availability in an experimental plant-soil
system by affecting the acquisition of root-derived C by
soil microbes. We grew Populus tremuloides (trembling
aspen) cuttings for 2 years under two levels of atmo-
spheric CO, (36.7 and 71.5 Pa) and at two levels of soil
N (210 and 970 pg N g1). Ambient and twice-ambient
CO, concentrations were applied using open-top cham-
bers, and soil N availability was manipulated by mixing
soils differing in organic N content. From June to Octo-
ber of the second growing season, we measured midday
rates of soil respiration. In August, we pulse-labeled
plants with 14CO, and measured soil 14CO, respiration
and the 14C contents of plants, soils, and microorganisms
after a 6-day chase period. In conjunction with the
August radio-labeling and again in October, we used 15N
pool dilution techniques to measure in situ rates of gross
N mineralization, N immobilization by microbes, and
plant N uptake. At both levels of soil N availability, ele-
vated CO, significantly increased whole-plant and root
biomass, and marginally increased whole-plant N capi-
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tal. Significant increases in soil respiration were closely
linked to increases in root biomass under elevated CO..
CO, enrichment had no significant effect on the allomet-
ric distribution of biomass or 14C among plant compo-
nents, total 14C allocation belowground, or cumulative
(6-day) 14CO, soil respiration. Elevated CO, significant-
ly increased microbial 14C contents, indicating greater
availability of microbial substrates derived from roots.
The near doubling of microbia 14C contents at elevated
CO, was arelatively small quantitative change in the be-
lowground C cycle of our experimental system, but rep-
resents an ecologically significant effect on the dynamics
of microbia growth. Rates of plant N uptake during both
6-day periods in August and October were significantly
greater at elevated CO,, and were closely related to fine-
root biomass. Gross N mineralization was not affected
by elevated CO,. Despite significantly greater rates of N
immobilization under elevated CO,, standing pools of
microbial N were not affected by elevated CO,, suggest-
ing that N was cycling through microbes more rapidly.
Our results contained elements of both positive and neg-
ative feedback hypotheses, and may be most relevant to
young, aggrading ecosystems, where soil resources are
not yet fully exploited by plant roots. If the turnover of
microbial N increases, higher rates of N immobilization
may not decrease N availability to plants under elevated
CO,.

Key words Atmospheric CO, - C cycle - N cycle -
Populus tremuloides Michx. - Rhizodeposition

Introduction

The stimulation of photosynthesis by rising atmospheric
CO, has the potential to increase carbon (C) storage in
terrestrial ecosystems and slow rates of global climate
change (Broecker et al. 1979). There is some evidence
that temperate and boreal forests may already be signifi-
cant sinks for anthropogenic C (Tans et a. 1990; Jarvis
1995). However, given the widespread nature of nitrogen



(N) limitation to plant growth, ecologists have ques-
tioned the likelihood of sustained increases in the se-
guestration of terrestrial C (Field et a. 1992; Rastetter
et a. 1992; McGuire et a. 1995). Understanding pro-
cesses that govern the cycling of N in soil will thus be
important in predicting the broader responses of terrestri-
al ecosystems and the biosphere to increasing atmo-
spheric CO,.

Although research to date has focused primarily on
the aboveground physiology of CO,-enriched plants,
there is evidence that root responses to CO, may influ-
ence the activities of soil microorganisms and the cy-
cling of N (Korner and Arnone 1992; Diaz et a. 1993;
Zak et al. 1993; Berntson and Bazzaz 1997; Hungate et
al. 1996). Roots are often the single largest source of car-
bon (C) for microbial metabolism and the formation of
soil organic matter (SOM) (Coleman 1976). The avail-
able energy content of fine roots and of root-derived C
compounds is high, and is expected to increase under el-
evated CO, (van de Geijn and van Veen 1993). Greater
fine-root biomass and rates of turnover observed in CO,-
enriched plants suggest that roots may be an important
pathway by which microbia substrate availability could
increase under elevated CO, (Norby 1994; Rogers and
Runion 1994; Pregitzer et al. 1995; Fitter et al. 1997).

Labile C compounds can decrease plant access to N
by promoting rapid microbia growth and the incorpora-
tion of available N into microbial proteins and nucleic
acids. Plants often respond to elevated CO, with lower
tissue N concentrations (Coleman et a. 1993). If CO,-
enriched roots are relatively rich in energy but poor in N,
external N requirements for the synthesis of new micro-
bial biomass may increase, leading to direct competition
with plants for available N. There is some experimental
evidence to support a negative feedback effect of CO,
on soil N availability (Diaz et a. 1993; Berntson and
Bazzaz 1997).

Equally compelling reasons exist to predict that plant
N availability may increase in response to elevated CO,
(Luxmoore 1981; Zak et a. 1993). By stimulating rates
of C input to soils, elevated CO, will likely increase the
flow of energy through microbial food webs. For exam-
ple, microbia growth in the presence of roots can ulti-
mately increase net N mineralization by stimulating mi-
crofaunal predation (Clarholm 1985; Griffiths 1994,
Kuikman et al. 1990). Microbial responses to CO, vary
widely (O'Neill 1994; Sadowsky and Schortemeyer
1997), but a number of studies have reported significant
increases in microbial biomass or rates of N cycling un-
der elevated CO, (Korner and Arnone 1992; Billes et al.
1993; Zak et a. 1993; Schenk et al. 1995; Diaz et a.
1993; Rice et al. 1994; Newton et al. 1995; Klironomos
et a.1996; Ross et a. 1996; Hungate et al. 1997a).

Here we present results of a 2-year study on the com-
bined effects of atmospheric CO, and soil N availability
on C and N dynamics beneath trembling aspen (Populus
tremuloides Michx.). We included N availability as an
experimental treatment because of its recognized poten-
tial to modify plant responses to CO, (Curtis et al. 1994;
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McGuire et a. 1995); any interactive effects of N and
CO, on plant biomass, alometry, or tissue chemical
composition will in turn influence the amount or quality
of C compounds entering the soil C cycle. Our specific
objective was to examine the utilization of root-derived
C by soil microbes and resulting effects on the competi-
tive balance for N between CO,-enriched plants and
microorganisms. To accomplish this, we used a dual-
labeling method in which plants were photosynthetically
labeled with 4CO, and soils were simultaneously la-
beled with 15NH,*. This approach allowed us to quantify
the partitioning of discrete pulses of C and N between
plants, soils, and microbes.

In soil, as opposed to solution culture, it is difficult to
distinguish between soluble root exudates and insoluble
products that are secreted, sloughed, or abraded from
growing roots (Curl and Truelove 1986; Darrah 1996).
Pulse-labeling techniques of short duration examine as-
similation of the most labile fractions of root-derived C
by microbes (cf. Norton et a. 1990; Meharg 1994). By
using a short (6-day) chase period between 14C pulse and
harvest, our experiment was designed to limit the influ-
ence of compounds deposited over longer periods, such
as root turnover, on microbial 4C dynamics. Photosyn-
thetic and fine-root dynamics for the previous year of
this experiment were reported by Kubiske et a. (1997,
1998).

Methods
Experimental design

The experiment was conducted over two growing seasons
(1994-1995) at the University of Michigan Biological Station
in northern Lower Michigan (45°34'N, 84°40'W). Rooted soft-
wood cuttings of P. tremuloides were grown in a fully factorial,
randomized block design that included two levels of soil N avail-
ability (low and high), two partia pressures of atmospheric CO,
(p[CO,]; ambient and elevated) and two harvest dates (August and
October 1995). Each experimental unit consisted of an open-top
chamber (0.64 m2x1.5 m high) over an open-bottom root box
(0.49 m2x1.3 m deep; cf. Zak et al. 1993). Each of the eight
CO,xNxdate treatment combinations was replicated four times,
for atotal of 32 experimental units. The chambers were arranged
in four linear blocks of eight, oriented perpendicular to the mid-
summer solar angle.

