The VLDB Journal (2000) 9: 214-230 The VLDB Journal
(€ Springer-Verlag 2000

One-dimensional and multi-dimensional
substring selectivity estimation

H.V. Jagadisht, Olga Kapitskaia?, Raymond T. Ng*, Divesh Srivastavé

1 University of Michigan, Ann Arbor; E-mail: jag@umich.edu

2 P6le Universitaire lgonard de Vinci; E-mail: Olga.Kapitskaia@devinci.fr

3 University of British Columbia; E-mail: rng@cs.ubc.ca

4 AT&T Labs — Research, 180 Park Avenue, Bldg 103, Florham Park, NJ 07932, USA; E-mail: divesh@research.att.com

Edited by M.P. Atkinson. Received April 28, 2000 / Accepted July 11, 2000

Abstract. With the increasing importance of XML, LDAP may be correlated. For the above example, because of the ge-
directories, and text-based information sources on the Interegraphical location of the research labs, people that satisfy
net, there is an ever-greater need to evaluate queries involthe query fnail like %research.att.com) may have an

ing (sub)string matching. In many cases, matches need to benexpectedly high probability to satisfy the quetgl(like

on multiple attributes/dimensions, with correlations between973360%). For such situations, assuming attribute indepen-
the multiple dimensions. Effective query optimization in this dence and estimating the selectivity of the query as a product
context requires good selectivity estimates. In this paper, wef the selectivity of each individual dimension can lead to
use pruned count-suffix trees (PSTs) as the basic data strugross inaccuracy.

ture for substring selectivity estimation. For the 1-D problem,

we present a novel technique called MO (Maximal Overlap).

We then develop and analyze two 1-D estimation algorithmsg 1 The data structure

MOC and MOLC, based on MO and a constraint-based char-

acterization of all possible completions of a given PST. FortheA natural question that arises is which data structure does

k-D problem, we first generalize PSTs to multiple dImenSIOI”'Sone use for substring selectivity estimation. Histograms have

ﬁ)ng(?r?s\./tilj?:%fs%ag?s%?Eei?;_\?vfgifgr: gfgxmgﬁ'ioag:g%mong been used for selectivity estimation in databases (see,
MO to multiple dimensions Fi.nally we demonstrate, both an_e.g.,[SAd79, MD8S, !_N90, 10293, P95, PIHS%"]WSDI
alytically and experimentaily that’MO is both praciical and They have b_een designed 0 work W(?” for numeric attnpute
substantially superior to com’peting algorithms value domains. For the string domain, one c_ouId continue
' to use such “value-range” histograms by sorting substrings
based on the lexicographic order and computing the appro-
priate counts. However, in this case, a histogram bucket that
includes a range of consecutive lexicographic values is not
likely to produce a good approximation, since the number of
times a string occurs as a substring is likely to be very differ-
ent for lexicographically successive substrings. As a result, we
1 Introduction look for a different solution, one that is suitable for the string
domain.
One often wishes to obtain a quick estimate of the number A commonly used data structure for indexing substrings
of times a particular substring occurs in a database. A train a database is the suffix tree [Wei73,McC76], which is a
ditional application is for optimizing SQL queries with the trie that satisfies the following property: whenever a string
like predicate (e.g.name like %jones%). Such predicates is stored in the trie, then all suffixes af are stored in the
are pervasive in data warehouse queries, because of the prage as well. Given a substring query, one can locate all the
ence of “unclean” data [HS95]. With the growing importance desired matches using the suffix tree. Krishnan et al. [KV196]
of XML, LDAP directories, and other text-based information proposed an interesting variation of the suffix tree;pheed
stores on the Internet, substring queries are becoming increaseunt-suffix tre¢PST), which maintains a court,,, for each
ingly common. substringx in the tree and retains only those substrindand
Furthermore, in many situations with these applications their counts) for whichC,, exceeds some pruning threshold.
a query may specify substrings to be matched on multiple alin this paper, following [KVI96], we use PSTs as the basic
phanumeric attributes or dimensions. The quenaie like summary data structure for substring selectivity estimation.
%jones%) AND (tel like 973360%) AND (mail like To estimate substring selectivity in multiple dimensions,
%research.att.com)] is one example. Often the attri- we need to generalize the PST to multiple dimensions. Here,
butes mentioned in these kinds of multi-dimensional querieonly thosek-D substrings«;, . .., ay) for which the count

Key words: String selectivity — Maximal overlap — Short
memory property — Pruned count-suffix tree

H.V. Jagadish et al.: One-dimensional and multi-dimensional substring selectivity estimation

215

exceeds the pruning threshold are maintained inthe tree (along- In Sect.9, we develop and analyze two algorithms for

with their counts).

1.2 The problem

Thesubstring selectivity estimatigegroblem can be formally
stated as follows:

Given a pruned count-suffix tré€, and a (1-D ok-D)
substring query;, estimate the fractiof’, /N, where
N is the count associated with the rootof

The 1-D version of the above problem considers the situ-
ation when the pruned trég is created for a single attribute
(e.g.,name). The k-D version of the problem considers the
case whery is set up for multiple attributes (e.gname and
tel).

multi-dimensional substring selectivity estimation. The
first algorithm, called GNO (Greedy Non-Overlap), uses
greedy parsing of thé-D query string and generalizes
algorithm KVI for the 1-D problem. The second algo-
rithm generalizes algorithm MO from 1-D teD and uses

all maximalk-D substrings of the query for estimation to
take advantage of correlations that may exist between the
strings in multiple dimensions.

In Sect.10, we compare the accuracy of our two algo-
rithms, GNO and MO and additionally compare them with
the default assumption of attribute independence, using a
real AT&T 2-D data set. Our results again show the prac-
ticality and the superior accuracy of MO, demonstrating
thatitis possible to obtain freedom from the independence
assumption for correlated string dimensions.

