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Abstract We consider a simple stochastic model for the
dynamics of mixed-species waterfowl aggregations and
describe two methods for assessing the fit of this model
to field data. The model does not incorporate species-
specific behavior. It assumes that all birds act indepen-
dently and incorrectly predicts an exponential distribu-
tion for inter-event times. We reject this model, show
that 29% of the birds move in groups of two or more
birds, and demonstrate that the distribution of inter-event
times between the movements of groups of birds is expo-
nential. We find no difference in movement rates or
group sizes between seasons, and no difference between
groups arriving into or departing from the observed ag-
gregations. An analysis of group composition suggests
that species at low abundance behave differently than
species at high abundance: birds with few conspecifics
are more likely to move in mixed-species groups than
birds with many conspecifics. We suggest that simple
stochastic models provide a useful way to explore the
dynamics of animal behavior.

Keywords Waterfowl · Aggregation · Stochastic model 
assessment · Density-dependent behavior · Intraspecific 
association

Introduction

Mixed-species aggregations provide a unique opportuni-
ty to explore social behavior and interspecific interac-
tions. The actions of individuals in mixed-species aggre-
gations can also clarify relationships at the community
level (e.g., Barnard and Thompson 1985). Since many
species of waterfowl feed and rest together while mi-
grating and during the winter (Palmer 1976; Cramp and 
Simmons 1977; White and James 1978; Madge and
Burns 1988; Amat 1990), their association provides an
important entry into waterfowl community dynamics.

While a great deal is known about North American
ducks, most research has focused on individual species
(Nudds 1992) and on behavior during the breeding 
season. Ecological interactions outside the breeding 
season are poorly understood (Weller and Batt 1987;
Baldassarre and Bolen 1994; Johnson 1996). Investiga-
tions of interspecific association have concentrated on
resource partitioning and on the morphological differ-
ences between co-occurring species (Siegfried 1976;
Toft et al. 1982; Nudds and Bowlby 1984; Pöysä 1986,
1994; DuBowy 1988; Nudds et al. 1994).

In this paper, we consider a stochastic model for the
formation of mixed-species waterfowl aggregations and
test this model with field data. Our aim is to uncover the
rules that govern social behavior and interspecific inter-
actions. We begin with the simplest of models. This
model assumes that there are no interactions between
ducks or differences between species. Starting with a
neutral model is appropriate, because a large number of
factors may affect the formation of mixed-species aggre-
gations; no single factor has clear primacy over another.

Our data were collected under a variety of environ-
mental conditions. The number of birds and the number
of species varied widely. Some of the species present fed
by diving, others by dabbling. Some species were large,
others small. Some were conspicuous; others were cryp-
tic. Some were abundant, others rare. Assessing interac-
tions and testing hypotheses in such a diverse communi-
ty is difficult (Wiens 1989; Elmberg et al. 1997). Our ap-
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proach simplifies the search for the behavioral rules that
operate within a complex system.

We present several methods for testing our theoretical
model with field data. Since most of our observations
were made during early stages of aggregation, our ana-
lyses differ from similar studies that analyze the equilib-
rial properties of flocks of birds and troops of primates
(Cohen 1969, 1971; Caraco 1980).

The methods section presents the model and describes
the site where the data were collected. It also details two
distinct parameter estimation procedures and explains
our approach to model assessment. After estimating the
model parameters with field data, we assess our model in
three steps. First, we visually inspect the relationship be-
tween the model’s estimated mean and the data. Second,
we consider the model’s fit to all bouts of aggregation si-
multaneously by comparing the two sets of parameter es-
timates. Third, we assess model fit separately for each
observed aggregation using standard goodness-of-fit
tests. Based on this assessment, we examine the compo-
sition of arriving and departing groups of birds.

Materials and methods

Mathematical model

Our model describes the movement of birds onto a small, experi-
mental pond from a larger reservoir of birds. The experimental
pond’s small size ensured that ducks were in close association and
we classify the birds on the pond as members of an aggregation.
Since few birds entered or left the field site during individual ex-
periments, we could estimate the total number of birds present and
treat the entire experimental area as a closed system.

Let N(t) be a random variable representing the number of birds
in the aggregation at time t, with N(0) = N0 birds present at the
start of the process. Our model does not differentiate between spe-
cies. We assume that the probability that a bird departs the experi-
mental pond in any small time interval of length h is proportional
to the interval’s length, and that the probability of more than one
departure in the interval is negligible. If i birds are in the aggrega-
tion at time t, the probability of a departure in the interval (t,t+h]
is

(1)

where rd is the per capita departure rate and o(h) represents higher
order terms in h. Similarly, we assume that the probability that a
bird arrives on the experimental pond in an interval of length h is
proportional to h and that the chance of more than a single arrival
is negligible. Hence, the probability of an arrival in the interval
(t,t+h] is

(2)

with ra the per capita arrival rate, B the total number of birds in the
area, and o(h) as above. Under these assumptions, the time inter-
val from t until the next movement event has an exponential distri-
bution with rate λ= ra(B–i)+rdi (Taylor and Karlin 1984).