One month prior to planting, the tops of the root boxes were
buried level with the soil surface and filled with well-homoge-
nized low- and high-N soils. High-N soil was the A horizon of a
local Kalkaska sandy loam (Typic Haplorthod). Low-N soil was a
mixture (1:4 by volume) of Kalkaska A horizon and the C horizon
of alocal Rubicon sand, resulting in a sandy texture. Organic C
and total N were determined for each root box using a Carlo
Erba NA 2500 CHN analyzer (CE Instruments, Milan, Italy).
Low-N soil contained significantly less organic C and total N
(3,204 pg C g1, 210 pg N g1 than high-N soil (12,936 pg C g4,
970 pg N g1). The C:N ratios of low- (14.8) and high-N (13.3)
soils were not significantly different. Initial net N mineralization
rates, measured over 5 days in the laboratory at 20°C, were
89+7 ng g day1in low-N soil, and 333+16 ng g day1 in high-
N soil. A 1-cm layer of sand was applied to all soil surfaces to
minimize temperature differences between darkly colored high-N
and lightly colored low-N soils. Mean daytime air temperatures in
chambers were elevated by 3-6°C relative to unchambered ambi-
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ent air; mean day- and night-time temperatures were not affected
by soil or CO, treatments during either growing season.

Softwood cuttings of four aspen genotypes were propagated
using the method of Barry and Sachs (1968). In early June 1994,
we planted one rooted cutting of each clone in each root-box (128
ramets total). To aid in establishment, each plant received a single
dose of N fertilizer in late June, consisting of 20 mg N in a 500-ml
aqueous solution of (NH,),SO,. All plants were watered twice
weekly (3| per box) for the first 4 weeks. Subsequently, water was
applied only twice in 1994 and twice in 1995, following dry peri-
ods lasting 1 week or longer. Five plants were replaced due to
mortality in June of 1994, after which no further mortality oc-
curred.

The daytime mean CO, partial pressures over both growing sea-
sons (+SE) for ambient and elevated chambers were 36.7+0.1 Pa
and 71.5+0.2 Pa, respectively. Blowers attached to each chamber
exchanged two chamber volumes of air per minute (Dayton Electric
Mfg. Co., Chicago, Ill., USA), and the flow rates of pure CO, to el-
evated chambers were adjusted manually (Curtis and Teeri 1992).
Chamber CO, concentrations were monitored from sunrise to sunset
every 15 min using a LI-COR 6252 infrared gas analyzer (L1-COR,
Inc., Lincoln, Neb., USA) which was calibrated daily; CO, concen-
trations were recorded using a personal computer. Carbon dioxide
fumigation was stopped and chambers were removed on 10 Novem-
ber 1994, after several hard frosts had occurred. Senesced leaves
were removed as they fell, dried at 70°C for 48 h and weighed. By
the end of the 1994 growing season, plants in the high-N soil had al-
ready outgrown cuvettes built for a 14C pulse-labeling experiment
that was planned for 1995. For this reason, all stems were removed
1 cm above the root collar in mid February 1995, dried at 70°C for
48 h and weighed. We replaced the chambers and re-initiated CO,
fumigation on 14 May 1995, when signs of coppice regrowth began
to appear.

Each of the 32 chambers was randomly assigned either to
August or October harvest groups, so that each block of eight
chambers contained four of each group. Chambers of the August
group (16) were labeled with both 14C and 15N six days before be-
ing harvested in August 1995. October chambers were allowed to
grow an additional 2 months in order to create a record of soil res-
piration rates over the entire growing season from June to October.
The October chambers were then labeled with 1N 6 days before
being harvested in October of 1995.

Soil respiration

We determined soil respiration rates seven times from mid-June to
early October of 1995. Between 1000 hours and 1400 hours on a
given date, measurements were made from the same central loca-
tion in each root box. The system consisted of a cylinder (4.4 cm
inner diameter) made of FEP Teflon (du Pont de Nemours and
Co., Wilmington, Del., USA) in line with a LI-COR 6262 infrared
gas anadyzer (IRGA) (LI-COR, Inc., Lincoln, Neb., USA) and a
TD-4NA recirculating diaphragm air pump (Brailsford and Co.,
Rye, N.Y., USA). Air exchange through the cylinder was approxi-
mately 600 cm3 min-1. After inserting the sharpened bottom edge
of the cylinder 2 cm into the soil surface, the system was flushed
with ambient air for 10 min in order to purge excess soil CO,. The
system was then closed and CO, levels were monitored at 0.5-min
intervals. A final reading was recorded when the rate of CO, in-
crease in the chamber was constant for 3 min at a p[CO,] between
36.0 and 40.0 Pa. An atmospheric pressure transducer, periodical-
ly inserted through a rubber septum mounted on the cylinder, veri-
fied that no pressure differentials developed between the cylinder
and ambient air.

15N |abeling

In the summer and fall of 1995, we conducted 6-day in situ 15N
pool-dilution experiments prior to the harvest of al 32 chambers.
Sixteen chambers were labeled prior to budset in August (Julian
dates 222, 223, 226, 227), and the remaining 16 chambers were la-

beled following budset in October (Julian dates 277, 278, 281,
282). Each day we labeled four root boxes from a single block,
representing one replicate of each of the four soil-NxCO, treat-
ment combinations. Our goal was to uniformly label the entire
0.637-m3 volume of each root box to 6 pg NH,-N g1 soil and
2.5% 15N. We chose an application rate of 6 pg g1 to be near the
lower end of the range of extractable NH,-N (3-36 pg NH,-N g1)
found in surface soils of hardwood forests in northern Lower
Michigan (Zak and Pregitzer 1990). Four channels (1.2 cm diame-
ter) were punched into the soil of each box to a depth of approxi-
mately 1 m to facilitate infiltration of the 15N solution. We added
40| of 14+15(NH,),SO, solution (0.0044 M, 2.5% 15N) to the low-
N and 60 | of solution to the high-N soil; these volumes were cal-
culated to bring each soil to near field capacity. The labeling solu-
tions infiltrated soil surfaces in less than 20 min. The soils re-
mained undisturbed overnight (10 h) in order to alow soil water
content throughout the root boxes to come to equilibrium.

The next morning we collected “initial” soil cores (4 per box;
5 cm diameterx1.3 m depth) to characterize ammonium and nitrate
(NH_4+*and NO3) concentrations and 15N enrichment for the calcu-
lation of gross N mineralization. Together, the four cores repre-
sented 1.6% of the soil volume of the entire root box. The cores
were composited on a box basis and homogenized in plastic trays.
Living coarse roots (>1 mm diameter) and fine roots (€1 mm di-
ameter) were removed by hand. Soil subsamples (4 per box; 50 g
each) were extracted within 2 h with 2 M KCI, and inorganic N
pools determined colorimetrically with an Alpkem 300 rapid flow
analyzer (Astoria-Pacific International, Clackamas, Ore., USA). A
Europa Scientific Integra-CN mass spectrometer (Europa Scienti-
fic Inc., Vandalia, Ohio, USA) was used to determine 15N enrich-
ment, after NH,* was collected from soil extracts by a 10-day dif-
fusion (Brooks et al. 1989).

Six days (144 h) after the initial cores were collected, we col-
lected a second set of cores which were analyzed as described
above. Rates of gross N mineralization were based on changes in
the size and 15N enrichment of NH,* pools over 6 days (Davidson
et al. 1991; Hart et al. 1994). In order to determine the total recov-
ery of 15N, soil subsamples were digested via a permanganate-
reduced iron modification of the total Kjehldahl N (TKN) method
that converts NO;~ and NO,~ in the conversion to NH,* (Bremner
and Mulvaney 1982). The digests were analyzed colorimetrically
for NH,* and diffused in preparation for analysis by mass spec-
trometry (MacKown et al. 1987). Total 15N recovery was calculat-
ed as the sum of soil and plant 15N at the time of harvest as a per-
centage of 15N applied to each root box.

