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Abstract. This paper describes the overall design and archi-
tecture of the Timber XML database system currently being
implemented at the University of Michigan. The system is
based upon a bulk algebra for manipulating trees, and na-
tively stores XML. New access methods have been developed
to evaluate queries in the XML context, and new cost esti-
mation and query optimization techniques have also been de-
veloped. We present performance numbers to support some
of our design decisions. We believe that the key intellectual
contribution of this system is a comprehensive set-at-a-time
query processing ability in a native XML store, with all the
standard components of relational query processing, including
algebraic rewriting and a cost-based optimizer.

Keywords: Hierarchical – Semi-structured – Document man-
agement – Query processing – Algebra

1 Introduction

With the growing popularity of XML, it is clear that large
repositories of XML data will emerge. In this paper, we de-
scribe the architecture of Timber, a native XML data manage-
ment system being developed at the University of Michigan
[72].

One popular technique for managing XML data is to map
the data to existing (relational) database systems. However,
such a mapping often results in either an unnormalized rela-
tional representation or in a very large number of tables, due to
the flexible nature of XML, with attributes and sub-elements
frequently missing, and repetition of sub-elements being al-
lowed.
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Our approach in Timber is to start from scratch and develop
an XML data management system from the ground up. Many
components of a standard database system can be reused with
no change. For instance there is no need to modify transac-
tion management facilities. However, other components must
be modified to accommodate the new data model and query
language. The overall architecture of the Timber system is
presented in Sect. 3.

Our challenge is to develop a native XML database, in
which XML data is stored directly, retaining its natural tree
structure.At the same time, we would like to obtain all the ben-
efits of relational database management, such as declarative
querying and set-at-a-time processing.

To be able to obtain efficient processing on large data-
bases, we require set-at-a-time processing of data. In other
words, we require a bulk algebra that can manipulate sets of
trees: each operator on this algebra would take one or more
sets of trees as input and produce a set of trees as output. We
have devised such an algebra, called TAX, and we present this
in Sect. 4. The biggest challenge in devising this algebra is
the heterogeneity allowed by XML, and in XQuery [9], the
W3C recommended declarative language for querying XML
databases today.

Given an algebra, we need an efficient query evaluation
mechanism. This is the subject of Sect. 5. After describing the
overall structure of the query pipeline, we delve into a couple
of access methods of significance.

A query optimizer is able to take a declarative query speci-
fication, and choose a suitable evaluation plan using the avail-
able access methods, making use of cost estimates for various
operations and algebraic identities. We present the architecture
of our optimizer in Sect. 6. We also present novel techniques
for obtaining size (and cost) estimates.

After a brief discussion of issues regarding updates in
Sect. 7, we finally wrap up with a discussion of the current
status, and some indications of performance, in Sect. 8. We
begin by setting the context for our work in Sect. 2
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department

faculty staff faculty lecturer

name RA name name secretary RA RA RA name TA TA TA

faculty research scientist

name secretary TA RA RA TA name secretary RA RA RA RA

J. Smith

K.Blue M.Black

T.Brown H.Grey F.Lee

L.Young P.White

Tom

Peter Pam DJ Bob Tod Max Ann Lisa

Jerry Tony Rich R.King Mark Andy Chris

Fig. 1. Tree representation of an example XML document, D

2 Motivation and related work

Example 1 Figure 1 shows a very simple XML document. The
personnel of a department can be faculty, staff, lecturer or
research scientist. Each of them has a name as identifica-
tion. They may or may not have a secretary. Each faculty
may have both TAs and RAs. A lecturer can have one or more
TAs, but no RA. A research scientist can have any number
of RAs, but no TA.

Some characteristics of XML data are obvious even from
this simple example. XML has a tree structure: elements in
the document can be structurally related and these structural
relationships are meaningful. XML also has flexibility – the
number of RAs and TAs associated with personnel is allowed
to vary. While there are constraints on what is allowed, it is
still quite possible for certain classes of sub-elements to be
missing altogether. For instance, there may be a lecturer who
has no teaching assistants at all.

Several mapping techniques have been proposed [25,34,
53,54] to express tree-based XML data to flat tables in a
relational schema. Due to the possible absence of attributes
and sub-elements, and the possible repetition of sub-elements,
XML documents can have a very rich structure, as we just
saw. It is hard to capture this structure in a rigid relational
table without dividing the document into very small standard
“units” that can be represented as tuples in a table. Therefore, a
simple XML schema often produces a relational schema with
many tables. Structural information in the tree-based schema
is modeled by joins between tables in the relational schema.
XML queries are converted into SQL queries over the rela-
tional tables, and even simple XML queries often get translated
into expensive sequences of joins in the underlying relational
database.

Example 2 A typical translation [53] of the schema of Fig. 1
would map the lecturer elements to a table, and store TA
elements as tuples in another table. To find the TAs assisting
a specified lecturer will then require a join between the two
tables. More complex queries will require multiple joins.

Driven by the arguments above, one is persuaded to seek
a direct implementation of XML data management, where
XML data is not translated into rigid relations. There are sev-
eral implementations of XML storage that are independent
of relational databases [49,42,65,67,68]. Several of these are

driven by the document (or programming language) commu-
nity, rather than the database community.The implementations
are procedural, directly evaluating queries as a series of nested
FOR loops. They are also tuple-at-a-time, whereas it has been
well established through the experience of the database com-
munity that set-at-a-time access is essential for good perfor-
mance. As such, these implementations do very well for small
data sets, but do not scale very well to large data sets. For in-
stance, Xindice (nee dbXML) recommends [4] that its system
not be used for documents larger than 5 MB!

Other solutions have also been proposed. For instance,
XML databases have been implemented on top of an
object-oriented database [21,36,66,48] and a semi-structured
database [39,46,38]. Such implementations suffer from a
combination of the drawbacks listed above for the two ex-
treme scenarios. Tamino is a leading commercial “native”
XML database, yet descriptions of its architecture [51,52]
are fairly sketchy. Tamino uses an evolution of the ADABAS
nested relational engine as its data store, with the bulk of the
innovation in the product coming from new index structures,
support for handling XML schematic information, and the web
interface layer.

Recently, Natix [31,30] has been developed as a storage
manager suitable for XML data. The focus is on efficient man-
agement of tree-structured data at the level of page allocation
and physical placement. Whereas our current development is
on top of the more “standard” Shore storage manager, we in-
tend to consider switching to Natix as the latter matures.

Our project is aimed centrally at building an efficient XML
database engine. As such it differs from related efforts at data
integration [6,57] and querying XML over the web [44]. How-
ever, each of these important research efforts requires at least
some management and querying of XML data as part of their
research effort. As such, each is exploring issues that closely
relate to ours in many cases. For instance, we will mention
techniques used in the Niagara [44] system at several places
below.

Finally, we mention the Toronto XML project [5], aimed
at managing XML data using an approach complementary to
ours.Whereas we are developing new techniques for managing
and querying tree-structured XML data, the Toronto project
maps XML into flat files, RDBMS or OODBMS, whichever
is most appropriate for a given class. The core of their effort is
in managing the metadata for this mapping and in developing
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Fig. 2. TIMBER Architecture overview

clever new index structures for this heterogeneous represen-
tation.

3 System architecture

The overall architecture of Timber is shown in Fig. 2. We build
our system on top of Shore [8], a popular back-end store that
is responsible for disk memory management, buffering and
concurrency control. XML data, index and metadata are also
stored in Shore through Data Manager, Index Manager and
Metadata Manager, respectively.

3.1 Data storage

The Data Parser takes an XML document as input, and pro-
duces a parse tree as output. The Data Manager takes each
node of this parse tree as it is produced, transforms it incre-
mentally into an internal representation and stores it into Shore
as an atomic unit of storage.1 A set of navigation interface and
scan interface is provided for the Query Evaluator to retrieve
data, one node at a time. These interfaces can also be used by
Index Manager and Metadata Manager, to generate the data
they need.

1 We found that Shore had considerable overheads in dealing with
small objects. We are engineering our system to package our data in
page-size containers, and handing Shore an entire container as an ob-
ject. At present, this engineering optimization has been implemented
in our Query Evaluator for intermediate results that may have to be
read and written multiple times in quick succession. This optimiza-
tion is less critical for the actual data itself, and has not yet been
implemented in the Data Manager.

For storage efficiency reasons, a node in the Timber Data
Manager is not exactly the same as a DOM [62] node. There
is a node corresponding to each element, with child nodes for
sub-elements. However, all attributes of an element node are
clubbed together into a single node, which is then stored as a
child node of that element node. In addition, the content of an
element node, if any, is pulled out into a separate child node.
If the node is of mixed type, with multiple content parts inter-
spersed with sub-elements, each content part is pulled out into
a separate child node. Finally, due to our focus on data man-
agement issues, all processing instructions, comments, and
such are simply ignored. In a future version of our system, we
could create yet another child node of the element node with
all such data.