This model, a continuous-time Markov process (Guttorp
1995), is a variant of the standard birth and death (Feller-Arley)
process (Ricciardi 1986). The process describes migration be-
tween two “colonies” in a closed system. Whittle (1967) considers
the model for any finite number of colonies and Renshaw (1986)
provides an extensive review of related stepping-stone models. If
pi(t) is the probability of i birds in the aggregation at time t, the
probability generating function of the process,

(3)

can be shown to be (Silverman and Kot 2000)

(4)

where

(5a)

(5b)

Equation 4 reveals that N(t), which takes integer values between
zero and B, is the sum of two independent, binomially distributed
random variables, one with parameters (B –N0) and q1(t), and the
other with parameters N0 and q2(t) (Chiang 1980). In the limit of
large t, both q1(t) and q2(t) approach

(6)

and N is a binomial random variable with parameters B and q.
The expected value of N(t) is the first partial derivative of

F(t, x) with respect to x evaluated at x = 1 (Chiang 1980),

(7)

Data collection

Data were collected at the Municipal Wastewater Treatment Facil-
ity, Stanwood, Washington on weekends during fall (October–
November1994) and spring (February–April 1995) migration.
This sewage treatment facility has one 35-acre stabilization pond
and three 1-acre ponds. The ponds are free of vegetation and sur-
rounded by a high bank, permitting unobstructed observation from
a concealed position. There is little activity at the facility on week-
ends and human disturbance did not unduly influence bird behav-
ior during observation.

Large numbers of many species of waterfowl feed and rest on
the ponds during migration. We observed 14 species of ducks rep-
resenting four tribes (Anatini, Mergini, Aythyini, and Oxyurini)
and 5 other species of aquatic birds (Podilymbus podiceps, Pod-
iceps auritus, Phalacrocorax auritus, Fulica americana and
Branta canadensis). Table 1 summarizes the 19 species’ frequency
and abundance for the two seasons.

The experimental pond was one of the three small ponds; the
other two small and one large pond made up the larger reservoir
from which birds on the experimental pond were drawn. Ourproto-
col for collecting data consisted of three steps. First, we censused
all species in the area by scanning the facility with a Bushnell
Spacemaster 66 mm 15–45× zoom spotting scope and recording
species counts into a micro-cassette recorder. This census provid-
ed an estimate of B, the total birds at the facility. Second, we
flushed all birds off the experimental pond and third, from a posi-
tion out of sight, we observed the experimental pond using Nikon
10×35 binoculars, noting movements to and from the aggregation
into a micro-cassette recorder. This observation provided a record
of N(t).

Data were collected on consecutive weekends during the two
seasons. In the fall of 1994, we conducted 12 aggregation experi-
ments over 8 days. These observations ranged from 36 to 96 min.
In the spring of 1995, we conducted 27 experiments on 11 days;
observation lasted 12–84 min. Figure 1 illustrates the bird-count
time series for two fall experiments. Overall, the 39 experiments
were conducted across a wide range of bird densities (see Tables 1,
2) with between 9 and 16 species present. 

Since birds often arrived (and departed) in quick succession,
we recorded a single event time for birds that came or left close
together (within approximately 0.5 to 1 s of one another). Our
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model, however, assumes that birds moved singly. To compare
field observations to model predictions, we accounted for this
round-off error by separating shared event times by a small time
interval (0.1 s). This choice was appropriate because the smallest
time interval recorded was 0.4 s: replacing ties by one-fourth the
rounding interval is suggested as an appropriate correction to
round-off error (Gail and Ware 1978). When many birds arrived or
departed close together, so that 0.1 s was too large an interval to
maintain the proper sequence of events, we used the largest time
interval less than 0.1 s that maintained the correct sequence. Al-
though these corrections do not exactly reflect the event times, a
more precise accounting of such small intervals would not signifi-
cantly change our results.

Rate estimation

The stochastic model presented here has three parameters: B, the
total number of birds present; ra, the per capita arrival rate; and
rd, the per capita departure rate. Our censuses estimated B direct-
ly and, although B is not known without error, our results are in-
sensitive to large changes in B. The per capita arrival and depar-
ture rates, ra and rd, are unknown and must be estimated from the
data.

Based on investigation of the properties of several estimators
of ra and rd (Silverman and Kot 2000), we chose two estimation
procedures: maximum likelihood (ML) and a sequential least
squares (SLS) technique. The SLS procedure, described below,
performed much better than ordinary, weighted, and generalized
least squares. These three standard least squares techniques pro-
duced highly correlated estimators, and, consequently, both impre-
cise and biased estimates (Silverman and Kot 2000). Model simu-
lations suggested that the ML and SLS estimators of the arrival
and departure rates are comparable, when the model is correct.
Unlike maximum likelihood estimation, the SLS approach de-
pends only on specifying the mean, µ(t), without requiring as-
sumptions about the variability of the process. We use a compari-
son of the ML and SLS estimates to test model fit.