We tested the assumption that microbial N was not remineral-
ized during the incubation period by labeling the NOs~ pool of
200 g samples of low- and high N soils (n=8) to approximately
10% 15N with an agueous solution of KI15NO;. These samples
were incubated in sealed plastic beakers in the laboratory for
5 days at 20°C. The samples were extracted with KCI, and NH,*
from was collected via diffusion and analyzed for 15N as described
above. Incomplete N recovery and isotope fractionation are known
to be potential problems in obtaining accurate measurements of
15N enrichment using diffusion methods on high volume, low-N
samples (Lory and Russelle 1994). For that reason, we also dif-
fused a series of standards (50-200 pg NH,-N in 70 ml of TKN di-
gest solution, 0—-10% 15N) and analyzed via mass spectrometry.

Microbial N and N uptake

Microbial-biomass N was estimated using the chloroform fumiga-
tion/extraction (CFE) method (Brookes et al. 1985). Fumigated
and non-fumigated control soils were extracted with 0.5 M K,SO,
(1.2 soil:extractant ratio) and subjected to TKN digestion
(Bremner and Mulvaney 1982). The acid digests were analyzed
for NH,* and 15N enrichment as described above. We report mi-
crobia N as the difference in N flushed from fumigated and con-
trol samples without correcting for extraction efficiency. The
background 15N enrichment of microbes was determined prior
to 13N application using the CFE method. Rates of microbial N
immobilization were based on the appearance of 15N in the



CHCl-labile pool over the 154-h period since the application of
15N, using amodel that assumes a non-linear decline in the 15N en-
richment of soil inorganic N (Davidson et a. 1991; Sheppard 1962).

Plant biomass, N, and N uptake

After the day-6 soil cores were removed, aboveground plant tis-
sues were clipped and separated into leaf and stem fractions. Be-
cause the presence of 14C prohibited extensive excavation of the
root boxes, roots were harvested to a depth of approximately
20 cm, which appeared to contain the majority of roots. Plant tis-
sues were frozen at —80°C until they could be hand-sorted. Coarse
and fine roots were separated and washed to remove adhering soil.
All tissues were weighed, and tissue subsamples were dried at
70°C for 48 h and reweighed to determine moisture content.
Whole-chamber coarse- and fine-root biomass was calculated by
summing the weight of directly harvested tissues (to 20 cm) and
estimates based on roots contained in soil cores collected for 15N
analyses (1.3 m depth).

Plant tissues were chopped by hand into small pieces
(14 mm) and subsampled for determination of total Kjehldahl N
(Nelson and Sommers 1973) and for 4C. Ammonium concentra-
tions were determined as described above, and aliquots were dif-
fused and analyzed for %N via mass spectrometry. Plant N-
uptake rates over the 154-h labeling period were based on the ap-
pearance of 15N in excess of the pre-labeling abundance of 15N in
plant tissues, assuming a non-linear decline in the 1N enrichment
of soil inorganic N, and negligible turnover of 15N during the la-
beling period (Davidson et al. 1991; Sheppard 1962). The grinding
of 14C-labelled solid samples to fine powders may create a health
hazard should the particulate matter be inhaled. As a radiation
safety measure and for consistency, we used the older TKN/diffu-
sion methods to prepare radio-labeled (August) and unlabeled
(October) plants and soils for 15N and 4C analysis.

14C labeling

From 12 to 16 August (Julian dates 223, 224, 227, 228), we pul se-
labeled 16 chambers with 14CO,, i.e., four replicates of each of the
four CO,xsoil-N treatment combinations. Beginning approximate-
ly 2 h after sunrise (10 h after application of 15N), and after re-
moval of soil cores for 15N analyses, each of the four units of one
block were labeled with 18.5 MBq of 14C. The labeling cuvettes
consisted of clear acrylic chambers mounted on polyethylene bas-
es enclosing each root box and forming an air-tight seal with the
soil (Warembourg and Kummerow 1991). One small (0.71 m3)
and one large (0.96 m3) labeling system were assembled in order
to simultaneously label one low-N unit containing small-statured
plants and one high-N unit containing taller plants. Chamber
p[CO,] was monitored continuously using LCA-2 IRGAS (Analyt-
ical Development Co., Ltd., Hoddesdon, UK) in line with recircu-
lating diaphragm air pumps (Brailsford and Co., Rye, N.Y., USA).
Prior to the placement of labeling chambers and the introduction
of 14CO,, we determined the soil respiration rate of each chamber
as previously described. With the labeling chambers in place, we
then measured the net CO, uptake rates. These data were used to
calculate labeling times and amounts of chase 12CO, required for
total assimilation of the 14CO..

The 1CO,-generating vessel consisted of a sidearm flask con-
taining excess 1.0 M lactic acid. 14CO, was generated by injecting
asolution of NaH4CO; into the acid with a syringe through a rub-
ber septum mounted in the top of the flask. A magnetic stirrer was
used to mix the reactants and liberate the 4CO,, which was intro-
duced into the labeling chamber via the diaphragm pump. We
maintained a constant p[CO,] of 50.0 Pa in the labeling chamber
during the entire labeling period by periodically injecting a chase
solution of NaH12COj; into the generating flask. The common
p[CO,] was used in order to give maximum rates of label uptake
and to keep labeling times for ambient and elevated treatments as
close as possible. Labeling the ambient-grown plants at 36 Pa
would have led to unacceptably long labeling times for the low-N
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plants. Initia specific activities of 4CO, in the small and large la-
beling chambers were 103.6 and 77.7 MBq g1 C, respectively.
Temperatures inside the chambers were maintained at ambient lev-
els (19-26°C) using AA-2000 cooling systems with fans mounted
inside each unit (Hylan Inc., Kalamazoo, Mich., USA).

Labeling times and total 14C recovery

The mean times calculated for label uptake for ambient and ele-
vated chambers (+SE) were 148+22 and 125+27 min, respectively.
Mean labeling times were 178+19 min for low-N chambers
and 94+12 min for high-N chambers. We calculated that >90%
(16.7 MBQ) of the 14C was assimilated by plants of both N treat-
ments in the first 35 min following the introduction of 14CO.,.
After all of the chase CO, had been assimilated, an air sample
(50 cm3) was removed from each chamber with a syringe and ana-
lyzed to quantify remaining 14C. The samples were injected into a
vial (200 cm3) containing 10 cm3 of Carb-asorb (Packard Instru-
ment Co., Meriden, Conn., USA) and were alowed to equilibrate
for 30 min. Aliquots of Carb-asorb were mixed with Permafluor
(Packard Instrument Co., Meriden, Conn., USA) (1:4 v/v), and an-
alyzed for 14C with a model 1900TR liquid scintillation analyzer
(Packard Instrument Co., Meriden, Conn., USA). Analysis of
chamber atmospheres demonstrated that unassimilated 4CO, was
not significantly affected by atmospheric CO, or soil N; it ranged
from 0.06 to 0.70% of the 18.5 MBq applied to each chamber. La-
beling chambers were removed at that point, replaced by open-top
chambers, and normal CO, fumigation procedures resumed.

Soil 14C respiration

For the 6 days between the application of 14CO, and harvest, static
chambers were used to determine the daily 14C efflux from soil
(root+microbial) respiration. The openings of two polyethylene
boxes were inserted into the soil in each chamber, enclosing an ar-
ea of 94 cm3 and a volume of approximately 850 cm3. Inside the
boxes were suspended jars containing 10 cm?3 of a solution of
10 M NaOH. The NaOH traps were replaced daily, and aliquots of
NaOH were pipetted into Hi-ionic fluor (1:10 v/v) (Packard In-
strument Co., Meriden, Conn., USA) and analyzed for 14C using
liquid scintillation counting. 14C released from soil was expressed
as MBq chamber-1 day-1.