An inclusion relationship between an element and its sub-
elements is the tightest possible bond between two entities in
a database. Entire sub-trees are frequently requested. In fact,
in a document representation of the database, a sub-tree corre-
sponds to a contiguous fragment of the document.As such, the
determination of parent-child and ancestor-descendent con-
tainment relationships is a very frequent operation in XML
query processing. It has been observed [43,12,2] that it is
possible to associate a numeric start and end label with each
data node in the database, defining a corresponding interval
between these labels such that every descendant node has an
interval that is strictly included in its ancestors’ interval. If
each node is also labeled with its Level, or nested depth of the
node in the document, then parent-child relationships can also
be found. The relevant formulae are:

• Ancestor-descendant relationship: a node (S1, E1, L1) is
the ancestor of node (S2, E2, L2) iff S1 < S2 ∧E1 > E2.

• Parent-child relationship: a node (S1, E1, L1) is the parent
of node (S2, E2, L2) iff S1 < S2 ∧ E1 > E2 ∧ L1 =
L2 − 1.

(S1 and S2 are start labels, E1 and E2 are end labels, and L1
and L2 are level labels in these formulae.)

We will discuss, in Sect. 5, how we use these formulae
in Timber. For the present, we focus on how these start, end
and level labels are managed. Conceptually, these labels are
additional attributes created automatically by the system and
associated with each node. Where document boundaries are
important, one could create separate labels for each document,
so that an additional doc label would be required to match in
addition to the interval subsumption described above. It is easy
to map between such a multi-document model, and a model
in which the ranges of label values for each document are
assigned to be non-overlapping, doing away with the need for
a separate doc attribute.

Updates are an issue in any such labeling scheme, see [16].
It is conceivable that a complete re-labeling could be required
for each update, leading to very poor update performance. We
address this issue by leaving gaps between successive label
values. With this mechanism, relabeling is required only if a
large number of insertions take place within the same small
label value range. If updates are well distributed, no relabel-
ing may be required for a long time. See [12]. We use double
values for these labels in the current version of Timber, as an
“automatic” means of leaving gaps, at least to within machine
precision. Note that as new data is appended (as opposed to
being inserted in the middle), new larger label values can sim-
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ply be manufactured for the appended nodes with no effect on
the existing nodes.

In relational databases, a record identifier (typically called
an “rid” or a “tid”) is used to identify each record. This is not
quite an identifier in the sense of an object-oriented database –
there is no concept of object identity. It frequently is a function
of physical placement of the record (like a physical pointer),
but it does not have to be: it is truly a logical identifier. It is
also not visible to the user at the query level. Nonetheless,
it plays a central role in relational query processing. For an
XML database, we seek a corresponding node identifier. XML
permits an optional ID attribute, but this is not quite it, since
this is user-visible, and is optional, and further is not even
applicable for nodes that do not correspond to XML elements
(such as attributes and comments). The normal solution would
be to invent such an identifier for our system. However, we find
that the tuple of start, end, and level labels serves this purpose
admirably. As such, we shall use this triple of labels as node
identifier. Note that while start alone suffices to serve as a
node identifier, using the triple as a node identifier enables
efficient index-based query processing, as we’ll see later.

The physical storage order of XML elements can signif-
icantly impact the cost of data access. Since we expect sub-
elements to be requested frequently with an element, ideally
we would like to cluster these together. It is generally be-
lieved that storing XML data in document order (or pre-order
tree traversal order) is the most desirable. This is what we do.
An equivalent way of expressing this is that we would like to
store our nodes sorted by the value of their start labels. Again,
updates are an issue. See Sect. 7.

3.2 Index storage

There is a rich history of work on index structures suited to
specific purposes. In particular, we draw inspiration from the
work done in the context of object-oriented systems, such as
[33]. More recently, novel path indices have been proposed
for XML and semi-structured data [41,32,18]. Schema sum-
marization structures have also been proposed [27,28]. We are
intensively studying this problem, but at the current time have
only single-node indices implemented in Timber.

We construct value indices on attribute values, whether
these are numeric or character string. We also construct in-
dices on element content, when this content is recognized as
a number. We also construct term-based inverted indices on
element content when this is a large piece of text. In addition,
we construct an index on tag name: that is, given a tag name,
we can return all the elements with the specified tag. All our
indices are stored using the B-Tree index facility provided by
Shore.

Index structures typically return a list of Rids in relational
systems. Correspondingly, they return lists of start, end and
level labels in an XML database.

3.3 Metadata storage

Timber has a metadata store that is, for the most part, not
remarkable. There is the usual information regarding attribute
types, data set sizes and indices constructed. The histograms

maintained for cost estimation purposes are novel, and are
described in Sect. 6.

Schema plays a crucial role in traditional databases, and
table structure is a crucial part of the metadata maintained.
However, in the design of XML, much care has been taken
to make sure that a great deal can be accomplished even in
the absence of schema (or DTD).2 In the same spirit, we have
designed the core of Timber not to have any dependence on
schema whatsoever. The bulk of the description in this paper
is with regard to the Timber core, and hence has little mention
of schema.

Knowledge of schema can play an important role in data
layout, in choice of index structures, and in query optimiza-
tion. Our goal is to use this information, when available, to
advantage; while continuing to retain reasonable performance
even when schema information is not available. For instance,
even data statistics are collected in our position histograms
(described in Sec 6 below), without specific reference to the
schema.

3.4 Query processing

XML queries in XQuery [9]3 are parsed into an algebraic op-
erator tree by the Query Parser. (The tree algebra used for
this purpose is described in Sect. 4). The Query Optimizer
reorganizes this tree, based on a set of rules and metadata in-
formation, and performs the required mapping from logical to
physical operators. The resulting query plan tree is evaluated
by the Query Evaluator, pipelined one operator at a time, by
means of a set of calls to the Data Manager and Index Manager,
which in turn call Shore storage.

4 Tree algebra

An XML document is a tree, with each edge in the tree rep-
resenting element nesting (or containment). See Fig. 1, for
example. Structural relationships in this tree are central to
most XML querying.As such, an appropriate algebra for XML
should manipulate sets of trees. That is, each operator in the
algebra should take as input one or more sets of trees and
produce as output a set of trees.

Order is important to XML documents. As such, the trees
manipulated by the algebra should be ordered. (This is true,
even if queries frequently do not care about the order. See
labeled paragraph on ordering later in this section.) Moreover,
each node in a tree represents an XML element, and is thus
labeled with the element tag and any attributes of the element.
In short, we require an algebra to manipulate sets of ordered
labeled trees.

XML also permits references, which are represented as
non-tree edges, and may be used in some queries. These are
important to handle, and our algebra is able to express these.

2 In fact, there is not yet complete agreement with regard to the
best means of expressing XML schema information [70,69].

3 We have designed Timber to be as language independent as pos-
sible. We have written parsers for other languages, including Quilt
[10], XML-QL [19], and XQL [47], but no longer maintain these.
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$1

$2 $3

pc pc

$1.tag = faculty &
$2.tag = secretary &
$3.tag = RA

Fig. 3. Pattern tree, P , for a simple query

$1

$2 $3

pc pc

$1.tag = department &
$2.tag = faculty &
$3.tag = lecturer &
$4.tag = name &
$4.content = “K.Blue” &
$5.tag = TA &
$6.tag = TA &
$5.content = $6.content

$4 $5 $6

pcpcpc

Fig. 4. Pattern tree, P ′, for a less simple query

faculty

secretary:
F.Lee

RA:
Jerry

faculty

secretary:
F.Lee

RA:
Tony

faculty

secretary:
F.Lee

RA:
Rich

faculty

secretary:
M.Black

RA:
Pam

faculty

secretary:
M.Black

RA:
DJ

Fig. 5. Witness trees for the pattern P of Fig. 3

However, there is a qualitative difference between these ref-
erence edges, which are handled as “joins”, and containment
edges, which are handled as part of a “selection”.

To be able to obtain efficient processing on large databases,
we require set-at-a-time processing of data. In other words,
we require a bulk algebra that can manipulate sets of trees:
each operator on this algebra would take one or more sets
of trees as input and produce a set of trees as output. Using
relational algebra as a guide, we can attempt to develop a suite
of operators suited to manipulating trees instead of tuples.

Heterogeneity. Each tuple in a relation has identical structure
– given a set of tuples from some relation in relational algebra,
we can reference components of each tuple unambiguously by
attribute name or position. Trees have a more complex struc-
ture than tuples. More importantly, sub-elements can often be
missing or repeated in XML. As such, it is not possible to
reference components of a tree by position or even name. For
example, in a bibliographic XML tree, consider a particular
book sub-tree, with nested (multiple) author sub-elements. We
should be able to impose a predicate of our choice on the first
author, on every author, on some (at least one) author, and
so on. Each of these possibilities could be required in some
application, and these choices are not equivalent.