Maximum likelihood estimation

The likelihood function for our model is

(8)

(Silverman and Kot 2000), with ni, the number of birds present at
time ti and ∆ti=(ti+1-ti) , the time between the ith and (i+1)th events.
The interval ∆tA+D is the time from the last event to the end of ob-
servation. A is the number of arrivals; D is the number of depar-
tures. The ni

a s are the nis followed by an arrival, while the  ni
d s are

the nis followed by a departure. L(ra,rd) is maximized when

(9a)

(9b)

(Silverman and Kot 2000).

Table 1 Species presence 
and abundance. Since multiple
surveys were conducted on
each day of observation, sur-
veys on the same day were
weighted equally to estimate
daily abundances and daily
abundances were averaged to
give seasonal estimates. 
Species are ordered by overall
average abundance. Asterisks
denote species observed on the
experimental pond

Species Percent of days Average number 
Fall/Spring

Fall Spring 

Mallard* Anas platyrhynchos 100% 448.1 206.1
Northern Shoveler* Anas clypeata 100 326.6 234.7
Ruddy Duck Oxyura jamaicensis 100 307.3 53.6
Ring-necked Duck* Aythya collaris 100 271.7 16.0
Scaup spp.* Aythya marila/affinis 100 33.6 106.3
American Wigeon* Anas americana 88/100 39.5 65.4
American Coot* Fulica americana 100/91 38.2 3.0
Gadwall* Anas strepera 62/91 4.5 22.0
Green-winged Teal* Anas crecca 100 18.6 9.6
Bufflehead* Bucephala albeola 88/100 3.2 17.6
Northern Pintail Anas acuta 25/27 0.2 3.3
Canada Goose Branta canadensis 62/0 4.4 –
Canvasback Aythya valisineria 88/18 2.6 0.2
Hooded Merganser* Lophodytes cucullatus 62/18 0.9 0.6
Goldeneye spp.* Bucephala clangula/islandica 38/27 0.4 0.5
Horned Grebe Podiceps auritus 75/0 1.0 –
Double-crested Cormorant Phalacrocorax auritus 12/9 0.4 0.1
Cinnamon Teal* Anas cyanoptera 0/18 – 0.3
Pied-billed Grebe Podilymbus podiceps 25/0 0.1 –

Fig. 1 Plot of size of the aggregation as a function of time for ag-
gregations 6 and 12
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Sequential least squares

Ordinary least squares estimators minimize the sum of the squared
deviations between the observations and their mean. As recorded,
the data consist of arrivals and departures and their corresponding
times. We thus know the number of birds present at all times. Our
sequential least squares procedure (SLS) for estimation of ra and
rd relies on the fact that the number of birds outside the experi-
mental pond, (B–ni), was much larger than the number on the
pond, ni, and on the fact that few birds departed early in the pro-
cess.

SLS is a two-step procedure that estimates ra and rd by inte-
grating the squared deviation between the observed aggregation
time series and the expected curve with a partition width, h, of one
one-hundredth the time of observation. First, departures are ig-
nored and ra is estimated by minimizing

(10)

where nc
i is the cumulative number of arrivals that have occurred

from t0 to ti=ih. Second, rd is estimated by minimizing

(11)

where ni is the number of birds on the pond at time ti.

The SLS rate estimateswere calculated with a program written
in C and run on a Dell Latitude LM laptop computer. Subsequent
Monte Carlo test procedures were also written in C and run using
a long-period random number generator (Press et al. 1992).

Model assessment

Assessing the proposed model’s fit to the field observations is dif-
ficult: each time series is a single observation of the process of ag-
gregation and, at best, the time series are realizations of the model
generated by distinctrates (note the wide variation in the estimated
rates, Table 2). Moreover, the probability density function for the
model (see Silverman and Kot 2000) is not easily tested using
standard goodness-of-fit procedures. Therefore, we assess good-
ness-of-fit using two test procedures. First, we compare the ML
and SLS estimates for all 39 experiments simultaneously using a
Monte Carlo test, checking the model’s fit across all observed con-
ditions. This approach determines model fit when each aggrega-
tion is considered a single data point. Second, for each experi-
ment, we apply two standard goodness-of-fit tests to the distribu-
tion of inter-event times. This approach tests the model separately
for every experiment, andinstead of only considering two summa-
ry statistics (estimates of ra and rd), the second test procedure in-
vestigates the fit of the model to each experiment’s entire time se-

Table 2 Date of observation
and parameter values for the 
39 aggregations, including both
maximum likelihood and se-
quential least squares estimates
of the per capita arrival and 
departure rates

Aggregation Date Total Total ra (10–5s–1) rd (10–4s–1)
number birds (B) time (s)

ML SLS ML SLS 

1 Oct 2 650 2,170 8.22 7.48 0.51 0.29
2 Oct 9 879 2,676 0.64 0.73 15.17 15.81
3 Oct 9 920 2,437 1.31 1.21 1.80 0.00
4 Oct 16 1,200 4,637 0.13 0.14 10.38 14.30
5 Oct 16 1,315 4,942 0.78 0.90 0.64 1.13
6 Oct 23 1,865 3,314 1.63 1.84 1.68 1.88
7 Oct 23 1,806 5,010 1.61 1.85 2.21 2.87
8 Oct 29 846 5,736 1.95 2.07 3.30 4.09
9 Oct 29 1,088 4,313 2.07 2.05 4.45 4.23