Plant, soil, and microbial 14C allocation

A Packard model 307 sample oxidizer and a Packard model
1900TR liquid scintillation analyzer were used to combust and an-
alyze samples of each plant tissue (0.5-1.0 g each) and soil
(0.8-1.0 g each) from each chamber (Packard Instrument Co.,
Meriden, Conn., USA). We processed two leaf, stem, coarse- and
fine-root subsamples from every plant (a total of 8 per chamber
of each tissue) and eight soil subsamples per chamber. Whole-
chamber coarse- and fine-root 14C (MBq chamber-1) was calculat-
ed by multiplying chamber mean coarse- and fine-root specific ac-
tivities (MBq g tissue) by the estimates of whole-chamber root
biomass described above. Similarly, whole-chamber leaf and stem
14C was calculated by multiplying chamber mean leaf and stem
specific activities by the measured tissue weights. Whole-chamber
soil 14C was calculated by multiplying mean soil specific activities
by soil bulk density and root-box volume. Total soil 14C represents
the combined 14C in microbial and non-microbial 14C. 14Carbon
activities (MBq chamber-1) were adjusted to account for daily oxi-
dizer efficiencies ranging from 94 to 99%. Tissue and soil activi-
ties also were adjusted for the water content of the field-moist ma-
terials, and are expressed on a dry weight basis. The processing
time of tissues and soils from thawing to oxidation was limited to
approximately 1 h.

Microbial 4C was determined using aliquots of the same sam-
ples generated by the CHCI; fumigation/direct extraction method
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described above for N analyses. Aliquots of fumigated and non-
fumigated extracts were analyzed via liquid scintillation counting.
As 14C extraction efficiency was unknown, microbia 14C is re-
ported as the difference in 14C activities extracted from fumigated
and control samples, without applying a correction factor.

Statistical analyses

A repeated measures analysis of variance (ANOVA) for unequal
sampling intervals (Neter et a. 1990) was used to evaluate CO,
and N effects on soil respiration over seven dates of the 1995
growing season. Fisher's LSD procedure was used to evaluate sig-
nificant differences between interaction means on a given date. Ef-
fects of CO,, soil N, and labeling date on plant, microbial, and N-
cycling parameters were tested using a randomized complete
block ANOVA. Effects of CO, and soil N on plant, soil, and mi-
crobial 14C were tested using a two-factor ANOVA. In al ANOVA
models, CO,, soil N, and date (where present) were considered
fixed effects and the block effect was random. Fisher’s LSD pro-
cedure was used to evaluate significant differences where interac-
tions were statistically significant. Single-factor regression analy-
sis was used to describe the relationship between N uptake rates
and soil respiration vs. root biomass. Proportions (%) of total bio-
mass in leaves, stems, coarse roots, and fine roots were arcsine
transformed prior to ANOVA to meet assumptions of normality.

Results
Plant biomass

There was a significant interaction between atmospheric
CO, and soil N availability on total and coarse root bio-
mass (Table 1). Relative to ambient CO,, elevated CO,
increased total biomass by 26% at low N and by 50% at
high N, and increased coarse root biomass by 24% at
low N and by 78% at high N. As a main effect, elevated
CO, significantly increased the biomass of all compo-
nents except for fine roots. Soil N also was a highly sig-
nificant main effect, for all biomass components. Rela-
tive to low-N plants, increases in tissue weights in
high-N soil ranged from 97% for coarse roots to 233%

Table 1 Mean biomass (g m2) of Populus tremuloides plants and
tissues after 2 growing seasons, across August and October har-
vest dates. SEs are listed in parentheses below each mean. Per-
centage response was calculated as the percentage increase or de-
crease of the 2nd mean relative to the first. Letters indicate that

for stems. Relative to August biomass, plants harvested
in October exhibited statistically significant gainsin total
biomass (+24%), and in coarse root biomass (+75%).

Atmospheric CO, did not significantly affect the dis-
tribution of plant biomass among plant tissues (data not
shown). Both soil N availability and harvest date had
significant main effects on biomass distribution. Relative
to low-N plants, growth in high-N soil increased the per-
centage of biomass in stems (+35%) and decreased allo-
cation to coarse roots (—15%). Relative to the August
harvest, October plants contained significantly smaller
percentages of biomass in leaves (—40%) and stems
(-18%), and a significantly larger percentage in coarse
roots (+48%).

Soil respiration

Carbon dioxide and soil N exhibited significant main and
interactive effects on soil respiration (Table 2). Across
sampling dates and N levels, elevated CO, stimulated
mean soil respiration rates by 44%. The CO, response
was consistently greater at high N that at low N through-
out the 1995 growing season (Fig. 1). Across CO, and
date, high soil N stimulated soil respiration by 85%.
Date also was a significant main effect (P<0.01) on rates
of soil respiration, with maximum rates occurring in
mid- to late-June and declining to their lowest in early
October. Mean soil respiration rates exhibited significant
linear relationships with both fine- and coarse root bio-
mass.

14C dlocation to plants, soil respiration, soil,
and microbes

Within-plant alocation of 14C across all CO,xN treat-
ments closely resembled the distribution of biomass for

the soil-Nxatmospheric-CO, interaction was significant at P<0.05;
interaction means in a given row followed by the same letter were
not statistically different at P<0.05. Statistical significance for
main effect means is indicated as follows: n.s. no significant dif-
ference, *P<0.05, **P<0.01

Interaction means

Main effect means

Low N High N Soil N Co,
Ambient Elevated Ambient  Elevated Low High %Response  Ambient Elevated % Response
Co, co, Co, Co,
n 8 8 8 8 16 16 16 16
Total  485a(47) 614a(51) 1047b(43) 1576c(104) 551 (47) 1312 (108) (+138)** 767 (84) 1096 (151) (+43)**
Leaves 86(12) 124(12) 218(33) 306 (14) 104 (12) 263(22) (+153)** 151(20) 216(31) (+41)**
Stems 100(12) 129(12) 322 (40) 439 (14) 114 (10) 380(29) (+232)** 210(33) 283(47) (+35)*
Coarse 235a(10) 290a(16) 373b(20) 661c(35) 261(35) 516(65)  (+97)** 302(35) 476 (73) (+57)**
roots
Fine 67 (6) 73 (18) 135(29) 169 (43) 69 (8) 151 (16) (+117)** 100(18) 120(16) (+20)s

roots




Table 2 Midday mean soil respiration rates (umol m—2 s1) and
14C distribution (MBq chamber-1)following pulse labeling of P.
tremuloides. Soil respiration rates are the means of 7 midday mea-
surements taken from one set of 16 chambers from 14 June until
harvest on 4 October 1995. In early August 1995, each of a second
set of 16 chambers was pulse-labeled with 18.5 MBq of 14CO, and
harvested after 6 days. SEs are listed in parentheses below each
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mean. Percentage response for main effects was calculated as the
percentage increase or decrease of the second mean relative to the
first. Letters indicate that the soil-Nxatmospheric-CO, interaction
was significant at P<0.05. Means in a given row followed by the
same letter were not statistically different at P<0.05. Statistical
significance for main effect means is indicated as follows: n.s. no
significant difference, *P<0.05, **P<0.01