We solve this problem through the use of pattern trees to
specify homogeneous tuples of node bindings. For example,
a query that looks for faculty members who have both a sec-
retary and an RA can be expressed by a pattern tree shown in
Fig. 3. Matching the pattern tree to the example database, the

result is the sub-trees, which are rooted at element “faculty”
and have two child elements, “secretary” and “RA”. From the
example XML document in Fig. 1, we can see that the sub-
trees for faculty “K.Blue” and “H.Grey” will be selected, as
shown in Fig. 5. Such a returned structure, we call a witness
tree, since it bears witness to the success of the pattern match
on the input tree of interest. One witness tree is produced for
each combination of node bindings that matches the pattern.
The set of witness trees produced through the matching of a
pattern tree are all homogeneous: we can name nodes in the
pattern trees, and use these names to refer to the bound nodes
in the input data set for each witness tree. A vital property
of this technique is that the pattern tree specifies exactly the
portion of structure that is of interest in a particular context –
all variations of structure irrelevant to the query at hand are
rendered immaterial. In short, one can operate on heteroge-
neous sets of data as if they were completely homogeneous,
as long as the places where the elements of the set differ are
immaterial to the operation.

Conditions other than tag names may be associated with
pattern trees. Figure 4 shows a more complex pattern tree
that places a number of additional conditions on the nodes
participating in the pattern. Node $2 can only be matched by
a faculty whose name is “K.Blue”. Furthermore, this faculty
is required to have a TA (at node $5) who is also a TA (at node
$6) to some lecturer (node $3) in the same department (node
$1).

XPath is very popular, and is frequently used in place of
XQuery for XML query processing. In addition, the crucial
variable-binding FOR clause (and also the LET clause) of
XQuery uses a notation almost identical to XPath. Thus, it is
worth spending a moment to see how the notion of pattern tree
relates to an XPath expression. The key difference is that one
XPath expression binds exactly one variable, whereas a single
pattern tree can bind as many variables as there are nodes
in the pattern tree. As such, when an XQuery expression is
translated into the tree algebra, the entire sequence of multiple
FOR clauses can frequently be folded into a single pattern tree
expression.

All operators in TAX take collections of data trees as in-
put, and produce a collection of data trees as output. TAX is
thus a “proper” algebra, with compositionality and closure.
The notion of pattern tree plays a pivotal role in many of the
operators. Below we give a sample of TAX operators by de-
scribing briefly how selection, projection and grouping work.
Further details and additional operators can be found in [29].

Selection. The obvious analog in TAX for relational selection
is for selection applied to a collection of trees to return the in-
put trees that satisfy a specified selection predicate (specified
via a pattern). However, this in itself may not preserve all the
information of interest. Since individual trees can be large, we
may be interested not just in knowing that some tree satisfied
a given selection predicate, but also the manner of such satis-
faction: the “how” in addition to the “what”. In other words,
we may wish to return the relevant witness tree(s) rather than
just a single bit with each data tree in the input to the selection
operator.

Selection σP,SL(C) in TAX takes a collection C as input,
and a pattern P and adornment sl as parameters, and returns
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an output collection. Each data tree in the output is the wit-
ness tree induced by some embedding of P into C, modified as
possibly prescribed in sl. The adornment list, sl, lists nodes
from P for which not just the nodes themselves, but all descen-
dants, are to be returned in the output. If this adornment list
is empty, then just the witness trees are returned. Contents of
all nodes are preserved from the input. (Note that the result of
the selection will in general not be a homogeneous set unless
the adornment list is empty. The set of witness trees is always
homogeneous, and this is what matters.) In addition, the rela-
tive order among nodes in the input is preserved in the output.
Because a specified pattern can match many times in a single
tree, selection in TAX is a one-many operation. This notion of
selection is strictly more general than relational selection.

Consider once more the example database of Fig. 1 and
the pattern tree shown in Fig. 3. A selection using this pat-
tern tree, P , and an empty adornment list, on the example
database, D, would be written σP,{}(D). One expects that the
outcome would be the faculty members of interest (K.Blue
and H.Grey), and possibly the sub-tree rooted at each. How-
ever, it is not enough to return the input database tree in the
output as satisfying the selection “predicate”. In relational al-
gebra, selection simply filters elements of a set – the output of
a selection operator is a subset of its input. In a tree algebra,
selection does more than filter since it identifies the relevant
matching portion of the input document (set element). Where
multiple matches occur, each match is shown separately in the
output, as in Fig. 5. Information retrieval systems sometimes
highlight search terms in the retrieved documents: our pro-
posal takes this idea one step further for selection queries in a
tree algebra.

Projection. For trees, projection may be regarded as elimi-
nating nodes other than those specified. In the substructure
resulting from node elimination, we would expect the (par-
tial) hierarchical relationships between surviving nodes that
existed in the input collection to be preserved.

Projection πP,PL(C) in TAX takes a collection C as input
and a pattern tree P and a projection list pl as parameters. A
projection list is a list of node labels appearing in the pattern
P , possibly adorned with ∗. All nodes in the projection list
will be returned. A node labeled with a ∗ means that all its
descendants will be included in the output. Contents of all
nodes are preserved from the input. The relative order among
nodes is preserved in the output.

A single input tree could contribute to zero, one, or more
output trees in a projection. This number could be zero, if there
is no witness to the specified pattern in the given input tree.
It could be more than one, if some of the nodes retained from
the witnesses to the specified pattern do not have any ancestor-
descendant relationships. This notion of projection is strictly
more general than relational projection. If we wish to ensure
that projection results in no more than one output tree for each
input tree, all we have to do is to include the pattern tree’s root
node in the projection list and add a constraint predicate that
the pattern tree’s root must be matched only to data tree roots.

A simple projection example is shown in Fig. 6a. Part b
for this figure shows how this projection would apply in three
cases. The first faculty member has an RA, a TA, and a name;
the pattern tree match is straightforward; and the projection
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$1.tag = faculty &
$2.tag = RA &
$3.tag = name

PL: $1, $3
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$2

faculty

name

pc pc

RA

faculty
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Fig. 6. A sample projection operator πP,PL(C). a shows the input
pattern tree P and projection list PL; b shows an example application
on two different input trees. To minimize clutter, labels have been
dropped from ad edges in the pattern tree. pc edges are labeled

result is what one would expect. The second faculty mem-
ber has two RAs, and hence has two separate witness trees
that would match the specified pattern tree. Both these wit-
ness trees are identical with respect to the projected elements
(“faculty” and “name”). As such, only one result is produced.
This is duplicate elimination by “identifier”, and is used by
all TAX operators to remove gratuitous duplicates, as in this
example. Note that this is different from duplicate elimination
by value, where we notice identical values for the names and
other attributes of two different faculty members, and hence
remove one of them. The latter operation is potentially expen-
sive, and carried out only upon explicit request. The former
operation can actually be used to reduce the cost of operator
evaluation, as shown in [3]. The third faculty member in the
figure has no RAs, and hence produces no results on account
of no pattern tree match. This is so, in spite of the fact that
this faculty member does have all the attributes retained in the
projection.

In relational algebra, one is dealing with “rectangular”
tables, so that selection and projection are orthogonal oper-
ations: one chooses rows, the other chooses columns. With
trees, we do not have the same “rectangular” structure to our
data. As such selection and projection are not so obviously
orthogonal. Yet, they are very different and independent op-
erations, and are generalizations of their respective relational
counterparts.

Ordering. As noted above, trees in XML are ordered. How-
ever, queries often do not care about this order. As such, we
need to allow for pattern trees that match while preserving
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order, and pattern trees that do not necessarily preserve order
when matching. Rather than introduce one additional choice
variable, we specify pattern trees to be unordered except where
ordering constraints are explicitly specified. Even for a com-
pletely ordered tree, we can show that the additional length of
the pattern tree specification does not asymptotically increase
the size of pattern tree description. The reason is that order
is a transitive notion, so only the transitive reduction of the
ordering needs to be specified. In the case of total ordering
of n nodes, this requires n − 1 order relations between im-
mediate successors. A benefit of our approach is that ordering
constraints can be specified selectively where they matter in a
pattern tree.

Sets, by definition, are unordered. In SQL, we often require
the answer set to be sorted by some criterion. This sorting is
not part of the relational algebra – instead it is performed at
the end, as part of the output. In our algebra, trees are ordered
while sets are unordered, so we have a greater richness, and it
actually becomes possible to incorporate sorting (and ordering
operations in general) as part of the algebra. Specifically, an
unordered set of trees can be combined into a single tree by
ordering the set of trees and then making each an immediate
sub-tree of a new root node.