What we gain in space by pruning a count-suffix tree, We, nelated work
lose in accuracy in the estimation of the selectivities of those

strings that are not completely retained in the pruned tree. OUjigiograms have long been used for selectivity estimation
main challenge, then, is: given a pruned tree, to try to estimatg, y5tabases (see, e.g., [SAT9, MD88,LN90, 10293, IP95

as accurately as possible the selectivity of such strings. PIHS96,JKM98]), and one can obtain good solutions to the
histogram construction problem using known techniques (see,
e.g., [PIHS96,JKNt 98]). However, as mentioned earlier, con-
ventional histograms have been designed to work well for nu-
_ o) ~ meric attribute value domains and do not yield good results
We begin by describing the 1-D problem and its solution firstfor the string domain.

(in Sects.4-6), and then go on to generalize our results to End-biased histograms [IP95] are more closely related to

1.3 Our contributions

multiple dimensions (in Sects. 7-10). Specifically, we makepsTs. The high-frequency values in the end-biased histogram

the following contributions:

— In Sect.4, for the 1-D problem, we present a novel se
lectivity estimation algorithm MO (Maximal Overlap),
which estimates the selectivity of the query strindpased

correspond to nodes that are retained in the PST. The low-
frequency values correspond to nodes pruned away. With this
approach of estimating the selectivity of substring queries, if

a1 has been pruned, the same (default) value is returned for
a1 andajas, irrespective of the length af,. As expected,

on all maximal substringsj;, of ¢ in the 1-D PST. We L . ; =
demonstrate that MO is provably better than KVI, the this yields poor estimates for substring selectivity.

independence-based estimation technique developed iln | Ind_spite O.f therr?St Iiteraturg on Ti;tf)gégms, there iz very
[KVI96], using a greedy parsing ef, under the natural as- ittle discussion of histograms in multiple dimensions. A no-

sumption that strings exhibit the so-called short memorytable exception is the study in [PI97]. But for the reasons given

property. We also experimentally show that MO is sub- earlier, this study is not directly applicable to the problem of

stantially superior to KVI in the quality of the estimate, substring selecti_vity estima_tion in muItip_Ie dimensions.
using a)r/eal pAT&T data set. d y The 1-D suffix tree [Wei73,McC76] is a commonly used

— In Sects. 5 and 6, we develop constraint-based charactestructure for indexing substrings in a database. One natural
izations .of all cohnt-sufﬁx trees that are possibtem- generalization of strings is a multi-dimensional matrix of char-

pletionsof a given PST. Based on a sound approxima-aCterS' The pattern matching community has developed data

tion of this constraint-based characterization, we developt'UCtUres, also referred to as suffix trees, for indexing sub-

and analyze two selectivity estimation algorithms, MOC Matrices in a database of such matrices (see, e.g., [Giagds,
(Maximal Overlap with Constraints) and MOLC (Maxi- GG96)). The problem of indexing submatrices is clearly a dif-

mal Overlap on Lattice with Constraints). In Sect. 6.4, we fgrent p.roblem than index'ing substrings in multiple correlateq
show that KVI, MO, MOC and MOLC illustrate an inter- dimensions, and the suffix tree developed for the submatrix

esting tradeoff between estimation accuracy and compuMatching problem does not seem applicable to our problem.
tational efficiency. Our problem, despite its importance, appears to have re-

— Turning from the 1-D to thé-D problem, in Sect.7, we ceived much less attentipn intheli.te.rature.:. No_table exceptiorjs
propose a novel-D generalization of 1-D PSTs, as the ba- are a study of 1-D substring select!wty estimation, p(esented in
sic data structure for solving theD problem. Given the [KV196], and a study of:-D substring selectivity estimation,
enormous sizes of count-suffix trees for large databased)Ven in WVI97]. There are some similarities and several key
and especially for multiple dimensions, it is essential t0d'|f'ferenqes between the study of 1-D dnl substring selec-
obtain PSTs within given memory restrictions. In Sect. 8, iVity estimation presented in [KVI96,WVI97] and the work

we develop a space- and time-efficient probabilistic algo-Presented here:
rithm to construct a PST without first having to construct — First, at a data-structure level, both the 1-D substring se-
the full count-suffix tree. lectivity estimation in [KVI96] and our work are based on

216 H.V. Jagadish et al.: One-dimensional and multi-dimensional substring selectivity estimation

PSTs; in fact, 1-D PSTs were proposed in [KVI96]. How-
ever, thek-D substring selectivity estimation in [WVI97]
is based ort separate 1-D PSTs and a multi-dimensional
array. In our case, the estimation is based @naPST,

proposed in this paper.
— Second, for constructing pruned data structures without/ogn)
10

(50)
(13)

constructing the complete count-suffix trees, only ad hoc' . sO O
heuristics were considered in [KVI96,WVI97], i.e., no @ (15) 0
quality guarantees were provided. Our approach of direct .

construction of 1-D an&-D PSTs builds upon the con-)

cise samp]ing technique proposed in [GM98], prov.iqlesFig_ 1. Example PST
probabilistic guarantees on the number of false positives
and false negatives, and givascuratecounts for the sub-
strings in the PST.