Interaction means

Main effect means

Low N High N Soil N Co,
Ambient Elevated Ambient Elevated Low High %Re- Ambient Elevated % Re-
CO, CO, CO, CO, sponse sponse
n= 4 4 4 4 8 8 8 8
Soil respiration 1.82a 2.31a 3.00b 4.61c 2.06 3.82 (+85)** 241 3.47 (+44)**
(0.12) (0.16) (0.24) (0.33) (0100 (022 (0.16) (0.24)
Total above 4.42 422 513 517 4.32 5.15 (+19) 478 4.69 (+2)
ground 14C (0.62) (0.72) (0.58) (0.49) (0.44) (035 ns. (0.41) (0.44) n.s.
Leaves 2.08 1.85 2.86 3.19 1.96 3.03 (+54)* 247 2.52 (+2)
(0.30) (0.10) (0.33) (0.61) (0.15) (0.33) (0.26) (0.38) n.s.
Stems 2.35 2.36 2.27 1.97 2.36 212 (-10) 231 2.17 (-6)
(0.46) (0.66) (0.64) (0.23) (037) (0.32) ns. (0.37) (0.33) n.s.
Total below 5.99 5.92 4.97 5.92 5.96 5.45 (-9) 5.48 5.92 (+8)
ground 14C (0.62) (0.79) (0.46) (0.93) (047) (052) ns. (0.42) (0.57) n.s.
Coarse roots 2.18 24 2.66 3.64 2.33) 3.15 (+35) 242 3.07 (+27)
(0.46) (0.24) (0.36) (0.83) (0.24 (0.46) ns. (0.28) (0.46) n.s.
Fineroots 0.73 0.87 1.14 0.72 0.80 0.93 (+16) 0.93 0.79 (-15)
(0.20) (0.33) (0.40) (0.07) (0.18) (0.200 ns. (0.22) (0.16) n.s.
Soil 14C 1.61 131 0.56 0.98 1.46) 0.77 (—47)** 1.08 115 (+6)
(0.44) (0.29) (0.06) (0.14) (0.25 (0.10) (0.28) (0.16) n.s.
Microbial 1#C  0.04a 0.06a 0.08b 0.15c 0.05 0.12 (+140)**  0.06 0.11 (+83)**
(0.02) (0.01) (0.00) (0.00) (0.01) (0.01) (0.01) (0.02)
Soil 14C 1.47 1.25 0.61 0.59 1.36 0.60 (-56)** 1.04 0.92 (-12)
respiration (0.28) (0.21) (0.09) (0.07) (0.18)  (0.05) (0.21) (0.10) n.s.
Total 14C 10.29 9.97 9.73 10.49 1013 1026  (+1) 10.08 10.30 (+2)
recovered (0.88) (0.71) (0.85) (0.70) (053) (055 ns. (0.58) (0.49) n.s.
Fig. 1 Midday soil (root+mi- .
crobial) respiration ratesin 4.07 L Ambient CO,

trembling aspen mesocosms
measured from mid-June to
early October 1995. Barsre-
present the means (+SE) of 4
replicates of each factorial
combination of NxCO,. The
NxCO, interaction was signifi-
cant at P<0.05. Letters above
each bar represent multiple
comparisons within agiven
date; bars of agiven date de-
noted by the same letter were
not significantly different at
P<0.05

Soil Respiration
w
<

(umol CO, m2 sec)
N
o

-
o

o
=]

14 Jun

i N: Low High LowHigh LowHigh Low High Low High

M Elevated CO,

Low High Low High

21 Jun 28 Jun 8 Jul

Date

10Aug 8Sep 4O0ct



438

=~ 0.50 —©— Ambient CO, Low N Al
5 ke - Elevated CO, Low N
w L —®— Ambient CO, High N
= g 035 --& - Elevated CO, High N
o 0.20
o
Z E
A= 005t 000 E=—g
c
= B
2T 150
¢<s
= £ =) %
S 82 1.00 R
EX S &
3@ & #e
OL = 050 O L, we B¢ ae
8 e ¥
0
0 24 48 72 96 120 144

Time (hours)

Fig. 2 A Daily soil 14C respiration rates 24-144 h after pulse-
labeling trembling aspen trees with 14CO,, plotted at the mid-point
of each 24-h period. B Cumulative 14CO, respired by the end of
each 24-h period, shown with SEs. Each point represents the mean
of 4 replicates of each factorial combination of NxCO,. Each rep-
licate chamber received 18.5 MBq of 14CO,

the August harvest (data not shown). Leaves contained
30% of plant 14C, and 26% of plant biomass. Similarly,
stems contained 27% of plant 14C, and 28% of plant bio-
mass. Coarse roots contained 33% of plant 14C and con-
tained 33% of plant biomass. Fine roots contained 10%
of plant 14C and 13% of biomass.

Because each chamber assimilated the same amount
of 14C (18.5 MBq), differences in activity of a given
pool, reported as MBq chamber-!, also reflect differ-
ences in the relative distribution, or alocation, of 14C
6 days after labeling (Table 2). Elevated CO, did not sig-
nificantly affect the allocation of 14C to any plant com-
ponent, nor did it ater the total amounts remaining in
soil or respired from soil over six days (Table 2). We ob-
served a significant interaction between CO, and soil N
with regard to the microbial fraction of soil 14C, wherein
elevated CO, increased microbial 14C content by 50% at
low N and by 88% at high N. As amain effect, elevated
CO, increased microbial 14C by 83% relative to microbi-
al 14C at ambient CO..

A trend toward greater allocation of 14C to total
aboveground components at high-N was not statistically
significant (Table 2). High N availability significantly
enhanced leaf 14C by 54% relative to low N availability,
and resulted in a non-significant 35% increase in coarse-
root 14C. 14C in soil and evolved by soil respiration were
significantly lower in high-N soil. Cumulative 14C re-
spired from high-N soils was 56% less than that respired
from low-N soils, and the 14C present in high-N soils
was 47% less than that in low-N soils. In contrast, 14C in
the microbial biomass more than doubled from low- to

high-N soil, a significant increase of 140%. Soil 14C res-
piration rates were highest during the first 24 h of the
chase period (Fig. 2A). Initia rates of 14C respiration in
low-N soil were markedly greater under ambient than el-
evated CO,, but were little affected by CO, in high-N
soil. The overall decline in rates of 14C respiration was
interrupted from 72 to 96 h by a sharp, temporary rate
increase in both low-N soils. Rates of 14CO, emission
from soil during the last sampling period from 120 to
144 h were 17% of their maximum rates in all treat-
ments, and appeared to be rapidly approaching constant
values.

Total 14C recovery

Between 9.7 and 10.5 MBq of total 14C could be ac-
counted for in plants, soils, and cumulative soil respira-
tion at harvest, representing 53-57% of the applied label
(Table 2). Neither atmospheric CO, nor soil N affected
total recoveries. Aboveground respiration was not quan-
tified, but likely represented much of the unrecovered
14C. High rates of leaf respiration have been noted in
field studies following the assimilation of pulses of 14C
at high specific activities (Kuhns and Gjerstad 1991; Ise-
brands and Nelson 1983). Other potential losses of 14C
may have been 14C in the soil atmosphere, leaching of
dissolved 14C in soil solutions below the coring depth of
1.3 m, and respiration of thawed plant tissues and soils
during processing.

N pools and dynamics

The pre-labeling 13N enrichments of both plants and
microbes were not significantly different (n=4, P<0.05)
from the background value of 0.3668% (dependent
t-test), and did not differ with respect to CO, or soil
N (2-factor ANOVA). The 15N enrichments of NH,
pools of soils labeled in the laboratory with 15NO; as a
check against re-mineralization of microbial N were not
significantly different than the background enrichment of
unlabelled soils (dependent t-test, P<0.05). In addition,
we found no significant deviations from expected 15N
enrichments of the diffused TKN standards and recov-
ered 86-92% of N added to the diffusion vessels. Total N
recovered from diffusions of KCl extracts ranged from
94-102% of N determined viarapid flow analysis.