XQuery permits elements to be ordered according to “doc-
ument order”. In fact, this is the default order expected if none
other is specified. We use the start label of a node for this
purpose.

Grouping. In relational databases, tuples in a relation are of-
ten grouped together by partitioning the relation on selected
attributes – each tuple in a group has the same values for the
specified grouping attributes. Given the more complex struc-
ture of trees, there may be a good reason to group based on
some arbitrary function of each tree rather than a simple equal-
ity on selected attributes. For instance, we may wish to group
faculty in the example of Fig. 1 based on the number of RAs
associated with the faculty member. These numbers are never
explicitly stored in the database anywhere, and are themselves
obtained as the result of a “structural aggregation”. For another
example, books in a bibliographic database may be grouped
based on the state of residence of the first author.

A source of potential difficulty is that grouping may not
induce a partitioning due to repeated sub-elements. If a book
has multiple authors, then grouping books by author will result
in this book being repeated as a member of multiple groups.

A deeper point to make is that grouping and aggregation
are not part of relational algebra, though they are important
physical operators in relational database systems. The reason
is that these operators cause a “type violation”: a grouping
operator maps a set of tuples to a set of sets of tuples, and an
aggregation operator does the inverse. The flexibility of XML
permits grouping and aggregation to be included within the
formal tree algebra, at the logical level.

We formalize this as follows. The groupby operator
γP,gb,ol(C) takes a collection C as input and the following pa-
rameters.A pattern tree P; this is the pattern used for grouping.
A grouping basis gb that lists elements by label in P (and/or
attributes of elements), whose values are used to partition the
set W of witness trees of P against the collection C. Element
labels may possibly be followed by a ‘*’. An ordering list ol,

FOR $a IN distinct-values(document(“bib.xml”)//author)
RETURN

<authorpubs>
{ $a }
{

FOR $b IN document(“bib.xml”)//article
WHERE $a = $b/author
RETURN $b/title

}
</authorpubs>

Fig. 7. Query 1: group by author query (After XQuery use case
1.1.9.4 Q4)

each component of which comprises an order direction and
an element or element attribute (specified by label in P), with
values drawn from an ordered domain. The order direction is
either ascending or descending. This ordering list is used
to order members of a group for output, based on the values
of the component elements and attributes, considered in the
order specified.

The output tree Si corresponding to each group Wi is
formed as follows: the root of Si has tag tax group root
and two children: (a) its left child � has tag tax grouping
basis, and one child for each element in the grouping basis

above, appearing in the same order as in the grouping basis.
If a grouping basis item is $i or $i.attr, then the corre-
sponding child is a match of this node. If the item is $i*,
then in addition to the said match, the subtree of the input tree
rooted at the matching node is also included in the output; and
(b) its right child r has tag tax group subroot. Its chil-
dren are the roots of input trees in C that correspond to witness
trees in Wi, ordered according to the ordering list. Input trees
that produce more than one witness tree will appear more than
once.

Following the principles outlined above, we have devel-
oped TAX, a tree algebra for XML. The operators are selec-
tion, projection, product, set union, set difference, renaming,
reordering, and grouping. Details can be found in [29]. It has
been shown that the core of XQuery can be expressed in terms
of TAX operators. The first step in the Timber system is to
parse a given XQuery expression to obtain an equivalent TAX
expression, which can subsequently be optimized using alge-
braic identities.

A frequent case is when we rephrase XQuery expressions
written as nested FLWR clauses into simple (“single-block”)
tree algebra expressions involving grouping. The following
example demonstrates how this works. Details of the described
algorithm can be found in [45]. Let’s consider a sample nested
FLWR statement, as seen in Query 1 in Fig. 7.

A naı̈ve translation of this would produce an inefficient
nested FOR loop. The outer combination of FOR/WHERE
clauses will generate a pattern tree (“outer” pattern tree). A se-
lection will be applied on the database4 using this pattern tree;
the selection list consists of the bound variables in XQuery.
For Query 1 the pattern tree is shown in Fig. 8a. The selection
list is $2.

4 The database is a single tree document
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$1

$2 $4

ad

$1.tag = TAX_prod_root &
$2.tag = doc_root &
$3.tag = author &
$4.tag = doc_root &
$5.tag = article &
$6.tag = author &
$3.content = $6.content

$1

$2

ad
$1.tag = doc_root &
$2.tag = author

“outer”
pattern tree

“join-plan” pattern tree

(a)

(b)

$5

$6

pc
pc

pc

$3

pc

Fig. 8. The generated selection pattern trees of a naı̈ve
parsing of query 1 in Fig. 7

The inner combination of FOR/WHERE clauses will gen-
erate a pattern tree that describes a left outer join between all
the authors of the database, as selected already and bound to
variable $a, and the authors of articles. This pattern tree is
shown in Fig. 8b. A left outer join is generated using this pat-
tern tree and applied on the outcome of the “outer” selection
and the database. It uses a selection list $5. Following this join
operation there will be a projection with projection list $5*
and then a duplicate elimination based on articles.

To produce the final result the necessary stitching will take
place using a full outer join and then a renaming to generate
the tag name for the answer.

With the use of grouping, we can produce a simpler and
more efficient execution. We present next the outline of an
algorithm to detect the naı̈ve execution, and rewrite it more
efficiently with the grouping operator.

1. Construct an initial pattern tree from the “inner” FLWR
statement and consisting of the bound variables and their
paths from the document root, including any conditions
that apply to these variables without reference to variables
bound in the outer loop. For Query 1 this pattern tree is
seen in Fig. 9a. We apply a selection using this pattern tree
with selection list the elements corresponding to the bound
variables and a projection with a projection list similar to
the selection list. For Query 1 those lists will be $2 and
$2*, respectively.

2. Construct the input for the GROUPBY operator.
• The input pattern tree is generated from the join plan

pattern tree of naı̈ve parsing. It consists of the bound
variable of the “inner” statement and the node where
the join was specified. For Query 1 this is shown in
Fig. 9b.

• The grouping basis will be the join value of the nested
query. For Query 1 this will correspond to the author
element or $2.content in the group by pattern tree of
Fig. 9b.

3. Apply the GROUPBY operator on the collection of trees
generated from step 1. This will create intermediate trees
containing each grouping basis element and the corre-
sponding pattern tree matches for it. For Query 1 the tree
structure will be as in Fig. 9c.

4. A projection is necessary to extract from the intermediate
grouping tree the nodes necessary for the outcome. The
projection pattern tree is generated from each argument of
the RETURN clauses. For query 1 this is shown in Fig. 9d.

5. After the final projection is applied the outcome consists
of trees with an dummy root and the authors associated
with the appropriate titles. A rename operator is necessary

$1

$2

pc
$1.tag = article &
$2.tag = author

Intermediate tree structure

TAX Group
root

TAX
Grouping

basis

author

TAX Group
subroot

...

GROUPBY
pattern tree

article

title

(c)

(b)

authoryear

article

title authoryear

$1

$2 $3

$4

$1.tag = TAX Group root &
$2.tag = TAX Grouping basis &
$3.tag = TAX Group subroot &
$4.tag = author &
$5.tag = article &
$6.tag = title

PL: $1,$4*, $6*

projection pattern tree(d)

pc

pc

$5

pc

pc

Initial
Pattern Tree

(a)

$6

$1

$2

pc
$1.tag = doc_root &
$2.tag = article

pc

Fig. 9. GROUPBY operator for Query 1. The generated input and
the intermediate tree structure

to change the dummy root to the tag specified in the return
clause.

5 Query evaluation

5.1 Physical algebra

In the relational world, there is an important distinction be-
tween the logical algebra and the physical algebra. The former
includes Cartesian product, for example, as a core operator,
and does not permit sorting. The latter includes natural join
and sorting as core operators. Moreover, the latter manipulates
ordered sets (and exploits ordering), whereas the former only
deals with unordered sets. It stands to reason that there are
similar needs in XML databases as well.

In addition we have the issue of determining how to rec-
oncile pattern tree matching at the logical level with nodes
being the atomic unit of data storage. In a relational system,
the unit of logical operation is the same as the unit of physical
operation. In XML, we are logically manipulating trees, but
physically manipulating “node-structures”. As such, the phys-
ical algebra for Timber has greater separation from the logical
algebra than in relational systems. In particular, data is ac-
cessed at the granularity of nodes, and indexing is performed
at the granularity of nodes. Furthermore, the root nodes of a
tree can frequently be used in place of the tree itself for query
processing.