10 Nov 5 2,748 4,269 0.71 0.74 2.83 2.77
11 Nov 20 1,962 5,288 0.85 0.98 4.66 5.51
12 Nov 26 1,471 4,754 1.62 1.46 0.86 0.61
13 Feb 18 753 959 3.24 3.76 2.32 2.92
14 Feb 18 753 727 5.77 5.40 1.92 3.48
15 Feb 18 753 985 1.50 1.66 4.87 7.93
16 Feb 18 753 1,234 1.30 1.29 8.72 10.32
17 Feb 18 993 2,373 2.23 2.40 0.31 0.52
18 Mar 4 940 1,746 0.98 1.04 18.58 18.65
19 Mar 4 940 2,231 1.93 2.18 7.80 9.06
20 Mar 4 1247 883 1.84 2.34 0.00 0.00
21 Mar 4 1247 1,627 1.30 1.64 0.00 0.76
22 Mar 11 980 1,538 5.35 5.86 3.35 1.09
23 Mar 11 980 1,252 2.47 2.10 5.05 3.85
24 Mar 11 675 1,599 5.17 4.78 1.44 1.91
25 Mar 12 466 1,952 3.38 3.11 4.65 4.09
26 Mar 19 474 3,621 2.30 2.60 1.92 2.72
27 Mar 19 474 3,040 3.82 3.80 0.89 0.56
28 Mar 19 471 1,018 7.17 7.28 0.52 0.34
29 Mar 26 298 3,189 3.28 3.50 2.74 3.27
30 Mar 26 303 2,713 5.73 5.97 0.00 0.00
31 Apr 2 496 3,173 2.11 2.32 0.51 0.94
32 Apr 2 597 2,916 4.38 5.06 1.07 1.56
33 Apr 9 947 3,119 1.94 1.97 2.01 2.48
34 Apr 9 1,032 3,088 1.48 1.79 1.83 2.55
35 Apr 15 891 4,708 3.41 3.03 11.98 12.57
36 Apr 15 795 1,692 3.17 3.70 15.26 14.22
37 Apr 22 1,303 5,024 2.24 1.97 3.62 3.26
38 Apr 22 1,140 2,603 1.16 0.82 2.16 0.30
39 Apr 29 179 4,458 5.52 5.94 2.43 2.79
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ries. Our second testing procedure considers the possibility that
the model fits some, but not all, experiments.

Rate estimation test procedure

Simulations of the model demonstrated that both maximum likeli-
hood and sequential least squares produce rate estimates close to
the true values of ra and rd, when the model holds (Silverman and
Kot 2000). As a result, the two procedures’ estimates are highly
correlated. If the model is correct, the observed correlation be-
tween ML and SLS estimates for the 39 aggregations should be
close to the correlation predicted by the model. If the model fails,
the two techniques will produce estimates that are further from the
true rates and hence less similar to one another. In this case, the
observed correlation between the two procedures’ estimates will
be lower than the correlation predicted by the model.

The SLS estimates are based on the mean, µ(t), while the ML
estimates are based on the likelihood function. Because of this, in-
vestigation of the correlation between the two procedures’ esti-
mates will only demonstrate that the process’ variability was in-
correctly specified and cannot determine that the mean is incor-
rect. When the assumed mean and variability are both incorrect,
ML and SLS will both incorrectly estimate the true rates, so that
the observed correlation between them will be lower than predict-
ed by the model. When the model correctly specifies the mean and
incorrectly specifies the variability, only ML should have difficul-
ty estimating the rates, but the observed correlation between the
estimates willstill be lower than that predicted when the model is
correct. Hence, if the data’s rate estimates have lower correlation
than that predicted by the model, we have evidence that the vari-
ability of the model is incorrectly specified, but cannot determine
if the mean is incorrect.

To test the model by comparing the two estimation procedures’
correlation, we first simulated the stochastic process once for each
of the 39 aggregations. We used the SLS rates (because they de-
pend only on correct specification of the mean) and total birds, B,
from Table 2 for the simulations. Second, we calculated both the
ML and SLS estimates of ra and rd for the 39 simulated runs. Fi-
nally, we calculated Corr(r̂a,ML, r̂a,SLS) and Corr(r̂d,ML, r̂d,SLS) for
the 39 pairs of r̂a and r̂d. We repeated this correlation estimation
499 times to characterize the distribution of the correlation when
the model is correct.

Using a Monte Carlo test procedure separately for the arrival
and departure rates, we compared the observed correlation to the
499 correlations from the model simulations. For a one-sided test,
in which low observed correlation is evidence against the model,
the P-value is the number of stochastic runs with correlation less
than or equal to the observed correlation, plus one, divided by
500.