— Third, for 1-D selectivity estimation, experimental eval- are obviously useful in different applications. We differentiate
uation of various independence-based, child-based anbetween count-suffix trees, depending on the interpretation of
depth-based strategies is provided in [KVI96]. Among C,,, as follows:
those, a specific version of the independence-based strate-
gies, referred to here as the KVI algorithm, is shown to bepefinition 1 (p- and o-suffix trees) A p-suffix treeis a
one of the most accurate; no formal analysis is given incoynt-suffix tree, where non-negative integér denotes the
[KVI96]. - o o number of strings in the databage containinga as a sub-

For k-D selectivity estimation, a generalization of the KVI string.
algorithm, as well as child-based and depth-based strate- - An ,-suffix treeis a count-suffix tree, where non-negative

gies, has been developed in [WVI97]. That generalizationinteger(,, denotes the number of occurrenceswais a sub-
does greedy parsingdependentlyn each of the: dimen- string in the databas®. O

sions, using 1-D PSTs, and computes an estimate for the
k-D substring selectivity based on the information in the . . .
multi-dimensional array. This technique can be considere tr'](”.ShT.?? eft al. [KVI96] T:or:_slilere%onh{_sufni(trtﬁgs, due

as a simple version of the GNO algorithm proposed in this o their LfO: ! ybotr queré/ S€ ef?_ 'Vt' y es \Ilr\Tl]I‘? |on£hn di ":‘. pa}[per,
paper. As will be shown later, the MO algorithm proposed we consider botlp- ando-suffix trees. Where the distinction

here is superior to the GNO algorithm for multiple dimen- does not matter, we simply refer to them as CO“”t‘S“ﬁ'X frees.
sions. In the following, we useV to denote the count associated

. _ . with the root of a count-suffix tree. Specifically, for theuffix
Finally, parts of this paper have appeared in [JNS99] andree, N denotes the number of strings I whereas for the

in [JKNS99]. o-suffix tree,N denotes the total number of suffixes of strings
inD.

] The storage requirement of a full count-suffix tree can be

3 Background and notation prohibitive. When one wishes to obtain only a quick estimate

i of the counts, it suffices to store a PST [KVI96]. We (Sé0

Throm_Jghou_t this paper, we uséto de_note the alphab‘?t; b, denote both pruneg ando-suffix trees. Pruning is done based
possibly with subscripts, to denote single charactes§iand o somepruning rule For instance, one could choose to retain
Greek lower-case symbais 3, v, 7, possibly with subscripts, oy the topk levels of the count-suffix tree. A more adaptive
to denote strln_gs_of ar_bltrary (finite) Iengthm“._Forsmpl!c— rule is to prune away every nodethat has a court, < p,
ity, we do not distinguish between a charactedirand a string wherep is the pruning threshold. We say that a pruning rule
of length 1. is well formulatedif it prunes every descendant afwhen it
prunesx. Both pruning rules described above are well formu-
lated. We use the threshold-based pruning rule in this paper
for consistency with [KVI96], even though our results apply
to other well-formulated pruning rules, such as the level-based
pruning rule, with appropriate obvious modifications.

We illustrate an example PST, with pruning threshold
b5-’ in Fig. 1. Labels are presented for substrings related to the
database stringpnes , with countsC,, shown in parentheses
for some of the nodes in the PST.

3.1 Suffix trees

A suffix treefWei73,McC76] is a trie that stores not only the
given database of strind3 = {v1,...,v.}, but also all suf-
fixes of eachy;. A count-suffix treds a variant of the suffix
tree which does not store pointers to occurrences of the su
stringsa of the v;’s, but just keeps a count,, at the node
corresponding tex in the tree.

The countC,, can have (at least) two useful meanings in
the count-suffix tree. First, it can denote the number of stringP€finition 2 (Completion of a PST)We say that a count-
in the databas® containinga as a substring. Second, it can Suffix tree is aompletionof a PSTT if 7 can be obtained by
denote the number of occurrencescois a substring in the Pruning the count-suffix tree.
databaseD. SupposeD contains on|y the Strin@anana . Observe thatitis possible for the same PST to be generated
With the first interpretationC,.. would be 1, but with the by pruning many different count-suffix trees. We GEE) to
second interpretatior.,. would be 2. Both interpretations denote the set of all completions of PET O

H.V. Jagadish et al.: One-dimensional and multi-dimensional substring selectivity estimation

3.2 Types of queries supported

Clearly, a PST can be used to estimate the selectivity of subp

string queries. For example, the quérttrl = xjonex) is
matched by the node = (jone) or evena = (jones). In

addition to substring queries, queries of the following forms

are also prevalent:

— attrl beginning withjone (i.e., prefix match),
— attrl ending withjone (i.e., suffix match), and
— attrl matchingjone (i.e., exact match).

Even though in the above example the n¢gene) appears

(prefix) stringa; ... ;1 has already been observed. Then,
Pr(o) can be written as:

r(o) = Pr(aq ...aplay .. .op—1) - Pr(ag ... ay-1)

= Pr(o1) - [ITZoPr(or ... ajlag .. 1))

@)

4.1 Algorithm KVI

We denote the independence-based straf¢gyresented in
[KVI96] as the KVI algorithm. Krishnan et al. empirically

to handle the prefix queryattrl beginning withjone”, it showed that this strategy is among their best strategies, and
really does not. The reason is that if there is, for example, 1€nce we compare our approaches with this strategy. Our tech-
string cjone in the database then this string alone accountdliques and results can be extended in a straightforward manner
for one occurrence ofone, which is a suffix ofcjone, inthe for comparison with the other independence-based strategies
PST. In other words, the count associated with the igelee) ~ Proposed in [KVI96]. . .
includes not only strings withione as the prefix, butindeed ~ The KVI algorithm takes advantage of the information
all strings withjone as a substring. in the PST, and assumesmplete conditional independence

It turns out that a simple trick is sufficient to make the Thatis, it estimates each term in (1) as follows:
PST capable of handling all the variations mentioned abovep;.(q, . .. ajlar ... o 1) = Pr(aj). 2)
For each string, we add two special characters: # attached to . - . o .
the beginning and $ appended to the end of the string. As . A dejcalled descrlpt.lon of the KVI algorithm is given in
far as insertion into the PST is concerned, these two specidl'9" 2d leen_thejfubs;_rlrég quesyKVI perf?rm_sthe so-called
characters behave like any other “normal” character in thed'€eay parsmgh h. Itfin s_a sequence Od Sg"}gﬁv ” 7>O‘w
alphabet. As far as querying is concerned, a prefix match td°F S0mew such that @y = a; ... a,, and (b) for allj > 1,

e . ; i is the longest prefix ofc — a1 — ... — a;_1) that can be
the string “jone” can be specified as a substring match orff% 'SV s i—1
the (extended) string “#jone” to the PST. Similarly, suffix andrf:)und mrt]he PhS'I7|' AS ShOWﬂfI.n ';'fg‘ 2,thereisalsoa bouhndary
exact matches to string “jone” can be specified as substrin aset,) Wf ené € o_ng(;st prﬁ 'X(. o h_ o aﬂ'fl) that
matches to the strings “jone$” and “#jone$”, respectively. an be found ir/" is the null string. In this casey; is set to
be the first character ¢t — oy — ... — aj_1).