The bulk of the physical algebra is relatively mundane,
with all the operators one would normally expect, such as joins,
selections, sorting, and so forth. In the interest of space, we
skip these details here and refer the interested reader to [72].
Instead, we describe below two features that are particularly
noteworthy. One is the reuse of pattern trees. The other is the
explicit physical operator for data materialization.
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$1.tag = department &
$2.tag = faculty &
$3.tag = RA &
$4.tag = name
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$1.tag = PID1WID2 &
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pc

$4
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Fig. 10. Sample pattern trees. Pattern
tree 3 is an extension of pattern tree 1

Pattern tree reuse. Given a heterogeneous set of trees, we use
pattern tree matches to identify nodes of interest: the nodes to
which conditions apply, the nodes that should be manipulated,
etc. Thus, as described in Sect. 4, most (logical) tree algebra
operators require a pattern tree as a parameter. In an algebraic
expression, it is frequently the case that multiple operators use
exactly the same pattern tree. It is computationally profligate
to re-evaluate the pattern tree each time for each operator. In-
stead, we permit a pattern tree evaluation to be pulled out as
a distinct physical operator (sequence), the results of which
persist, and can be shared with many of the subsequent oper-
ators. For example consider pattern tree 1 in Fig. 10. We can
apply a selection using this pattern tree and selection list $2,
then a projection with the same tree and projection list $2, $4.
The selection operator returns a set of faculty who have both
RA and name children, along with the entire sub-tree rooted
at each. The projection operator retains only the faculty and
name nodes from each sub-tree.

Persistence of pattern tree matches is accomplished
through the use of a pattern tree identifier (PID) and a witness
node identifier (WID) within the tree. Every database node that
could serve as a match for a particular witness node position
in a particular pattern tree has the corresponding “PIDWID”
recorded as part of the intermediate result. Subsequent oper-
ations that use the pattern tree can then refer to the set of all
nodes carrying the corresponding PIDWIDs. For instance, a
node selection predicate physical operator can be applied to
node $3 of pattern tree numbered 2, by applying the predicate
to all nodes in the node-structure input to this operator with a
PIDWID of (2, 3).

One can think of pattern tree reuse as akin to common
sub-expression elimination. A complication to consider in the
case of pattern tree reuse is that operators actually manipulate
tree structure. A structural pattern matched before a particular
algebraic operator may no longer match after the operator, and
vice versa. Even worse, it is possible for the pattern to match,
but now bind to different nodes. For example, consider pattern
tree 2 in Fig. 10. If a projection is applied on the database using
this tree and projection list $2, the empty set will be returned
since no secretary is a direct child of the root node in the
database of Fig. 1. However, what if a selection is applied on
the database first, returning all faculty and their child nodes.
Then a projection using pattern tree 2 will return every secre-

tary in the database, since each is directly below some faculty,
returned as the root of a tree in the output of the selection.

Consider a join predicate to be applied to a pair of nodes,
each of which has been identified by means of a distinct pat-
tern tree. This too is easily specified, using the PIDWIDs of the
corresponding nodes: the fact that separate pattern trees were
used to identify each node makes no difference. In fact, all the
logical algebra operators, except for grouping, preserve (rele-
vant portions of the) tree structure, and hence permit the use
of persistent PIDWIDs, provided that all node predicates are
quantifier-free and only reference node tags, identifiers, and
attribute values. Notably, this includes the Cartesian product
operator.

Sometimes, subsequent operators in a logical algebra ex-
pression may not use the exact same pattern tree, but rather
may use a variation of it. Our PIDWID scheme permits pattern
tree extension. We can reference a previously computed pat-
tern tree match, and apply additional conditions to the node-
structures known to satisfy the original match. These addi-
tional conditions are in the form of an additional pattern tree
that references previously matched nodes in common with the
original using their PIDWIDs. For example we apply a se-
lection on the database using pattern tree 1 of Fig. 10 and
selection list $2. Then we want to apply a projection to find
out the secretary for each faculty member. There is no need to
create a new pattern tree with complicated structure for this
purpose. We reuse pattern tree 1 and we extend it to generate
pattern tree 3 using a PIDWID reference. Then a projection
can be applied using pattern tree 3 and $2 as the projection list.
Note that the secretary element could not have been included
in pattern tree 1 to begin with: the applied selection would
have produced different output. (The output would have been
restricted to faculty who have RA, secretary and name, rather
than including faculty with RA and name but no secretary).

Node materialization. In relational databases, conjunctions
of selection conditions are often evaluated through intersec-
tion of rid sets, obtained from indices, without accessing the
actual data. However, for the most part, query evaluation does
process the actual data in the evaluation pipeline. In the case of
XML trees, it is possible to encode the tree structure (see dis-
cussion of start and end attributes in the next section) so that
quite complex operations can be performed without accessing
the actual data itself. On the flip side, the actual data itself is a
well-circumscribed tuple in the case of a relational database.
However, for an XML element, we may be interested in the
attributes of this element itself, in its child sub-elements, or in
its entire descendant sub-tree: which depends on the context.
As such, at the physical level, it is important to distinguish be-
tween identification of a tree node (XML element), by means
of a node identifier, and access to data associated with this
node. Consequently, we have an explicit materialization op-
erator in the physical algebra. This operator takes a (set of)
node identifier(s) as input and returns a (set of) XML tree(s)
that correspond.

In an XML database, as in any other database, we use in-
dices to find portions of the database relevant to a query when-
ever possible.An index lookup returns a list of node identifiers.
In a relational database the corresponding tuple identifiers (or
“rid”s) would be dereferenced (almost) immediately. How-
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ever, considerable additional processing may be possible, in
the case of XML, based purely on the node identifiers. Con-
sequently, during query processing, we keep only the ids of
nodes around as far as possible. We call such intermediate
results unmaterialized.

Of course, there will be operations for which access to
the data is necessary. However, now there is the question of
what “the data” corresponding to a node is. We may need
only the value of one attribute for some predicate evaluation
or grouping. Or we may need data from a child sub-element.
And so on.A reasonable technique is to materialize exactly the
minimum amount required, and work with intermediate results
that are partially materialized. By so doing, we minimize the
size of intermediate results being manipulated.

An option at the other extreme is to fully materialize each
node identifier immediately – obtaining all the data associated
with it (and its sub-tree, if need be).As stated above, this option
is usually very expensive.

As a small example consider pattern tree 1 of Fig. 10. A
simple query consists of a selection using this pattern tree
and then a projection using the same pattern tree and $4 as
projection list. “The name of each faculty member that has an
RA”. The only node that needs to be materialized is $4 (name)
at the end of the query. Cases like these are very common and
fully materializing everything is unnecessary.

5.2 Structural joins in pattern tree matching

Most logical algebra operators take a tree pattern as parame-
ter. Every query plan that results has satisfaction of (at least
one) tree pattern match as an early evaluation step. (There are
two reasons for this. The syntactic reason is that there are no
bound nodes to be manipulated until pattern trees have been
matched. The performance reason is that the pattern tree match
is akin to (a complex) selection, and is an important means to
reducing the amount of data to be processed in the remainder
of the query.) A construct that appears very often in a pattern
tree is the structural join construct, which is used to specify a
parent-child relationship or an ancestor-descendant relation-
ship. Consequently, efficient implementation of the structural
join is critical in determining the overall performance of an
XML query processing system. We describe next, in some de-
tail, our thoughts with respect to the implementation of struc-
tural joins for pattern tree matching.

A pattern tree, such as the one is Fig. 3 explicitly specifies
predicates at nodes that must be satisfied by (candidate) match-
ing nodes and also specifies structural relationships between
nodes that match. Each edge in the pattern tree specifies one
such structural relationship, which can either be “parent-child”
(immediate containment) or “ancestor-descendant” (contain-
ment).

The simplest way to find matches for a pattern tree is to
scan the entire database. Multiple matches of the pattern tree
can share node bindings in common. Again, consider the ex-
ample query in Fig. 3. Even though only two faculty members
have both secretary and RA, the result contains five witness
trees, for each pair of secretary and RA of the same faculty
member. The five witness trees that will be returned share
two different faculty-secretary pairs. As such, a naive scan al-
gorithm will not be able to find all these matches in a single

pass.An appropriate adaptations of effective pattern-matching
techniques for strings (e.g. Boyer-Moore [7], or KMP [35]) is
required.

By and large, a full database scan is not what one would
like to perform in response to a simple selection query. One
would like to use appropriate indices to examine a suitably
small portion of the database. One possibility is to use an index
to locate one node in the pattern (most frequently the root of
the pattern), and then to scan the relevant part of the database
for matches of the remaining nodes. While this technique,
for large databases, can require much less effort than a full
database scan, it can still be quite expensive.

Experimentally, our own work [2], as well as that of others
[64], has shown that under most circumstances it is prefer-
able to use all the indices available and independently locate
candidates for as many nodes in the pattern tree as possible.
Structural containment relationships between these candidate
nodes is then determined in a subsequent phase, one pattern
tree edge at a time. For each such edge, we have a containment
“join condition” between nodes in the two candidate sets. We
seek pairs of nodes, one from each set, that jointly satisfy the
containment predicate.