Inter-event time test procedure

According to the model, the time intervals between consecutive
arrivals and departures are exponentially distributed with rate λi=
ra(B -ni)+rdni. If the model fails the rate estimation test, we can ap-
ply goodness-of-fit tests separately to the time intervals from each
of the 39 aggregation experiments to determine if the failure is due
to a few anomalous experimentsand to explore how the model
fails.

For an aggregation series with ω arrivals and departures, we
must first transform each of the (ω–1) inter-event times, ∆ti, multi-
plying by

(12)

λ̂ i is estimated using the maximum likelihood rates, because the
ML estimates are derived from the likelihood function and are less
variable estimators when the null hypothesis of exponentially dis-
tributed time intervals is correct (Silverman and Kot 2000). Since
λ̂ i depends on the number of birds on the experimental pond, the

goodness-of-fit results are conditional on the number of birds 
observed at each point in time. The transformed time intervals,
∆τi=λ̂ i ·∆ti, should all have an exponential distribution with mean
equal to one, if the model holds. In addition, the transformation

(13)

creates an ordered sample of size (ω–2) from the standard uniform
distribution (Stephens 1986b).

For each aggregation, we performed goodness-of-fit tests on
both the ∆τis and the u(i)s. Results from the two sets of tests are
not independent, but each test provides unique information about
the observed distribution of the inter-event intervals. The u(i)s
maintain information about the order of the intervals: deviations
from the uniform distribution reveal that the process is speeding
up (events occurring more often as time passes) or slowing down
(events occurring less often as time passes). Testing the ∆τis
against an exponential distribution ignores the order of the inter-
vals, but is more powerful at detecting other deviations from expo-
nential.

We used a goodness-of-fit test based on the empirical distri-
bution function, employing the Anderson–Darling test statistic
(Stephens 1986a),

(14)

where ω* is (ω–1) for the exponential test and (ω–2) for the uni-
form test and

(15)

with ∆τ(i), the ith order statistic of the ∆τis.
Thus, z(i) is the cumulative distribution function of the hypoth-

esized distribution, evaluated at the ith largest observation in the
corresponding sample. A2 measures the quadratic distance be-
tween the observed and expected cumulative distribution function
(Stephens 1986a). This test statistic is generally more powerful
than the commonly used Kolmogorov test statistic. As an added
benefit, A2 reaches its asymptotic distribution quickly (when sam-
ple size, ω*, is greater than 3) (Stephens 1986a). Setting the over-
all significance level for the 39 tests to 5%, the α-level for an indi-
vidual test is 0.0013.

Goodness-of-fit tests require complete specification of the dis-
tribution being tested and must be modified if the distribution’s
parameters are estimated. Both our goodness-of-fit tests use data
transformed with estimated arrival and departure rates, not the
true, unknown rates. Transformation of the ∆tis using r̂a,ML could
cause the actual type I error rate to differ from the specified 
α-level. To determine the consequences of estimating ra and rd on
the goodness-of-fit tests, we repeated some tests using a Monte
Carlo test procedure. The P-values from this Monte Carlo proce-
dure are close to those from published tables. Rate estimation does
not affect our test results.

Results

Rate estimation

Table 2 lists the maximum likelihood and sequential
least squares estimates of ra and rd for the 39 aggregation
experiments. Figure 2 includes the mean trajectories 
calculated from both the ML and SLS estimates for three
fall experiments. In all three cases, the means predicted
by the two estimation procedures are quite close to 
one another. ML and SLS produce similar estimates 
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for the 39 aggregations: Corr(r̂a,ML, r̂a,SLS) = 0.987 and
Corr(r̂d,ML, r̂d,SLS) = 0.973.

The mean and variance of the fall departure rates are
similar to those of the spring, while the fall arrival rates
have a smaller mean, but are more variable. The arrival
rate into aggregation 1 is unusually high compared with
the arrival rates for the remaining aggregations. Exclud-
ing this aggregation does not substantially change the re-
lationship between the fall and spring rates, but, without
it, the fall and spring arrival rates have similar standard
deviations.

Model assessment

Before applying statistical tests to the data, it is sensible
to inspect visually the fit of the proposed model. Corre-
spondence between the model’s mean and the data for
the 39 aggregations, observed for differing durations un-
der diverse environmental conditions and community

compositions, varies tremendously. Figure 2 illustrates
three time series from the fall aggregations with the esti-
mated means, µ̂(t), included. Some series seem to follow
the mean of the process almost too well ( e.g., Fig. 2a),
some show moderate variation about the mean (e.g., 
Fig. 2b), while still others deviate a great deal from the
mean and suggest model failure (e.g., Fig. 2c). Figure 3
shows the data and twenty stochastic runs of the model
for aggregation 6 and further illustrates the equivocality
of the model’s fit: while the data fall within the bounds
of the model runs, the observed trajectory seems to differ
in shape from the model’s prediction. Visual inspection
alone is clearly insufficient to determine the success or
failure of the model.