Example 1 (KVI estimationConsider the PST shown in
Fig.1. The substring query = jones is parsed intgon
andes. Accordingly, KV I(jones) is given by:

3.3 Strings

For a stringa, we usex[j] to denote the character at thia

position ina, and more generallg[i . . . j] to denote the sub-
string starting at théth position and ending at thih position

of ainclusively. If « is obtained as the concatenation of strings

o1 andas, we writea = aj ag, in other words, concatenation

Pr(jones) = Pr(jon) * Pr(jones|jon)
~ Pr(jon) x Pr(es)
= (Cyon/N) * (Ces/N)
= 1.25%.

is implicitly expressed in terms of adjacencydlf is a prefix
of 3, then the expressiofi — «; gives the suffixay, where
B = aias.

Definition 3 (Maximal overlap) Given stringsG; = ajas
and g, = asas, Whereas is maximal, we define thmaximal
overlapbetween a suffix g¥; and a prefix of3,, denoted by
B1 @ B2, @asas. The expressiof; — (51 @ f2) givesas. O

4.2 Algorithm MO: Maximal overlap

Given a substring query, our MO algorithm computesall
maximal substring#, ..., 8, of ¢ that can be found in the
PSTT. These maximal substrings, . .., 3, satisfy collec-
tively the conditiono = 31 [B2— (81@52)] - . . [Bu— (Bu—1©
Bu)]-

Example 2 (MO parsingfor the PST shown in Fig.1, the

We begin our study of the substring selectivity estimation prob-substring queryr = jones is parsed intg3; = jon , 3, =
lem with the 1-D version. In Sect. 7 and beyond, we will con- one and 33 = nes. Accordingly, 3, @ (, andj3, © (33 are
sider thek-D version of the problem. the stringson andne, respectively. O

Employing a frequency interpretation of probability, we
usePr (o) to denote the selectivity of substring querycom-
puted using the PST. If is found in the PST, we simply
computePr(c) = C, /N (whereN is the root count). I is
not found in the PST, then we musstimatePr(c). This is
the essence of owubstring selectivity estimatigeroblem.

Let queryo = o Let Pr(oq ... ajlar ... aj-1)
denote the probability of occurrencecwf . . . «; given that the

4 KVI and MO: Selectivity estimation algorithms

With respect to (1), the query string can be decomposed
into adjacent stringsg;, as follows:o; = (1, andq;
B — (Bj—1@B;),7 > 1. Then, MO estimates the conditional
probability ofa; ... «; given the prefix stringy; ... o;_; as
follows:

Pr(ai...ajlar...aj_1) = Pr(B;|8j-1 @ ;)
= Pr(B;)/Pr(Bj-1 @ B;).

®)

218 H.V. Jagadish et al.: One-dimensional and multi-dimensional substring selectivity estimation

Algorithm KVI

Input: a PSTT with pruning thresholg, and
root countN'; a substring query

Output: the estimat& VI (o)

{1.i=1;
2. While (@ not equal nullf{
2.1 ~ =thelongest prefix of in T;
2.2 If (v equal null){
2.3 a; = ofl];
24 Pr(a;) =p/N}
Else{
2.5 a; =1,
2.6 Pr(a;) = Cq,/N}
27 o=0—q;,
28 i=i+1}
3.KVI=1II, Pr(a;);retun®VI)
}

Fig. 2. The KVI estimation algorithm

Algorithm MO

Input: a PSTT with pruning thresholg, and
root countN; a substring query

Output: the estimaté/O (o)

{1.i=1; o =null; k = 0;
2. While (@ not equal null){

2.2 If (y equal null){

23 pi=o0l1];

2.4 Pr(B)=p/N;

25 k=1,i=i+1}

26 Elseif§ >k){

27 Bi=7;

28 Pr(B;) = Cs,/Copr..a);

29 k=ji=i+1}

210 o =0 —-o0o[l;k=k—1}
3. MO = II; Pr(B;); return(LO)

}

2.1 ~y=o[l...7]=thelongest prefix of in T;

Fig. 3. The MO estimation algorithm

That is, MO captures theonditional dependence of; on the
immediately preceding (maximal overlap) substrihg; ©3;

ofo.

Positive queries Negative queries
(avg. relative error) (avg. standard error)
MO —28% 0.08
KVI +326% 0.15

Fig. 4. Estimation accuracy comparisons

4.3 MO versus KVI

Complex sequences typically exhibit the following statistical
property, called the short memory property: if we consider
the (empirical) probability distribution on the next symbol
a given the preceding subsequenc®f some given length,
then there exists a length (the memory length) such that
the conditional probability does not change substantially if
we condition it on preceding subsequences of length greater
thanL. Such an observation led Shannon, in his seminal paper
[Sha51], to suggest modeling such sequences using Markov
chains.