Example 3 Consider a query, against the database D intro-
duced in Fig. 1, seeking faculty who have a secretary reporting
to them. The pattern to be matched has two nodes: a parent
node that matches data nodes with tag faculty, and a child
node that matches data nodes with tag secretary.

A navigational access plan would start with a match at
one of the two nodes in the pattern, and then navigate from it
to find a match for the other node. For instance, there are three
faculty nodes and three secretary nodes in the database. We
could start from each of the three faculty nodes and explore
all children to see if any of them is a secretary. When any
such is found, the faculty-secretary pair can be returned as
a witness tree. While the navigational effort involved is not
huge in this small database for this trivial pattern, it is not
hard to imagine that it could be very expensive given complex
patterns, including indirect containment, to be matched on
large databases.

A structural join access plan for the same pattern match
task would first create lists of matches for each individual node
in the pattern: namely the list of three faculty nodes and the list
of three secretary nodes. Then it would perform a structural
join to determine which faulty-secretary node pairs have a
parent-child relationship.

Structural join algorithms

Join is an expensive operation in a relational database. It tends
to be the same in an XML database. Structural join computa-
tion is at the heart of tree pattern matching, which in turn is
at the heart of XML query processing. Therefore, finding an
efficient algorithm for evaluating a structural join is crucial.

Using the formulae in Sect. 3, each structural join is repre-
sented as an ordinary relational join with a complex inequality
join condition. Variations of the traditional sort-merge algo-
rithm can be used to evaluate this join effectively. Such varia-
tions have been suggested in [64,2]. However, one can exploit
the tree structure of XML to do better. We have developed, and
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Algorithm Stack-Tree-Anc (AList, DList)
/* AList is the list of potential ancestors, in sorted order of StartPos */
/* DList is the list of potential descendants in sorted order of StartPos */

a = AList->firstNode; d = DList->firstNode; OutputList = NULL;
while (the input lists are not empty or the stack is not empty) {

if ((a.StartPos > stack->top.EndPos) && (d.StartPos > stack->top.EndPos)) {
/* time to pop the top element in the stack */
tuple = stack->pop();
if (stack->size == 0) { /* we just popped the bottom element */

append tuple.inherit-list to OutputList }
else {

append tuple.inherit-list to tuple.self-list
append the resulting tuple.self-list to stack->top.inherit-list

}
}
else if (a.StartPos < d.StartPos) {

stack->push(a)
a = a->nextNode }

else {
for (a1 = stack->bottom; a1 ! = NULL; a1 = a1->up) {

if (a1 == stack->bottom) append (a1,d) to OutputList
else append (a1,d) to the self-list of a1

}
d = d->nextNode

}
}

Fig. 11. Algorithm Stack-Tree-Anc with output in sorted ancestor order

use in Timber, a whole Stack-Tree family of structural join al-
gorithms. In Fig. 11 we describe one such algorithm that turns
out to be used most frequently.

The intuition behind the algorithm is as follows. In a depth-
first traversal of the database tree, every ancestor-descendant
pair appears on a stack with the ancestor below the descen-
dant. We exploit this observation to perform a limited depth-
first traversal, skipping over nodes that are not in either input
candidate list (AList or DList). (We use AList to denote the
list of candidate ancestor (or parent) nodes. We use DList to
denote the list of candidate descendant (or child) nodes.) We
require an in-memory stack of size as large as the maximum
depth of the XML document. The basic idea is to take the two
input operand lists, AList and DList, both ordered by the Start
position and merge them using a stack.

A node n with the smallest Start position is pulled from
one of the input lists. If this Start is greater than the End of
any node x already on stack, then we have finished traversing
the portion of the tree involving x, and node x can be popped.
If node n is from the AList it is pushed onto stack. If node n is
from the DList, then it merges with each node in the stack to
create a result pair. If the output were produced immediately,
then the output would be sorted by the Start position of the
descendant node in the join pair.

The sort order of operator output can be very important for
pipelined query evaluation. It is typically most useful to have
the results sorted by the Start position of the ancestor node in
the join pair. In this case, a join result cannot be output until all
the join results with ancestor nodes of lower Start value are
output. This is done by keeping a list of join results with each
of the ancestor nodes in the stack, appending the list to the

next node in stack when one node is popped, and outputting
result only when the bottom of the stack is popped. Through
careful list manipulation, we can perform this result-saving
with limited memory buffer space and at most one additional
I/O (write and then read back) for any result page.

Small variations of the algorithms described above can be
used if the desired structural join is a parent-child (immediate
containment) join rather than an ancestor-descendant (contain-
ment) join. Similarly, one can define semi-join, outer-join, and
other variants. (Semi-joins, and left outer joins, in particular,
seem to occur frequently in XML queries). Experiments show
that these algorithms far outperform the navigation-based join
algorithms, as well as the RDB implementation, in all cases.

The space and time complexity of the Stack-Tree-Anc al-
gorithm is O(|AList| + |DList| + |OutputList|). The I/O

complexity is O( |AList|
B + |DList|

B + |OutputList|
B ), where B

is the blocking factor. (These asymptotic results apply to most
other algorithms in the Stack-Tree family as well).

5.3 GroupBy

We discussed above that grouping does not necessarily par-
tition the set. For example, the same book may have to ap-
pear in multiple groups, once for each author. RDBMS imple-
mentations of grouping typically rely on sorting (or possibly
hashing). We cannot use these implementations directly. One
possibility is for us to replicate elements an appropriate num-
ber of times, and to tag each replica with the correct grouping
variables to use. For example, a two-author book would be
replicated to produce two versions of the book node, with one
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author tagged in each replica as the one to use for grouping
purposes. Thereafter standard sorting (or hashing) based tech-
niques may be used.

The simple procedure suggested above requires cumber-
some tagging, and involves needless early replication. Our
implementation uses a slight variation that minimizes these
disadvantages. The central idea is to recall that the grouping
list (the list of variables on the basis of which to group) con-
sists of nodes identified by means of a pattern tree match. The
normal pattern tree match procedure will produce all possible
tuples of bindings for these grouping variables. The sorting
(or hashing) can then be performed using the resulting tuples
of bindings.

If the grouping were to be followed by aggregation, as is
frequently the case, this replication can be avoided altogether.
For instance, suppose we are interested in the count of books
written by each author. We can perform the count without
physically replicating the book elements.

6 Query optimization

Example 4 Consider once more the query shown in Fig. 3.
Even though the query is very simple, there are different ways
to evaluate it. One join plan is to consider the join between
faculty node and secretary node first, that is to find all the
faculty members with a secretary, then, join the result with
RA node. An alternative plan is to join faculty node with RA
node first, then, join the result with secretary node. There are
other possibilities too – one could join RA with secretary
first. Such a join would result in a Cartesian product if we
were performing value-based joins, as in relational systems.
Since these are structural joins, there is a “join predicate”
between the two nodes of a “sibling” relationship, and such
joins are quite reasonable to consider.5

Query patterns that consist of several nodes have many
more evaluation plans. The number of alternatives grows in
factorial order. There can be orders of magnitude difference in
the evaluation costs of different plans. A query optimizer must
enumerate all (or a promising subset of) the evaluation plans,
estimate their costs, and choose the one with lowest estimated
cost to evaluate. Some initial work in this direction for XML
query processing has been described in [40]. However this
work considered only a very limited set of choices, and focused
on navigational access methods, which we now know not to
prefer.

6.1 Structural join order selection

Join order selection is among the more important tasks of
a relational query optimizer. Correspondingly, in an XML
database, structural joins predominate. Every pattern match
is computed as a sequence of structural joins, and the order in
which these are computed makes a substantial difference to
the cost of query evaluation.

5 We do not, at present, have access methods for sibling structural
joins implemented in Timber, though we are studying this issue. As
such, the remainder of this section will restrict itself to consideration
of parent-child and ancestor-descendant structural joins.

In relational query processing it is almost always a good
idea to evaluate selections first. In our case, we have an addi-
tional complication that it is not always a good idea to push
selection predicates in all the way. This is for two reasons:
structural join predicates may sometimes be more selective
than a value-based selection predicate. In addition, structural
joins can be computed with node identifiers alone, whereas se-
lection predicate evaluation may require access to the actual
data (when an index is not present on the precise selection
predicate). Consequently, (structural) join order optimization
should also consider selection predicates being interspersed,
rather than necessarily applied first. This further increases the
size of solution space to be searched.