Ten hours after the application of >N labeling solu-
tions, there were no significant differences in initial soil
inorganic N (NH,* and NO3-) concentrations or %15N re-
lated to CO,, soil N, or labeling date. The mean initial
inorganic N concentration across all treatments was
6.55+0.28 pg N g soil, approximately equal to the
amount of NH,* applied to each root box (6 pug g1).
Mean %?%°N in theinitial cores was 2.17+0.11%, close to
the expected 2.5% 15N of the labeling solutions. The
small deviations from expected values in N concentra-
tion and 15N enrichment were likely the result of over-



Table 3 Mean tissue and whole-plant N concentrations (%) of P.
tremuloides plants after 2 growing seasons, across August and Oc-
tober 15N-labelling/harvest dates. SEs are listed in parentheses be-
low each mean. Percentage response was calculated as the per-
centage increase or decrease of the secondnd mean relative to the
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first. Soil Nxatmospheric CO, interactions were not statistically
significant at P<0.05 for any parameters. Statistical significance
for main effect means is indicated as follows: n.s. no significant
difference, *P<0.05, ** P<0.01

Interaction means

Main effect means

Low N High N Soil N Co,

Ambient  Elevated Ambient  Elevated Low High % Re- Ambient  Elevated % Re-

CO, CO, CO, CO, sponse sponse
n= 8 8 8 8 16 16 16 16
Plant  0.85(0.06) 0.71(0.04) 1.24(0.09) 1.00(0.06) 0.78(0.04) 1.12(0.06) (+44)** 1.04(0.07) 0.86(0.05) (—17)**
Leaves 2.15(0.14) 1.46(0.13) 293(0.13) 2.34(0.20) 1.80(0.13) 2.64(0.14) (+47)** 254(0.14) 1.90(0.16) (-25)**
Stems  0.91(0.13) 0.73(0.09) 0.99(0.12) 0.90(0.10) 0.82(0.08) 0.95(0.07) (+20)*  0.95(0.08) 0.81(0.07) (-15)*
Coarse 0.80(0.11) 0.59(0.05) 1.20(0.13) 0.92(0.10) 0.70(0.07) 1.06(0.09) (+51)** 1.00(0.10) 0.76 (0.07) (-24)*
roots
Fine  0.83(0.06) 0.93(0.14) 1.12(0.12) 1.03(0.06) 0.88(0.08) 1.07(0.06) (+22)*  0.97(0.07) 0.98(0.8) (+I)n.s.
roots

Table 4 Mean N pools (g m2) and dynamics (mineralization, im-
mobilization, uptake: mg m2 day-1; uptake/biomass, immobiliza-
tion/microbial N mg g day-!) under P. tremuloides, across Au-
gust and October 15N-labelling/harvest dates. SEs are listed in pa-
rentheses below each mean. Percentage response was calculated as
the percentage increase or decrease of the 2nd mean relative to the

first. Letters indicate that the soil Nxatmospheric CO, interaction
was significant at P<0.05. Means in a given row followed by the
same letter are not statistically different at P<0.05. Statistical sig-
nificance for main effect meansisindicated as follows: n.s. no sig-
nificant difference, **P<0.05, ***P<0.01

I nteraction means

Main effect means

Low N High N Soil N Co,
Ambient Elevated  Ambient Elevated Low High % Re- Ambient Elevated % Re-
Co, CO, Co, Co, sponse sponse
n= 8 8 8 8 16 16 16 16
Plant N 41(05) 4.3(0.5) 13.1(15) 157(1.6) 42(0.3) 14.4(1.1) (+244)*** 8.6(1.4) 10.0(1.7) (+17)ns.
Microbial N 7.3(0.8) 83(1L2) 269(1.8) 286(29 7.8(0.7) 27.7(1.6) (+257)*** 17.2(2.8) 18.4(3.1) (+7)n.s.
GrossN 96 (27) 98 (18) 239 (45) 267 (53) 96 (14) 253 (35) (+164)*** 167 (31) 182(35) (+9)n.s.
mineralization
N immobili- 110a(14) 385b(40) 231c(25) 862d (116) 248(39) 547 (100) (+121)*** 171(23) 624 (92) (+265)*
zation
Plant N uptake 288a(53) 286a(33) 422b(88) 655c (104) 286(31) 539(71) (+89)*** 355(51) 469 (69) (+32)*
Plant N uptake/ 2.1(0.3) 2.4(0.4) 1.8(0.2) 1.7(0.2 23(0.2) 1.8(0.1) (-22)** 19(02) 21(02) (+11)ns.
Fine root
biomass
N immohili- 16.2(2.6) 46.8(3.7) 88(1.3) 34.1(7.1) 315(45 21.4(4.8) (-32)** 12.5(1.7) 40.4 (4.2) (+223)***
zation/-
microbial N

night mineralization of N contained in SOM and dilution
by preexisting inorganic N. Mean total recoveries of 15N
at harvest ranged from 42% to 64% among all treatment
combinations, with an overall mean of 53.8+1.8%. Po-
tential losses of 15N leading to incomplete recovery may
have included nitrification followed by leaching below
the coring depth of 1.3 m, or gaseous losses via denitrifi-
cation. Recovery was unrelated to soil-N or CO, treat-
ments, but was significantly related to labeling date
(P=0.09); August and October mean total recoveries
were 50.8 £2.3% and 56.8+2.7%, respectively.

Tissue N concentrations were strongly influenced by
N availability, with large increases in %N of all plant
components in the high-N soil (Table 3). Carbon-dioxide
enrichment caused significant decreases in the N concen-
trations of all components except for fine roots. Relative
to ambient-grown plants, plant N capital was 17% great-
er under elevated CO,, but the difference was not statis-
tically significant (P=0.13; Table 4). Soil N had a signifi-
cant positive effect on whole-plant N (Table 4), and on
al individual plant components (data not shown). Har-
vest date also had a significant positive effect on whole-
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Fig. 3 A In situ N uptake rates versus fine-root biomass of 2nd-
year trembling aspen trees during 6-day periods in August or Oc-
tober 1995. Symbols represent the individual data from 32 cham-
bers (8 replicates of each of 4 factorial combinations of NxCO,)
labeled with 15NH,*. B, C Midday soil respiration rates versus
biomass of B fine roots and C coarse roots of second-year trem-
bling aspen trees. Symbols represent the seasonal means of 7 mid-
day soil respiration measurements made from 16 chambers from
mid-June to early October 1995, plotted against the October har-
vest biomass (4 replicates of each of 4 factorial combinations of
NxCO,)

plant N capital (+29% in October). A significant de-
crease in standing pools of leaf N (-30%) and significant
increases in stem N (+79%) and coarse root N (+115%)
from August to October may reflect in part the seasonal
reallocation of N-containing compounds from photosyn-
thetic tissues to storage.

As a main effect, elevated CO, did not significantly
influence standing pools of microbial N or rates of gross
N mineralization (Table 4). However, immobilization re-
sponded significantly to elevated CO, with an overal
265% increase relative to ambient. Elevated CO, also
stimulated plant N-uptake rates by 32% (P=0.09). There
were significant interactions between CO, and soil N on
N uptake rates by both microbes and plants; elevated
CO, stimulated N uptake to a greater degree at high N
than at low N. Elevated CO, also significantly stimulated
the specific N immobilization rate (mg N g1 microbial
N day-1), but did not affect the fine-root-specific rate of
plant N uptake (mg N g-1 fine root day-1).