The correlation between the 39 observed r̂a,MLs and 
r̂a,SLSs (Table 2) is 0.987 and the correlation between the
39 observed r̂d,MLs and r̂d,SLSs is 0.973. For ra, the
range of the 499 simulated correlations is [0.986, 0.997]
and P̂=0.012, with the estimated standard error of P̂
equal to 0.005. Thus, the hypothesis that the observed
correlation between the two arrival rate estimators can be
explained by the model is rejected. For rd, the range of
499 simulated correlations is (0.937, 0.998) and
P̂=0.148, with an estimated standard error for P̂ of
0.016. Hence, the hypothesis that the observed correla-
tion between the departure rate estimators can be ex-
plained by the model is not rejected. Overall, these test
results suggest that the model does not hold, because the
correlation between the ML and SLS arrival rate esti-
mates is lower than the model predicts.

This comparison of two rate-estimation procedures,
which considers all 39 experiments simultaneously, in-

Fig. 2a–c Plot of size of the aggregation as a function of time for
three fall experiments (solid step curve). Solid smooth curves are
means calculated using the maximum likelihood estimates; dashed
curves are means calculated using the sequential least squares esti-
mates. Data for a Aggregation 5, an apparent good fit of the mean
to the data; b Aggregation 11, an apparent fair fit of the mean to
the data; c Aggregation 12, an apparent bad fit of the mean to the
data

Fig. 3 Time series for aggregation 6 (heavy step function) and
twenty simulations of the model using the ML estimates for this
aggregation (see Table 2)
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dicates that the model does not adequately describe the
data. Yet, the possibility remains that the model suc-
ceeds for some experiments and fails for others. For ex-
ample, comparison of the ML and SLS rate estimates
(Table 2) shows that aggregation 38 had high values of
r̂a,ML and r̂d,ML relative to r̂a,SLS and r̂d,SLS. In contrast,
the ML and SLS rates estimates for both aggregations 9
and 10 were similar.If the model does fit the data for
some aggregations, determining when and how the
model fails, and contrasting the aggregations which fit
with those that fail, could elucidate waterfowl behavior.
For example, the presence of certain species, the time
ofyear, or the weather may affect bird behavior and
hence model fit.

The results of goodness-of-fit tests, however, reveal
that the model accounts for few, if any, of the experimen-
tal time series. Both the uniform and the exponential test
procedures overwhelmingly reject the model’s predicted
inter-event-time distribution. Eleven of the 39 tests on
the u(i)s reject the uniform distribution. Thirty-five of the
39 tests on the ∆τis reject the exponential distribution.
The eleven time series that failed the uniform goodness-
of-fit test do not show a pattern: four fail because the
process is speeding up, five fail because the process is
slowing down, one fails because the distribution’s tails
are too light, and the other because the tails are too
heavy. Four failures occurred for fall aggregations (1, 2,
7, and 8) and seven occurred for spring aggregations (21,
22, and 34–38). The exponential goodness-of-fit tests,
however, are unambiguous. The model fails because
there are too many small intervals (Fig. 4). The four ag-
gregations (13, 14, 15 and 16) for which the exponential
distribution is not rejected were all short experiments
conducted on the same day.

The inter-event times are not exponentially distribut-
ed because birds move in groups. To explore the possi-
bility that model failure is due to incorrectly defining an
individual duck, instead of a group of ducks, as the unit
of movement, we examined the distribution of inter-
event times between groups of arriving and departing
birds. Besides determining if such a correction might ex-
plain the model’s failure, this examination aids in defin-
ing a distinct group of birds. Although we recorded si-
multaneous arrivals and departures during field observa-
tion, the groups as recorded may not represent meaning-
ful units. Before analyzing group composition to better
understand aggregation and before building a model with
groups of ducks as the basic units, we need to objective-
ly define a group of birds and to determine if the corre-
sponding inter-event times are exponentially distributed.
To do this, we chose a short interval of time, considered
an event to be all birds arriving (or departing) within that
interval of one another, and tested the distribution of the
resulting inter-event times. We repeated this process for
increasing intervals and conducted the two goodness-
of-fit tests for all 39 aggregations for each interval. This
exercise was a simple exploratory approach used to un-
derstand the model’s failure and to suggest a more ap-
propriate modeling approach.

When birds moving within 2 s of one another are con-
sidered members of the same group, the A2 statistic [Eq.
(14)] with overall α=0.05 does not reject the exponential
distribution for any of the 39 aggregations. Figure 4
shows the improved fit for aggregation 37. The uniform
distribution is rejected for the experiment that had the
most movement events (the sample size was 153). De-
spite this single rejection, it is striking that simply by
considering arrivals and departures of groups, instead of
individuals, an important prediction of the model, over-
whelmingly rejected, now appears reasonable.

Composition and characteristics of groups

Our results suggest that the aggregation of waterfowl de-
pends on the movements of groups of birds. Defining a
group as all birds that arrive (or depart) within 2 s of one
another, we now investigate the distribution of group siz-
es. We also compare group size between the two migra-
tory seasons and compare arriving and departing groups.
Finally, we consider group composition and how species
abundance affects participation in mixed-species groups.
These analyses elucidate waterfowl behavior and lay the
groundwork for more detailed dynamic models of water-
fowl aggregation.