An adaptation of the standard dynamic programming tech-
niques to our problem is as follows: We define status to be a
reformed pattern-tree, with some sub-patterns in the pattern
tree joined. Each of these joined sub-patterns coalesces into
one node in the status, and the edges within these sub-patterns
disappear. A move, which represents a join operation based on
a single edge, transform one status into another. A cost value
is associated with each move, based on the cardinalities of
the nodes that participate in the join and the result size of the
join. The starting status is exactly the pattern-tree itself, with
an additional node created for each selection predicate. The
additional node is attached as a child of the node the predicate
references, and as a child of the least common ancestor of the
nodes involved when multiple nodes are references. The status
with only one node, which contains all the nodes in the orig-
inal pattern-tree, is the final status. A sequence of moves that
transform the starting status to a final status and has the min-
imum cost of all move sequences that can perform the same
transformation is what we are looking for. We have a dynamic
programming formulation, and can now solve this.

A difficulty with the preceding dynamic programming for-
mulation is that the number of statuses (states) to be explored
can be exponential in the size of the query pattern, making a
full dynamic programming solution prohibitive. A less expen-
sive solution can be developed based on the following obser-
vation:

By choosing an appropriate structural join algorithm, the
results of a structural join can be output ordered by either of
the two nodes involved in the join. No extra sorting is needed,
and no blocking points created in the pipeline, if the OrderBy
node in one join is a node involved in the next join. This leads
to the following:

Theorem 1 Any XML pattern match can be evaluated with a
fully-pipelined evaluation plan to produce results ordered by
any node in the pattern tree.

Proof sketch. Prove by induction on n, the total number of
edges in a pattern. For the base case, the theorem obviously
goes through for a query pattern with a single node and zero
edges. For the inductive case, we can show that there is at
least one pipelined plan, whose last join involves a sub-pattern
which contains the result OrderBy node r, and a sub-pattern
which contains one of its neighbors u. Each of these sub-
patterns has less than n edges. By the inductive assumption,
there is a pipelined plan for the first sub-pattern with results
ordered by r and a pipelined plan for the second sub-pattern
with results ordered by the neighbor node u. ��

For full details on this topic, please see [61].
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Algorithm FP Optimization (PatternTree)
// Inputs: The query pattern to be evaluated,
// Output: Processing tree to evaluate the query.
minCost = ∞
For (each node Vi in PatternTree)

cost = FP OrderBy(PatternTree, Vi, joinplan)
if (cost < minCost)

minCost = cost; JoinPlan = joinplan;
output(JoinPlan);

Algorithm FP OrderBy(PtTree, OdNode, JoinPlan)
// Inputs: PtTree: The query pattern to be evaluated;
// OdNode: The node to be ordered by in output.
// Output: Processing tree and its cost
Neighbors = neighbors of OdNode
For each Neighbors[i]

subpattern = SubPattern(PtTree,Neighbors[i],OdNode)
cost = FP OrderBy(subpattern, Neighbors[i], subplan);

Enumerate all the possible permutations of
subpatterns to join with OdNode.
Store the best plan in JoinPlan.
Store its cost in cost.
output(cost);

note:
Function SubPattern(PatterTree, Node1, Node2)
partitions the PatternTree by cutting the edge
between Node1 and Node2, and returns the
subpattern contains Node1.

Fig. 12. Algorithm FP Optimization for finding the best fully-
pipelined evaluation plan

6.2 Result size estimation

Query optimization enumerates a subset of all the possible
join plans and picks the one with the lowest cost to execute.
To estimate this cost, we need an accurate estimate of the car-
dinality of the final query result as well as each intermediate
result for each query plan. Result size estimation is also useful
for its own sake, in an Internet context, to provide users with
quick feedback about expected result size before evaluating
the full query result. There have been several recent studies of
this topic, such as [1,11]. We describe here the techniques in-
corporated in Timber that improve upon these previous works.
Full details can be found in [59,60].

Example 5 Consider a simple pattern with only two nodes,
faculty and TA, with parent-child relationship among them.
There are three faculty nodes and five TA nodes in the XML
document. The schema says that a faculty can have any num-
ber of TAs. Without any further schema information, the best
we can do in estimating the result size is to compute the product
of the cardinality of these two nodes, which yields 15. Consider
the fact that faculty nodes are not nested, one TA can only be
the child of one faculty node, we can tell that the upper-bound
of the result number is the cardinality of TA nodes, which is 5.
However, as we can see from the figure, the real result size is 2.
The bias in the estimation is due to the fact that the structure
information of the XML document is not caught.

Position histogram. Recall that a numeric Start and End la-
bel is associated with each data node in the database (XML
document), defining a corresponding interval between these
labels and the descendant nodes has an interval that is strictly
included in its ancestor’s interval. Taking the Start and End
pair of values associated with each node that satisfy a predi-
cate, we construct a two-dimensional histogram. Each grid cell

faculty 0

2

1 TA 0 3

2

Fig. 13. Position histograms: the X-
axis depicts the start position value
and theY-axis the end position value

in this position histogram represents a range of Start position
values and a range of End position values. The histogram
maintains a count of the number of nodes satisfying the pred-
icate that have Start and End position within the specified
ranges.

Each data node is mapped to a point in two-dimensional
space. Node A is an ancestor of node B iff the start position
of A is less than the start position of node B, and the End
position of A is no less than the End position of node B. In
other word, node A is to the left of and above node B in the
position histogram. Therefore, given the position histogram of
two node predicate, the estimate of the join result of this two
nodes can be computed by looping through each grid cell in
the histogram of one node predicate and counting the number
of nodes (in the other histogram) which can have the desired
relationship with a node in that grid cell. The estimate can
be represented in forms of a position histogram itself, which
makes it possible to estimate the result size for complex query
patterns.

Let’s have a look at the example XML document in Fig. 1
again. Consider a pattern tree with only two nodes, faculty
and TA, with parent-child relationship among them. The 2×2
histograms of predicates “element tag= faculty” and “element
tag = TA” are shown in Fig. 13. There are 55 nodes in the
database. The left column in these histograms corresponds to
elements that start in the first half of these nodes. The bottom
row corresponds to elements that end in the first half. Thus,
the first histogram says that there are 2 faculty in the first half
of the database and one in the second half. The 0 in the top left
indicates that there is no faculty element that has a large span
starting in the first half and stretching through to the second
half. The bottom right cell is empty because it can never be
possible for an element to start in the second half and end in
the first half.

Since TAs in the second half cannot work for faculty in
the first half, and vice versa, we can now upper bound the
number of matches to (2 × 2 + 1 × 3) = 7 instead of
(3×5) = 15. Note that the position histograms we used here
is rather coarse, at 2 × 2. By refining the histogram, we can
get a more accurate estimate.

7 Updates

The TAX tree algebra supports updates. We also have im-
plemented access methods that support updates. However,
XQuery does not (yet) support updates. There is a nice pro-
posal [55] and separately an implemented Xupdate language
[37]. Once a standard begins to emerge, it should (we hope)
be straightforward for us to implement a parser for it and thus
support it in Timber.

Beyond the simple implementation of updates, they do
cause significant changes in the way the entire system is im-
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$1

$3 $4

pc

ad

$1.tag = doc_root &
$2.tag = eNest &
$2.aFour = “0” &
$3.tag = eNest &
$3.aSixteen = “1” &
$4.tag = eNest &
$4.aSixteen = “2” &
$5.tag = eNest &
$5.aSixteen = “3” &
$6.tag = eNest &
$6.aSixtyFour = “2” &
$7.tag = eNest &
$7.aSixtyFour = “3” &
$8.tag = eNest &
$8.aSixtyFour = “9”

pc pc

ad
ad

$5

$6 $7 $8

$2

ad

Fig. 14. The pattern tree generated from the
XQuery statement of Table 1. (Use as both selec-
tion tree P1 and projection tree P2)

plemented. Since we do not use or enforce schema (or DTD)
conformance, we are able to side-step many of the issues
with respect to XML updates raised in [55]. However, our
design is fundamentally that of a dynamic, rather than a static,
database.All our indices are dynamic, and the underlying stor-
age manager expects to manage the insertion and deletion of
data blocks.

The start and end labels become an issue. Our current
scheme is to use floating point numbers rather than integers,
in effect leaving “holes” in the numbering, when initially as-
signing labels, with the hope that a moderate degree of mod-
ification can be absorbed within these holes. If there is an
extremely localized sequence of inserts, these holes will not
suffice. When such a situation arises, we start over and renum-
ber every node, and reflect the new numbers at every place
these may be used. This renumbering is a heavy-weight oper-
ation, which we hope will not be necessary too often. A more
limited renumbering of some local region may suffice in some
cases, but we have not yet worked out all the details of such a
scheme.

Our initial insertion of elements has them ordered by start
position. Changes in the sizes and numbers of elements in
some range could cause pages to overflow or underflow. This
is an intrinsically difficult problem. It is not acceptable to leave
expansion room, as in the case of label values, since expan-
sion room has an explicit cost in terms of wasted space and
more disk pages to be accessed to obtain the same information.
Heuristics are used in relational systems to maintain approxi-
mate clustering/ordering in the face of updates. We expect to
use similar heuristics in Timber eventually. For the present, we
let Shore use its default strategies to manage space for updates.