Recall thatto estimatBr (o ... oj|as ... a;-1), MO al-
lows partial conditional dependence and uses the estimate
Pr(53;|8;-1 @ B;), whereas KVI assumes complete condi-
tional independence and uses the estinfatey;). While it is
not universally true thaPr(5;|5,-1 @ ;) is a better estimate
thanPr(c;) for all distributions, we can establish the follow-
ing result for strings that exhibit the short memory property:

Theorem 1 Suppose thatthe strings in the datab@sexhibit
the short memory property with memory lengthConsider a
PSTT and asubstring query. Lets, . . ., 8, be the maximal
substrings ot in 7. Then, ifvi > 1 : 5;,_1 ® 5; has length
> L, thenMO(o) is a better estimate (in terms of log ratio)
than KV I(o). O

Note that we have used the standard metric of log ratio to
compare the goodness of a probability estimate.

In general, determinind. is not practical, especially in
the presence of updates, and the MO strategy of conditioning
based on the longest preceding subsequence in the PST is a
rational strategy.

4.4 Experimental evaluation

To complement our theoretical analysis presented above, we

A more detailed description of the MO algorithm is given present preliminary experimental results comparing the qual-
inFig. 3. The algorithm keeps track of the positions of maximality of the estimates computed by KVI and MO.

substringss; of o found in the PST/, as well as the overlaps
between them, using the (integer) position variablasdk.
Once more, in the boundary case when some charactesin
not in the PSTT, the same solution is adopted as in KVI.

Example 3 (MO estimationjo continue with Example 2,

MO(jones) is computed as follows:

Pr(jones)
= Pr(jon) - Pr(jone|jon) - Pr(jones|jone)
~ Pr(jon) - Pr(one|on) - Pr(nes|ne)
— (Cyon/N) - (Cone/Con) - (CaesCie)
= 1%.

We implemented both KVI and MO in C. We paid special
attention to ensure that MO is not affected by round-off errors.
The results reported below were obtained using a real AT&T
data set containing information about over 100,000 employ-
ees. In particular, the reported results are based on the lastname
of each employee and on a pruned tree that keeps roughly 5%
of the nodes with the highest counts.

Following the methodology used in [KVI96], we consid-
ered both “positive” and “negative” queries. Positive queries
are strings that were present in the un-pruned tree (or in the
database), but that were pruned. We used relative error, i.e.,
(estimated count- actual countjactual count, as the metric
for measuring the accuracy. We randomly picked 50 positive
queries of variable length, of variable actual counts, and to

H.V. Jagadish et al.: One-dimensional and multi-dimensional substring selectivity estimation 219

cover different parts of the pruned tree. The results reportesiumber byO,.! Secondp can appear as a suffix of a string

below give the average relative error over the 50 queries. in D; this is the third term in (4) below. Thirdy can appear
Negative queries are strings that were not in the un-prunea@s a proper, non-suffix, substring of a stringlinthis is the

tree (or in the database). That is, if the un-pruned tree wersecond term in (4).

available, the correct count to return for such a query wouldpefinition 4 (ConSuffixa)) Given a stringa, we define

be 0. To avoid division by 0, estimation accuracy for “egativeConSuffiga) to be the following equality:

queries is measured using mean standard error as the metric,

i.e., the square root of the mean squared error. Co = O4 + Z (Caay)
The first column of the table in Fig.4 compares the esti- a1€A
mation accuracy between MO and KVI for positive queries.
The average relative error of MO is28%, whereas the cor- + Z (Caw — Z (C@wg)>) (4)
responding error of KVI ist326%. A detailed examination ascA as€A
of each of the 50 queries used indicates that KVI has a strong 0

tendency to overestimate by aw@e margin, whereas MO h_as a Alternatively, one can express the above three components
roughly 50-50 chance of overestimating and undereStImatlngContributing toC, in an o-suffix tree in terms of prefixes
. The second column of the table in Fig. 4 compares the_z SSihstead of suffixes. Then, we get the following definition:
timation accuracy between MO and KVI for negative queries.” ™ =) -))
Because the actual count of a negative query is 0, the closdpefinition 5 (ConPrefia)) Given a stringa, we define
the average standard error is to 0, the more accurate the es§OnPrefixa) to be the equality:
mate. MO again is more accurate than KVI, even though both~ _ + Z (Cara)

a — « a1

appear to give acceptable estimates for negative queries. -
ay

5 Using count-suffix tree constraints + Z (Caaz - Z (Casaa2)> : ®)

az€A az€A

While MO provides a better estimate for the substring selectiv- O
ity of query strings than KV, itis possible that both estimates
are infeasible, i.e., there may be no completion of FSSuch
that the count,, in the completion is equal to M@] or to
KVI(o). The following example illustrates this possibility. We can now characterize the set of all completigh§,), of

a prunedo-suffix tree 7. First, for each completion, it must
satisfy (4) and (5) for each string in the completion. Second,

both KVI and MO estimatePr(jes) asPr(j) - Pr(es) = it??Oifnﬂﬁlztéogsr?;%ﬁgee with the “semantics7ofwhich
2.5%. :

Since the count§’, in ano-suffix tree record the number Definition 6 (ConPrunéa, 7', p)) Given a pruned-suffix tree
of occurrences aft in the databas®, it must be the case that 7 With pruning thresholg, denotek, to be the count ofy
Co > 3 Cua,, for stringsaa; corresponding to the children in 7. We define ConPrurie, 7, p) to be the following con-
nodes (not all descendant nodesyoh the PST. Specifically, ~ Straint:
forthe PSTin Fig. 1, observe that = Cjo, + Cjack- HeNce, ¢, = k,, if ain T,
no completion of/_can have a non-zero count corresponding < p, otherwise ©6)
to the stringjes . Thus, using the constraints, one can infer
that the substring selectivity g¢s must be 0. a O
Qefinition 7 (ConComyT,p)) For a prunedo-suffix treeT,
with pruning thresholdp, define ConCon(T, p) to be the
constraints and prunedsuffix tree constraints is that the re- set of con*stramts.{ ConSuffixa)ja € A *}U { ConPrefix
lationshipC,, > 3" C.., does not hold for pruneg-suffix (@)l € A"} U { ConPrunéa, T p)a € A"} =
trees. Instead, only a much weaker relationstip,> Cq, The following result, easily established by induction on
holds for each child nodea; of « in the prunedp-suffix the height of the tree, characterizes the set of all completions
tree. For example, for thigs query, the databasP might of a given PSTT.

have 10 strings containing bojlck andjon , allowing for Thegrem 2 Consider a prunea-suffix tree7", with pruning
additional strings containings . thresholdp. Ano-suffix tree is a completion 6F if and only if

_In the next two sections, we show that more can be dongne counts associated with its strings satisfy ConC@p).
using prunea-suffix tree constraints for developing accurate 0

estimation algorithms.