As expected, N-cycling pools and processes responded
positively to soil N availability (Table 4); microbia N,
gross N mineralization, immobilization, and plant N up-
take exhibited large, highly significant increases from low
to high soil N. By contrast, soil N had a significant nega-
tive effect on specific N uptake rates for both plants and
microbes. Relative to low-N soils, plants at high N ab-
sorbed 22% less N per unit of fine root biomass (mg N g1

fine-root biomass day-1) and microbes at high N took up
32% less N per unit of microbial N. The regression analy-
sis showed fine root biomass to be a highly significant
predictor (P<0.01) of plant N uptake rate (Fig. 3A). Mi-
crobia biomass N, immobilization, and plant N uptake ex-
hibited modest, non-significant declines (-8 to —20%)
from August to October (data not shown). Gross N miner-
alization declined significantly by 31% from August to
October (P=0.08). In addition, plant N uptake per unit of
fine root biomass exhibited a significant 26% decline from
August to October.

Discussion

Greater photosynthetic rates under elevated CO, may not
result in equivalent increases in plant biomass; the addi-
tional C fixed by CO,-enriched plants may be translocat-
ed below ground and lost via root respiration, root exu-
dation, fine-root turnover, or alocation to mycorrhizal
fungi (Norby et al. 1986; Fredeen et al. 1995; Pregitzer
et al. 1995; Korner et a. 1996). In this study, elevated
CO, stimulated maximum photosynthetic rates by 54%
in low-N soil and 98% in high-N soil (Kubiske et al.
1997, 1998), but increased plant biomass by only 26%
and 50% (Table 1). Higher rates of soil respiration may
partly explain the difference, and confirm that elevated
CO, increased C inputs to soil. Elevated CO, clearly en-
hanced the rates of C and N uptake by microbes. Our re-
sults are consistent with studies demonstrating that root-
derived compounds can stimulate soil microbial activity
after relatively short periods of exposure to elevated CO,
(Diaz et al. 1993; Zak et al. 1993; Rice et al. 1994;
Dhillion et al. 1996; Niklaus and Korner 1996; Cotrufo
and Gorissen 1997; Hungate et al. 1997b).

In terms of absolute C flux, this study supports the
hypothesis that proportional, i.e., isometric, growth re-
sponses of roots were the primary mechanism increasing
total C inputs to soil under elevated CO, (Whipps 1985,;
Billes et a. 1993; Norby et a. 1987; Rattray et al. 1995).
Neither the distribution of plant biomass after two grow-
ing seasons nor the short-term distribution of 14C photo-
synthate to above- and belowground plant components,
soils, and soil 14C respiration were affected by elevated
CO, (Table 1). This lack of alometric effects is consis-
tent with recent reviews suggesting that elevated CO,
can be expected to increase the alocation of biomass to
roots only where soil conditions severely limit growth
(Stulen and den Hertog 1993; Curtis and Wang 1998).
The effect of elevated CO, on mean rates of soil respira-
tion (+44%) corresponded closely to the increase in root
biomass (+48%). Highly significant relationships be-
tween both coarse- and fine-root biomass and soil respi-
ration further support the idea that soil C inputs in-
creased in proportion to root growth under elevated CO,
(Fig. 3B, C).

However, the magnitude of microbia responses to el-
evated CO, suggests that substrate availability to mi-
crobes, potentially a small fraction of total soil C inputs,



increased more than can reasonably be explained by a
simple scaling up of root biomass. The percentage in-
crease in microbial N uptake (+265%) was 5 times larger
than increases in either root biomass or soil respiration
under elevated CO,. Similarly, microbes contained sig-
nificantly more root-derived 14C (+83%) under elevated
CO,; in the absence of above- and below-ground differ-
ences in 4C distribution, this result implies that a larger
fraction of root-derived C was accessible to or usable by
soil microorganisms in CO,-enriched microcosms. Al-
though the CO, effect on soil respiration (+44%) repre-
sents a quantity of C ultimately of plant origin, it is diffi-
cult to separate direct root respiration from microbial
respiration of C acquired from roots. If root respiration
comprised a large portion of the total CO, produced in
our soils, it would explain why the magnitude of in-
crease in soil respiration was a relatively insensitive pre-
dictor of the increase in microbial substrate availability
under elevated CO..

Beyond absolute effects of CO, on biomass and be-
lowground C flow, the specific mechanism increasing
microbial substrate availability is not clear. A shift in the
chemical composition, or quality, of root-derived com-
pounds may explain greater microbial fractions of soil
14C under elevated CO,. In other studies, increasesin the
non-structural carbohydrate content of fine roots suggest
that the usable-energy content of rhizodeposition under
elevated CO, may increase as well (van de Geijn and
van Veen 1993; Darrah 1996). Whipps (1985) found that
elevated CO, increased the solubility of root exudates in
mai ze, a response that would enhance substrate availabil-
ity to soil microbes. While increased C:N ratios of CO,-
enriched tissues are widely expected to slow microbial
activity and litter decomposition rates (Rastetter et al.
1992; Schimel 1995), the opposite response seems likely
if those tissues are predominantly composed of labile
compounds, and if, as in this study, soil-solution N is
sufficient to meet the demands of microbial biosynthesis.

Alternatively, atemporal shift in the release of a small
but labile fraction of substrate into the rhizosphere may
have increased microbial 14C without affecting total soil
14C contents under elevated CO,. Production and release
of the most labile root-derived compounds may be espe-
cially sensitive to higher rates of photosynthate translo-
cation from source leaves to roots in CO,-enriched
plants (Rattray et al. 1995). It is also possible that, by in-
creasing total root biomass and the area of root-soil con-
tact, elevated CO, may have simply improved microbial
access to an equivalent pool of root-derived 14C.

It is important to note that pulse-labeling techniques
of short duration, such as ours, trace the release of labile
compounds that are rapidly assimilated by microorgan-
isms. These labile compounds represent a potentially
small fraction of total root-derived C entering the soil.
With lengthening exposure to 14CO,, increasing portions
of 14C assimilated by plants are found in structural C
compounds that are deposited by dead roots (Meharg
1994). We found that elevated CO, increased the fraction
of root-derived 14C that was utilized by microorganisms,
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but others have found no effect (Cotrufo and Gorissen
1997; Griffiths et al. 1998), or a significant decrease
(Rattray et al. 1995; Paterson et a. 1996). Beyond un-
derlying experimental differences in species and soils,
the range of reported CO, effects on microbial assimila-
tion of 14C reflects a variety of labeling techniques that
examine different and largely undefined components of
rhizodeposition. A longer pulse or chase period in this
study, or the use of continuous 4C labeling might have
demonstrated differences in the alocation of 14C with
respect to CO,, or elicited different patterns of 14C utili-
zation by microorganisms.

In the simplest analysis, inorganic N assimilated by
microorganisms cannot be taken up by plants. Over short
time scales, soil microorganisms are thought to have an
advantage over plant roots through a higher substrate af -
finity for NH,* (Rosswall 1976). Microbial N immobili-
zation responded strongly to elevated CO, in both soils
(+250% at low N, +273% at high N), whereas elevated
CO, stimulated plant N uptake modestly (+32%), and
only in the high-N soil (Table 4). Immobilization is only
one link in a chain of processes governing N availability,
however. Relative to soil microorganisms, plants remain
competitive for N by being long-lived, assimilating N
that is released during periods of microbial inactivity and
death (Kaye and Hart 1997), or during active grazing by
microfaunal predators such as protozoa and nematodes
(Clarholm 1985). For N immobilized by microorganisms
to remain inaccessible to plants, it must remain in the
microbial biomass or be stabilized into humified forms.