8 System study

The Timber system is working for the most part, and we hope
to be able to make a public release shortly. In this section,
we work through one simple example in some detail to illus-
trate the operation of the system, and give some indication of
performance.

Consider the query in Table 1 against the mBench [71]
0.1x data set. The pattern tree produced by this query is shown

Table 1. XQuery statement run against the
mBench data set

FOR $a IN document(“mbench.xml”)//
eNest[@aFour=“0”]

FOR $b IN $a//eNest[@aSixteen=“1”]
FOR $d IN $a//eNest[@aSixteen=“2”]
FOR $f IN $a//eNest[@aSixteen=“3”]
WHERE $b/eNest/@aSixtyFour=“2”

AND $d/eNest/@aSixtyFour=“3”
AND $f/eNest/@aSixtyFour=“9”

RETURN
<result>

<A>{$a/text()}
<B>{$b/text()}</B>

<D>{$d/text()}</D>

<F>{$f/text()}</F>

</A>

</result>

in Fig. 14. This query would generate a selection and a pro-
jection. The selection σP1,SL is applied on the database, with
pattern tree P1 as in Fig. 14 and selection list SL = ∅. The
projection πP2,PL is applied on the outcome of the selec-
tion, with pattern tree P2 as in Fig. 14, and projection list
PL = $1, $2, $3, $4, $5. The TAX expression corresponding
to this query is as follows.

πP1,PL{σP2,SL[(mbench.xml)]}
The RETURN part of the XQuery expression merely con-

structs a result tree by tying together nodes that have already
been identified. In Timber, this construction is performed pro-
cedurally – since the output has to be produced any way, and
since the manipulation is one-to-one, there is no benefit to set-
oriented declarative processing of this part of the query. Note
that the input to the algebra expression is a set of trees, in this
case (as is frequently true for XML queries) a singleton set.
The result of the selection is a set of trees, with cardinality
considerably greater than one, that satisfy the given complex
predicate.

Note that the selection and projection operators use iden-
tical pattern trees. We are able to exploit the reuse of pattern
tree in the physical algebra. Our task then becomes to compute
the sequence of structural joins and selections that comprise
this pattern tree, and return the bindings for tuples of nodes
that satisfy all the structural and node predicates. These node
bindings are then used first in a selection operator, and then in
a projection.

Note that in the RETURN clause, the text of the elements
queried is required. Getting the text requires access to the
database, which is expensive and therefore is postponed until
the end of the evaluation. Hence, the plans produced by the
optimizer will deal with indices only and node ids.

Our first step is to identify which of the predicates are in-
dexed, and to determine the selectivity of each. Each of the
attribute predicates is indexed, as shown in Table 2, and predi-
cates on attribute aSixtyFour are more selective than the other
attributes. The last column is the variable name given to the
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Table 2. Characteristics of some predicates on the
mBench data set

Predicate Node Count Variable

eNest[@aFour=“0”] 16,663 A

eNest[@aSixteen=“1”] 4,235 B

eNest[@aSixteen=“2”] 4,188 D

eNest[@aSixteen=“3”] 4,153 F

eNest[@aSixtyFour=“2”] 1,042 C

eNest[@aSixtyFour=“3”] 1,042 E

eNest[@aSixtyFour=“9”] 1,042 G

predicate. For the sake of simplicity, we will refer to the first
predicate in the table as predicate A, and to the second predi-
cate as B and so on.

Many query plans can be generated to evaluate this expres-
sion. In practice, the optimizer would go through a significant
search to find the plan with least estimated cost. For the cur-
rent discussion, we restrict ourselves to five possible choices
of plans for pattern tree evaluation presented in Fig. 15. In
all cases, the actual access to data, and getting the text of the
elements is deferred.

The estimated intermediate result sizes are shown in Ta-
ble 3. There can be an eNest node under another eNest node
in the database. This is called the overlap property. Note that
the estimate exploiting this minimal amount of schema infor-
mation, in columns 5 and 7, is in each case very close to the
real result, shown in columns 6 and 8. As we can see from
columns 7 and 8 rows 1 through 3, using position-histogram
can accurately estimate the result size for ancestor-descendant
structural joins such as A and B join. However, ancs-desc
structural joins such as B and C, the estimate is not very good
(columns 7 and 8 rows 4 and 6). The reason for this is that
the ancestor-descendant estimate is obtained using position
histograms which are not good when the parent node has the
overlap property. However, when using leveled histograms to
obtain the parent-child estimates for the same structural joins,
the results are accurate as shown in columns 5 and 6 rows 4
through 6.

There are approximately 130,000 nodes in the mBench
0.1x data set. Predicates C, E, and G are the most selective of
the predicates. Unfortunately, the three cannot be combined di-
rectly, and require A, B, D, and F as common parent/ancestor
nodes for this purpose.

Figure 15 shows five alternative plans. The optimizer
chooses Plan 1 as the optimal plan based on these estimates.
Notice that this plan is bushy and non-blocking. The best left
deep plan, such as Plan 2, gets into a blocking situation, where
we need the results sorted by A for the next join, with D, but
the results are available sorted by F .An option is to sort earlier
such as Plan 3. This gives a plan that is comparable to plan 1.
We show Plans 4 and 5, just to make the (obvious) point that
left-deep plans can be really bad.

The actual execution times for these plans and several
more are shown in Table 4. These experiments were run on a
standard desk-top IBM compatible PC, running Windows NT
Workstation v4.0. The machine had a single 500 MHz Intel
Pentium III CPU and 256 MB of memory. Furthermore, we
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Fig. 15. Five alternative query plans: each leaf is an index access,
each internal node is a stack-based structural join ordered by ancestor
or descendant (as needed); where sorting is required, this is shown
explicitly

restricted Shore to use only 32 MB of memory for its buffer
pool, in 8 kB pages. Each test was run five times. The high-
est and lowest numbers were discarded and the average of the
middle three was reported. The time to parse and optimize the
query is small in comparison, and is not included in the times
reported in Table 4.

In addition to the five query plans described above, in
Table 4 we also present performance results for two other
plans, which are expected to perform poorly. Plan 6 shows the
impact of not reusing the pattern tree computation. Each use
of the pattern tree is conducted according to the best plan –
Plan 1. The cost is expected to be about twice. Plan 7 uses no
indices at all. It scans the document for A nodes and for each,
it scans its subtree for B, D, and F nodes. And for each of the
latter nodes, it scans their subtrees for the rest of the pattern.
This is probably the naive approach that one thinks of first,
when given this problem. The poor performance of these two
additional plans validates many of the design choices we have
described above.
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Table 3. Result size estimation for pair joins on the mBench data set. The first two columns are the
predicates on the nodes being joined; the naive estimate is simply the product of the number of nodes
participating in the join; the “Desc Number” uses schema information to upper bound the estimate to the
number of descendant nodes; the “Histogram Estimate” uses 10 × 10 position histograms. Estimates are
shown for parent-child and ancestor-descendant joins where available

Parent-Child Join Ancs-Desc Join
Naive Desc Histogram Real Histogram Real

Ancs/Parent Desc/Child Estimate Number Estimate Result Estimate Result

A B 70,567,805 4,235 N/A N/A 22,090 19,235

A D 69,784,644 4,188 N/A N/A 21,883 18,926

A F 69,201,439 4,153 N/A N/A 21,542 18,792

B C 4,412,870 1,042 69 58 3,271 930

D E 4,363,896 1,042 65 51 3,069 2,334

F G 4,327,426 1,042 85 78 3,396 807

Table 4. Performance of different query plans

Plan Number Plan Description Running Time

1 Optimal Bushy 1.4 sec.

2 Blocking Left-Deep 193.5 sec.

3 Blocking Bushy 1.532 sec.

4 Double-blocking Left-Deep 414.7 sec.

5 Double-blocking Left-Deep 413.4 sec.

6 No Pattern Tree Reuse 2.9 sec.

7 Navigational 2,121.3 sec.

9 Conclusion

We have described the architecture and overall design of the
Timber native XML database system currently being imple-
mented at the University of Michigan. Through the use of a
carefully designed tree algebra, as well as the judicious use of
novel access methods and optimization techniques, we have
created the foundation for a high performance database system
capable of operating at large scale.

The system has been designed in a modular fashion, with
an overall architecture as similar to a relational database as
possible. We have attempted to reuse as much standard tech-
nology as possible. Thus, standard value-based hash and B-
tree indices can be used with only small changes. Similarly,
transaction management is largely unchanged, and in our sys-
tem is implemented by Shore. Consequently, little effort is
required to move Timber from a single-user system to a multi-
user system.

We already have a few potential users of Timber. We ex-
pect, in the coming months, to benefit from their experiences
with the system, and to expand its facilities accordingly. We
also expect to make a public release of Timber software.
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