5.2 Characterizing completior&7)

Example 4 ¢-Suffix tree constraintspuppose the PST in
Fig. 1 is a pruneda-suffix tree. For the substring quejss ,

Let us now repeat the exercise of Example 4 using a prune
p-suffix tree. Thekeydifference between prunedsuffix tree

A straightforward corollary of the above result is that we
only need to consider strings in ConComy7 ,p) that are
bounded in length by, the root count of/".

A similar exercise can be repeated to give a complete char-

There are three components contributingtpin ano-suffix ~ actérization of completions of a prunpesuffix tree.
tree. Firstpy appears as a string (by itself)Iiy we denote this 1 In general D can have multiple occurrences of the same string.

5.1 o-Suffix tree constraints

220 H.V. Jagadish et al.: One-dimensional and multi-dimensional substring selectivity estimation

5.3 Projection constraints Algorithm MOC

Input: a PSTT with pruning thresholg, and
It is possible that the estimafe’ O (o) [and KV I ()], which root countlV'; a substring query
uses only “local” information fron¥, is infeasiblg i.e., it Output: the estimaté/ OC'(o)

is impossible for any completion 6f (as characterized by | 11 y/00 = MO(0);
Theorem 2) to agree with this estimate. Example 4 illustrates 5. |et ConProjo, T, p) be of the formC,, < v,

such a situation. In the following, we seekitoprovethe MO 3.if (MOC > v, /N) {MOC =v,/N}
estimate whenever this estimate is infeasible. 4. returnZOC);
Given a substring query, determining ifA O(o) is fea- 1

sible, with respect t&€onComg7, p), is NP-hard [Sch86]. In

our effort to check efficiently whetheé/ O (o) is feasible, we Fig. 5. The MOC estimation algorithm

need to approximat€onComy7, p), where asound approx-

imation of a set of constraints is one whose solution space is

a superset of that of the original set of constraints. A simplewell as the counts of “siblings” af in 7). If a parent string is

sound approximation is the set notin7’, one can obtain analogous constraints on its count. It-

% erating this process unall thel- andr-parents are ifir gives

{ConPrunga, T, p)la € A"}, us a set oprojection constraintsdenotedConProj(«, T, p),

which only requires that strings notinhave countsthatdonot which is a sound approximation @onComg7, p). We for-

exceed the pruning threshgldObserve thatin Example 4 this malize this below.

sound approximation would consider the MO (and KVI) esti-

mate to be feasible (singg/’ N = 5/200 = 2.5%). We show Definition 10 (anc(e, 7), ConProja,T,p)) Consider a

that it is possible to obtain a “better” sound approximation of prunedo-suffix tree7", with pruning thresholg, and a string

ConCompT, p), without sacrificing a polynomial-time check «a notinT.

of the feasibility of M/ O(o). Define the setinc(a, T) to be the smallest set such that:
o _ _ (@)« € anc(a, T)and (b) ifa; € anc(a, T) andas isani-or

Definition 8 ({— and r-parents) Given a stringx of lengthm, anr-parent ofas, such thatv, notin7, thenas € anc(e, 7).

we call the stringg[1. .. (m—1)]anda[2...m|the l-parent |nuitively, anc(a, T) is the set of all ancestors of that are

(I for left) and ther-parent(r for right) of a. O notin7T.

Define ConPraja, T, p) as the projection of the follow-

constraints orC,: {ConPrune(ay,T,p) | aq € T} U

{I-ConPara1,T) | a1 € anc(e, T)} U {r-ConPara;,T |

Observe that by rearranging the terms in (5) and droppinq
non-negative terms, we get the following inequality: ng

Coo = Co — O, — Z (Caya) a1 € anc(a, T)} U { ConPrunéa, T,p)}. O
a1 €A,a1#a
Example 5(ConProfjones , T, p)) Consider the pruned-
-> (Caa2 -y (Cagaa2)> suffix tree7” shown in Fig. 1, with pruning threshojd = 5.
as€A as€A For the substring querjones , anc{ones , 7) is the set
<C. _ Z (Cara) {jones , jone , ones }. Assume all relevant nodes are as
= Ya aror shown.ConProjjones , T, p) is given by the projection of
a1€A,a17#a the constraints below 0ffjones:
S Ca - (Calll)'
a1€A,a§;,a1aET Cjones <p =295
This and the symmetric inequality obtained by using (4) Chones < Cjone
are formalized below. jones < Cones
Definition 9 (I-andr-ConPar«, 7)) Given a pruned-suffix Cyone < Cyon = Cjona = 10 =7
treeT’, and astringy = aa;y notinT, we denoté-ConPar(c, T) Cione < Cone = 15
to be the inequality: Cones < Cone — Copeqa = 15 —7
onesS nes — anes:2*1-
COélal < C(041 - Z (Calaz)' ¢ ¢ ¢ 0 s
a2€A,ax#a1,01a2€T This simplifies to the single inequality;ones < 3. 0
Similarly, given a stringx = a;«; notin 7, we denote
r-ConPar«, 7) to be the inequality: Putting all of the above together, we have the following
theorem:
Caloq S Cal - Z (Ca2041)'
ax€A,az#ar,a201 €T Theorem 3 Given a prunedo-suffix tree7, with pruning

thresholdp, and a stringa not in 7, ConProj«, T, p) is
(a) a sound-approximation of the projection of the constraints
Now, given a stringx not in the PSTT, one can usé- ConComgT,p) on C,, and (b) of the formC,, < wv,, for
ConPar(«, 7)) andr-ConPar(«, T) to obtain constraints on some value,,. O
the count o’ in terms of the counts of its andr-parents (as

H.V. Jagadish et al.: One-dimensional and multi-dimensional substring selectivity estimation

5.4 Algorithm MOC: Maximal overlap with constraints

We use the constrain@onProjo, 7, p) to create a new esti-
mation algorithm, which we calthaximal overlap with con-
straints(MOC), and present in Fig. 5.