Fig. 4 Probability plot for the exponential goodness-of-fit test for
aggregation 37. The observed cumulative probabilities are plotted
on the y-axis and the cumulative probabilities expected under the
exponential are plotted on the x-axis. Stars are the data from the
original goodness-of-fit tests; Pluses are the data with events oc-
curring within 2 s grouped. The dashed line indicates the relation-
ship expected if the data have an exponential distribution
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Methods for group analysis

To determine if there are significant differences in group
size between seasons, we compared mean group size for
the 12 fall aggregations to mean size for the 27 spring ag-
gregations. We randomly sampled 10 groups from each ag-
gregation’s observed group distribution and estimated the
aggregation’s mean group size as the average size of these
10 events. We sampled 10 events because using all the ob-
served events would result in 39 average group sizes with
standard errors varying by up to an order of magnitude.
Ten was the fewest number of arrivals and departures ob-
served (during aggregation 4); 153 events was the most.

This procedure could, by chance, result in non-repre-
sentative samples and reach a conclusion unsupported by
the full group size data set. Thus, we repeated our proce-
dure, re-sampling and conducting the 2-sample Mann-
Whitney test, 100 times.

We also compared mean arriving and departing group
size, using the same approach of samplingto insure all the
averages were calculated from the same number of
groups. Since three experiments had no departures and an-
other eight had less than 4, we compared only the 28 ex-
periments with at least 4 departures. We sampled 4 groups
from each experiment’s arrivals and 4 groups from the de-
partures and conducted 100 Wilcoxon paired-sample tests.

We observed 12 species on the experimental pond 
(Table 1). We classified the 12 species into three categories:
(1) high abundance – species with an overall average abun-
dance of at least 75 birds, (2) moderate abundance – spe-
cies with an overall average abundance of at least 10 and
less than 75 birds, and (3) low abundance – species with 
an overall average abundance of less than 10 birds (see 
Table 1 for average abundance by season). We then ranked
the species according to the proportion of times they moved
in mixed-species groups and compared the abundance cate-
gories by mixed-species group participation.

Results of group analysis

We observed 1,937 groups; 75% were arrivals and 71%
were individual birds. Most birds came alone or in pairs;
21% of all groups consisted of 2 birds, 8% consisted of 3
or more birds, and only four groups had over 8 birds
(one each of 9, 10, 16, and 20).

The average P-value for the 100 tests comparing fall
and spring group size was 0.49 (SE = 0.03). There is no
evidence that mean group size differs between the two
seasons. This conclusion matches our examination of the
rate estimates (Table 2) and model fit: differences be-
tween the fall and spring migratory seasons do not ex-
plain the observed variability in aggregative behavior. In
addition, the average P-value for the 100 tests comparing
arriving and departing group sizes was 0.62 (SE = 0.03).
There is no evidence of a difference in the mean size of
arriving and departing groups.

Twenty-nine percent of the groups consist of two or
more birds. Nearly all of these (93%) are single-species

groups (Table 3). Two or more species arrived or depart-
ed together on only 39 occasions. Of these 39 events, on-
ly 26% include species from different foraging guilds
(i.e., sub-surface feeding diving birds and surface feed-
ing dabbling birds together). Mixed-species groups are
larger than single-species groups, and mixed-guild
groups are larger than mixed-species groups (Table 3).
The two largest groups, one a departure of 16 birds and
the other a departure of 20birds, were both mixed-guild
groups. These two events occurred during observation of
aggregation 35, when two Bald Eagles Haliaeetus leuc-
ocephalus were in the area; an eagle flying over the ex-
perimental pond caused the 20-bird flush. Ducks exhibit
an immediate reaction to eagles (but not to other raptors,
Northern Harrier Circus cyaneus and Red-tailed Hawk
Buteo jamaicensis, present at the sewage ponds) and an
eagle terminated observations on aggregation 22. The
only other comparable disturbance was gunfire, which
terminated observation of aggregation 28. When the two
largest, disturbance-generated groups are removed,
mixed-guild groups are only slightly larger (3.75 birds
per group) than mixed-species groups.

The 12 species’ representation in mixed-species
groups is not in proportion to their abundance either in
the area or on the experimental pond (Table 4). Species
at low densities in the area are most likely members of
mixed-species groups and species at high densities are

Table 3 Number and size of all events involving more than one
bird. The numbers in parentheses are for mixed-guild groups when
the two largest groups are omitted

Type of group Number Average SE
of events size

Single-species 531 2.47 0.04
Mixed-species/ 29 3.66 0.37

Single-guild
Mixed-guild 10 6.60 (3.75) 1.97 (0.53)

Table 4 Species representation in mixed-species groups. Species
ranked according to their relative participation in mixed-species
groups and categorized by their overall abundance. For an individ-
ual species, percent participation is calculated by dividing the
number of mixed-species groups in which the species participated
by the total number of groups in which the species was observed