Despite greater rates of N immobilization, standing
pools of microbial N did not increase under elevated
CO, (Table 4). One explanation is that elevated CO, may
have begun to increase soil C availability and stimulate
microbial demand for N only near the end of our study,
in which case the effect on microbial N would be unde-
tectable. It is reasonable to expect CO, effects on soil C
and N dynamics to increase with time, as the influence
of native SOM declines and that of incoming plant litter
increases. If additional N had begun to accumulate in the
biomass of CO,-enriched microbes, temporal patterns of
microbial N would have reflected this, since the CO, ef-
fect on N immobilization was highly significant on both
dates. However, microbial N declined from August to
October, and the decline was larger at elevated (-1.3g N
m-2) than at ambient CO, (-0.28 g N m=2), suggesting
that microbes were not functioning as a long-term sink
for N under elevated CO,. As a rough index, the turn-
over time of microbial N (days=standing pool of micro-
bial N/N immobilization rate) was markedly shorter un-
der elevated (29 days) than ambient CO, (100 days). If
microbial N were more rapidly re-mineralized under ele-
vated CO,, it may explain why more rapid rates of N im-
mobilization did not increase microbial N, and why N
availability to plants, inferred from plant N contents, did
not decline under elevated CO,. Greater microbia activi-
ty in the absence of corresponding changes in microbial
C or N at elevated CO, has been interpreted in several
recent studies as more rapid microbia turnover through
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soil food webs, possibly via intensified predation from
protozoa and soil fauna (Jones et al. 1998; Lussenhop et
al. 1998; Niklaus and Korner 1996; Ross et al. 1995,
1996).

Our results suggest that elevated CO, may have be-
gun to stimulate plant N-uptake capacity late in the
study, possibly through increases in root biomass. The
increase in whole-plant N (+17%; Table 4) was not sta-
tistically affected by elevated CO,, but it is important to
note that this measure integrates net changes in plant N
that occurred over two growing seasons. By contrast, in-
stantaneous rates of plant N uptake measured at the very
end of the study exhibited a stronger response to elevat-
ed CO, (+32%; P=0.08), suggesting that the capacity of
CO,-enriched plants to acquire N may have increased
with time. Fine-root biomass was a highly significant
predictor of in situ rates of N uptake (Fig. 3A). More-
over, the relative responses to elevated CO, of whole-
plant N (+5% and 20% at low and high N) closely corre-
sponded to those of fine roots (+7% and +25% at low
and high N). While these results are correlative, they are
consistent with studies identifying larger root networks
as the mechanism increasing N acquisition in trembling
aspen (Rothstein et a. 2000) and in several other tree
species exposed to elevated CO, (Luxmoore et al. 1986;
Bassirirad et al. 1996; Vivin et al. 1996).

The alocation of 14C with respect to N availability
was consistent with functional equilibrium hypotheses
predicting that C will be allocated preferentially to plant
functions and tissues that promote uptake of limiting re-
sources (Brouwer 1983). Significantly greater portions
of the total 14C fixed by plants were lost via respiration
in low-N soils (Table 2). Previous research has demon-
strated that the percentage of daily photosynthate re-
spired by roots increases with decreasing nutrient avail-
ability, due to larger root systems in relation to leaf area
and rates of photosynthesis (van der Werf et al. 1994;
Lambers et al. 1996). Fine-root respiration rates also re-
flect the energetically costly processes of ion uptake
(Bloom et a. 1992). Upon application of 15N labeling
solutions, the low-N plants of this study exhibited signif-
icantly greater in situ rates of fine-root specific N uptake
(mg gt day1) relative to high-N plants, a common
response of plants conditioned by nutrient deficiency
(Chapin 1980).

Small increases in the metabolically active fungal
biomass associated with fine roots can markedly increase
C allocation to root and hyphal respiration rates in my-
corrhizal tree seedlings (Norton et al. 1990; Rygiewicz
and Andersen 1994). Plants grown in low-N soil of this
study supported twice the length of extra-radical mycor-
rhizal hyphae (m g1 soil) relative to those in high-N soil
(Klironomos et a. 1997). The secondary maxima that
we observed in the respiration of 4C from low-N soils
(Fig. 2A) were likely related to mycorrhizal C demand.
A similar pattern was observed 10 d after pulse-labeling
hybrid poplars (P. euramericana cv. Eugenel) (Horwath
et al. 1994) and has been previously attributed to the ac-

quisition of fine-root 4C by mycorrhizal symbionts
(Harris and Paul 1991). Taken together, our results sug-
gest that relatively larger root systems, increased ener-
getic demands of N acquisition, and a higher level of as-
sociation with mycorrhizal symbionts increased the allo-
cation of recent photosynthate to fine roots at low N
availability.

In the spring, expanding Populus leaves are a strong
C sink and import carbohydrates from stems and roots
(Donnely 1974). By some point in mid-season, increas-
ing photosynthate from mature leaves offsets the fixed C
demands of apical tissues, resulting in net basipetal C
flow. At budset, C is exported almost exlusively to active
sinks in the lower stem and roots (Isebrands and Nelson
1983). By coppicing, we undoubtedly altered source-sink
relationships between above- and belowground tissues,
and likely delayed the onset of net C flow to roots. The
removal of aboveground tissues would therefore certain-
ly have decreased C inputs to soil. Treatment effects on
soil C and N cycling are therefore likely conservative,
i.e,, would have been larger without coppicing. If any-
thing, the fact that elevated CO, was stimulating soil res-
piration only 1 month after aboveground growth
emerged (Fig. 1), only underscores the potential for ele-
vated CO, to increase the availability of root-derived C
and stimulate microbial activity.

In summary, exposure to elevated atmospheric CO,
altered the in situ cycling of C and N at several levels of
this experimental system. The plant growth response to
elevated CO, was not matched by an equivalent dilution
of plant N; CO, enrichment increased the absolute quan-
tities of N incorporated by aspens over two growing sea-
sons, especially in high-N soil. The ability of CO,-
enriched plants to forage for inorganic N may have been
enhanced by larger root systems, as opposed to changes
in root-specific rates of N uptake. The near doubling of
microbial 14C at elevated CO, amounts to a diversion of
less than 1% of the labeled C assimilated by plants. This
may be a small quantitative change in the cycling of C
within our experimental system, but it represents an eco-
logically significant stimulation of microbial growth and
N demand. Despite clear increases in N immobilization,
standing pools of microbial N were not increased by CO,
enrichment, suggesting that rates of N turnover through
microbes increased. Soil N content was an important in-
fluence on severa responses of this system to elevated
CO,. Both the absolute and relative responses of plant
biomass and N capital, microbial N immobilization and
plant N uptake rates to elevated CO, were greater in
high-N soil. Effects of elevated CO, were significant
both before and after budset, illustrating the importance
of late season C gain not only to aspen biomass respons-
es, but also to resulting feedback effects of CO, enrich-
ment on belowground C and N dynamics.

Despite changes in the nature of N cycling, we cannot
ascribe to these results an overall positive or negative ef-
fect of elevated atmospheric CO, on plant N availability.
Greater whole-plant N contents may not be the result of



increased soil N availability, but they do illustrate the ex-
pansion of N-uptake capacity in CO,-enriched plants.
Similarly, the stimulation of N immobilization rates may
not decrease plant access to N if sufficient inorganic N is
present in soil, or if the additional N immobilized by mi-
crobes under elevated CO, is subsequently re-mineralized.
These results may be most relevant to young, aggrading
ecosystems, where soil resources are not yet fully exploit-
ed by plant roots, and microbial dynamics are not yet in
equilibrium with inputs of above- and below-ground plant
litter. In maturing forests, woody tissues will create addi-
tional sinks for N for as long as plant N uptake is en-
hanced by elevated CO,. As N is removed from actively
cycling pools, the N concentrations of physiologicaly ac-
tive tissues will not decline indefinitely before eliciting a
negative effect on growth. Whether faster turnover of N
through the microbial biomass will ater N availability to
plants growing under elevated CO, is not yet clear. The
potential for sustained growth responses to elevated CO,
may ultimately be determined by the balance between
rates of gross N mineralization and the stabilization of N
into recalcitrant forms of soil organic matter.
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