Example 6 (Estimating/OC(jes)) Consider the pruned
o-suffix tree in Fig. 1, and the substring quéeg . As shown
in Example 4,MO(jes) = KVI(jes) = 2.5%. The con-
straintConProj(jes, T, p) is given by:

CjesSCj_CjO_Cja = 20—10—10

As a result, M OC(jes) would return 0, which is theonly
feasible value. O

Intuitively, if MO(o) is a feasible value forC, in
ConProj(o, T, p), the estimateMOC(c) is the same as
MO(o). Otherwise, M OC(0) is set to the largest possible
feasible valuey,, of C,,. This directly leads to the following
two results, which summarize the relative behavior ofth@
andMOC algorithms:

Theorem 4 Consider a pruned-suffix tree7". Then, itis the
case thatM OC(o) < MO(o) for all o. O

Theorem 5 Consider a prunedo-suffix tree 7. Then,
MOC(0) is a better estimate (in terms of log ratio) than
MO(o) forall o. O

6 Lattices and constraints

The M OC(o) estimate improves on the/ O(o) estimate by
“applying” constraints that relat€’, to variousC,, in the
prunedo-suffix 7, such thaix is a substring ot. However,
it should be possible, in principle, to “apply” the MOC al-
gorithm one step at a time to all membersaofc(o, 7) and

221

Flg 6.Ejones

Algorithm MOL

Input: a PSTT with pruning thresholg, and
root countN; a substring query

Output: the estimatd/OL(o)

{ 1. constructC,;
2. for all nodesy € £, of depth0, Pr(«) = Co/N;
3. process nodes in ascending order afepth > 1: {
3.1 setyi, v2 thel- andr-parent ofq;
32 Pr(a)=Pr(n)- Pr(y2)/Pr(ni @72) }
4. MOL = Pr(o); return@/OL);
}

Fig. 7. The MOL estimation algorithm

Algorithm MOLC

Input: a PSTT with pruning thresholg, and
root countN; a substring query

Output: the estimatd/OLC(o)

{ 1. constructC,;
2. for all nodesx € £, of depth0, Pr(«) = Cuo/N;
3. process nodes in ascending order afepth > 1: {

3.1 sety1, v2 thel- andr-parent ofq;
32 Pr(a) = Pr(n): Pr(y2)/Pr(y @72);
3.3 let ConPrdja, T, p) beCy < va;
34 if (Pr(a) > va/N) { Pr(a) =va/N} }

4. MOLC = Pr(o); return({OLC);
}

obtain an even better algorithm than MOC. In this section, Werijg. 8. The MOLC estimation algorithm

explore this possibility, and propose a new algorithm, MOLC,

which validates our intuition.

6.1 The string completion lattice

6.2 Lattice-based estimation

As a step towards our goal of obtaining a step-at-a-time

constraint-based estimation algorithm, we first extend the max-

We first formalize the notion of a step-at-a-time computationimal overlap (MO) estimation algorithm to the lattice, and re-

using astring completion latticedefined below.

Definition 11 (String completion lattice) For o not in PST
T, we define thetring completion latticef « with respect to
T, denoted’,,, inductively as follows: (aj is a node inC,
and (b) for any nodey; in L, thel-parent and--parent ofa;
are also nodes irt,,. There is an (undirected) edde;, a2)
in L, if oy is anl-parent or anr-parent ofas.

Thedepthof a nodex; in L,, is defined inductively as fol-
lows: if a1 isin T, depth(ay) = 0, otherwisedepth(ay) =
1 + maz{depth(v1),depth(v2)}, where v;,~v, are the
[-parent andr-parent ofa;. O

Example 7 (String completion lattic€onsider the PST™
shown in Fig. 1, and the substring quéoyes . In this case,
a relevant fragment of ;0.5 is given in Fig.6. Nodes with
counts correspond to stringsTn a

fer to it as themaximal overlap on latticéMOL) algorithm.
Figure 7 shows the MOL estimation algorithm. It is easy to
show by induction on the depth that all terms on the right-hand
side of step 3.2 are known each time the step is executed. In-
tuitively, the MOL algorithm repeatedly applies the MO algo-
rithm to “complete” the fragment of the lattice that “supports”
the given substring query.

Example 8 {/OL(jones)) Consider the PST/ in Fig. 1,
the substring querjones , and the string completion lattice
Ljones in Fig. 6. MOL first estimate$’r(jone) as

Pr(jone) = (Cjon/N) - (Cone/N)/(Con/N)
(Cjon : Cone)/(N : C’on)

= 2.5%
andPr(ones) as

Pr(ones) = (Cope/N) - (Ches/N)/(Cre/N)

222 H.V. Jagadish et al.: One-dimensional and multi-dimensional substring selectivity estimation

= (Cone - Ches)/(N - Cye) The following result is similar to Theorem 4.
= 3%. Theorem 7 Consider a pruned-suffix tree7". Then, it is the
Then MOL estimater(jones) as case thatM OLC(0) < MOC(o), forall . 0
Pr(jones) = Pr(jone) - Pr(ones)/Pr(one) The major result of this section is the following analog to
= (Pr(jone) - Pr(ones) - N)/Cope Theorem 5.
= 1%, Theorem 8 Consider a pruned-suffix tree7. Then, it is the
o] casethatV OLC(c) is a better estimate (in terms of log ratio)
giving the same estimate as MO. O than M OC (o), for all o. 0