Species Abundance Frequency in  
category mixed group

Cinnamon Teal Low 20.0%
Hooded Merganser Low 18.8
Goldeneye spp. Low 16.7
American Wigeon Moderate 8.8
Ring-necked Duck High 8.7
Gadwall Moderate 8.0
Green-winged Teal Moderate 7.9
Bufflehead Moderate 5.0
Scaup spp. High 4.3
Northern Shoveler High 4.0
Mallard High 2.1
American Coot Moderate 1.8



leastlikely. Species with lower relative abundance are ex-
pected to have a higher likelihood of mixed-species
group membership, if every bird has an equal chance of
joining any group. However, the observed differences in
the proportions of mixed-species groupsamong the high,
moderate, and low abundance species (Table 4) are much
greater than the differences predicted if birds in the three
abundance categories behave identically: with close to
20% of the low abundance species participating in mixed
groups, approximately 15% of the high abundance spe-
cies ought to participate in mixed groups, instead of less
than 5%.

Discussion

Our goal has been to understand the behavior of water-
fowl in mixed-species aggregations by testing a simple
model’s fit to field observations and by exploring how
the model fails. Despite the model’s simplicity, rigorous
assessment of fit is difficult. We must confront two
problems common in ecological data: lack of indepen-
dence and lack of replication. Each experiment includes
rich detail about waterfowl behavior, yet is only a single
observation of the process. Further, we cannot assume
that the same movement rates were responsible for the
dynamics of all 39 aggregations. We addressed these
problems by examining the model’s fit both between
and within experiments. For both approaches, we used
rates estimated separately for each of the 39 aggrega-
tions.

The predicted means for the ML and SLS estimation
procedures demonstrate the procedures’ similarity and
neither support nor refute the model. Movement rates
vary a great deal from experiment to experiment with no
consistent differences through a single migratory season
or between seasons. Comparison of the two estimators’
correlation reveals that the observed concordance be-
tween the two arrival rate estimators, while high, is less
than that predicted by the model. This result indicates
that the model does not fit all the experimental time se-
ries. Goodness-of-fit tests, performed separately for each
aggregation, rule out the possibility that the model fits a
non-negligible proportion of the experiments. The model
fails convincingly in almost every case. We have clearly
neglected some important component in our model’s for-
mulation.

From an examination of the observed and predicted
quantiles from the goodness-of-fit test, we conclude that
the model incorrectly assumes birds are acting indepen-
dently. Further data exploration suggests that all birds ar-
riving (or departing) within 2 s of one another define a
group. A reasonable new model should incorporate the
movement of these groups.

Analysis of the observed groups produces some inter-
esting information about the dynamics of mixed-species
aggregations of ducks. While a clear majority of birds
move singly, a significant proportion move in pairs
(21%) and in groups of three or more (8%). Most groups

consist of single species; an extension of the current
model should consider the possibility that each species
has its own unique movement rates and investigate rate
differences among species. Although such an analysis is
hampered by the rarity of some species, differences
among more abundant species are likely to emerge. For
example, one abundant species, the Ruddy Duck Oxyura
jamaicensis, was never present in the experimental ag-
gregations (Table 1). Since Ruddy Ducks are diving
birds with small wings that have difficulty taking flight
(Palmer 1976), they stay on the large pond once they
have arrived at the facility and dive when threatened or
disturbed. For the 12 species that did participate in the
aggregations, however, differences in behavior are much
less obvious.

Large single-species groups were present in similar
proportions in the fall and spring (7.3%of fall events
and 6.9% of spring events were single-species groups of
3 or more birds), suggesting little difference in intraspe-
cific association between the two migratory seasons.
Our data support evidence of conspecific attraction
among dabbling ducksfrom the breeding season: Pöysä
(1987, 1991) and Pöysä et al. (1998) found that both
Mallards Anas platyrhynchos and Green-winged Teal
Anas crecca were attracted to breeding sites with con-
specifics already present, perhaps because established
birds signal high quality habitat. Our data also demon-
strate that the tendency to move exclusively with con-
specifics is weaker for the less abundant species. Mem-
bers of species at low density are most likely to asso-
ciate with other species, usually species from the same
feeding guild. In a study of foraging among co-occur-
ring dabbling ducks, Pöysä (1986) also found density-
dependent behavior; he reports convergent niche shifts
attributable to less numerous species imitating more nu-
merous species.

Despite of the model’s failure, waterfowl aggregation
at Stanwood does not seem to be a complex process. In
this case, a diverse and changeable collection of species
exhibits simple rules of behavior. Intervals between the
movements of groups of ducks appear exponentially dis-
tributed and we find no evidence for negative interac-
tions among species. Besides a tendency for rare species
to be found in mixed-species groups, we did not detect
evidence for positive associations among species, such
as common species-pairs in movement groups. The birds
did, however, exhibit positive intraspecific association,
since they frequently moved in single-species groups.
While ducks appear to prefer the presence of conspecif-
ics, species at low density may be better off associating
with other species than remaining solitary. Overall, the
ducks exhibited little association with heterospecifics.
Their short-distance movement patterns are both variable
and unconnected to season or time in the migration. A
more complicated model which includes group move-
ment by individual species may, of course, demonstrate
interspecific avoidance or attraction undetected by the
current analysis.
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