The identical estimates by MO and MOL in the above
example are not a coincidence, as shown by the followin

result; %.4 Trading accuracy for efficiency

Theorem 6 Consider a PSTT. Then it is the case that Combining the results from Sects.5 and 6, we have
MOL(c) = MO(o), for all o. O 0 < MOLC(c) < MOC(o) < MO(o)[= MOL(c)] < 1

The proof is by induction on the depth of the string com- for the values of the estimates produced by the various algo-

pletion lattice of a substring quesy. It is reassuring to know . - :
that the MOL estimate is identical to the MO estimate. In par-ﬁgﬂlg:' The estimaté(V1(c) can be anywhere in th, 1]

B e e desebed S31er < I terms.of e error, expressed s helog o using te
. . . Pl y various estimation algorithms, we have

ever, the incorporation of constraints has a positive effect over

MOC(o), as we see next. MOLC < MOC < MO(= MOL) < KVI.

To understand the tradeoff between computational cost
and estimation error, we study the computational costs of the

6.3 Algorithm MOLC ; L :
various estimation algorithms.

The MOL algorithm obtains estimates for the selectivities atTheorem 9 Let s be the size of the alphabet. Let m be
multiple intermediate nodes and uses these as a basis to esfire length of the substring query. Assume a unit cost for
mate the final answer. However, some of these intermediatgach level that the PST is traversed, and that all traversals
estimates may be infeasible with respect to the constraintgork their way down from the root. Létbe the depth of the
discussed previously. We would expect to do better if at eaclPST. Then, the worst-case time costs of the various estimation
stage we applied constraints to the intermediate estimates anggorithms are given by:

used these constrained estimates to determine the final desired)

answer. The algorithmmaximal overlap on lattice with con- 1 COSt(KVI(U)), is O(m).

straints(MOLC), modifies MOL along the lines of MOC, and 2 Cost(MO(0)) is O(m - d).

is shown in Fig. 8. 3. Cost(MOC(0))isO(m - s - d).
4. Cost(MOLC(0))is O(m? - s - d). O
Example 9 /OLC(jones)) Continuing with Example) _
8, MOLC modifies the MOL estimat&r(jone) to 1.5% be- The costs of computing the estimatdgOC/(o) and
cause of the following constraint @onProj(jone, T, p) (see M OLC(o) are dominated by the cost of computing the pro-
Example 5): jection constraints. In the former case, it suffices to consider
O(m) constraints, each of which may ha@Xs) terms. For
Cjone < Cjon — Cjona = 3. anr-ConPara, 7)) constraint, determining the counts of its

terms requires traversing(s) paths, each of lengttv(d).?
X . This gives theD (m-s-d) bound. Inthe latter case, one needs to
%Ft)o?({;ei/ 390)b.ecause of the following constraint @or compute the projection constraints fchnode in the string
1o D)- completion latticeC,,. In the worst case there afEm?) such
Cones < p = 5. nodes, leading to the given bound. Hence, in terms of the com-
putational effort (running time) required, the ordering is the
Consequently, the MOLC estimater(jones) is reduced to gpposite of the estimation accuracy ordering:

0.5% = (3-5)/(15-200). Note that this is lower than the MO
and MOC estimates. o MOLC > MOC > MO > KVI.

Similarly, MOLC modifies the MOL estimat&r(ones) to

The following lemma is the key to establishing the subse-
guent theorems: 7 Developingk-D structures for estimation

Lemma 1 Consider a prune-suffix tree7, a substring
queryo, and the string completion latticé,. Then, for any
nodea € L,, if step 3.4 of Algorithm MOLC lowerBr(a),
then the estimates for all nodes belewin £, are also re- 2 One can pre-compute and store two additional constants per node
duced. O in the PST and eliminate the dependence of the cost on

So far, in this paper, we have focussed on the 1-D problem.
Next we turn our attention to theD problem. But before we

H.V. Jagadish et al.: One-dimensional and multi-dimensional substring selectivity estimation 223

- (g.e K For example, to make the count-trie shown in Fig.9, a 2-D
@b,c) (e,0) (e, 1) count-suffix DAG for(abc, 0) and (abd, 1), we need to add

the strings/node@c, 0), (be, €), (¢, 0), (¢, €), (bd, 1), (bd, €),
// w /’/ (d, 1), and(d,), and the corresponding edges.
(abc,e) (abd,e) (ab,0) (ab, 1)

/ 7.3 Compressed representatidgnD count-suffix trees
(abc, 0) (abd, 1)
Fig. 9. Example 2-D count-trie Note that with a count-suffix DAG each query search begins

from the root of the DAG. To answer a query, it thus suffices to
o . . _ ensure thatthere is a path from the root of the DAG to each node
do so, in this section, we first establistk#D data structure in the DAG. From this standpoint,/aD count-suffix DAG is

for estimation. an overkill, in the sense that there mayeiltiplepaths from
By ak-D string, we mean a-tuple (o, ..., ax), where the root to a node in the DAG (e.g., there are paths ffor)
a; € A" forall1 <4 < k. A k-D substringof a givenk-D 1o (abe, 0) through(e, 0) as well as throughiabe, €) in Fig. 9).
string (a1, ..., ax) is (1, ..., %), such thaty; is a (possibly Thus, to reduce space, we seek to comprésBaount-suffix
empty) substring ofy;, 1 <i < k. DAG into ak-D count-suffix tregwhile preserving the desired

guery answering capabilities.
To do so, we first pick a canonical enumeration of the at-

7.1 k-D count-tries tributes® Without loss of generality, let us assume that the
enumeration order is attributes 1 ko Then for any node
In k-D, acount-trieis a rooted DAG that satisfies the following (@1 - - - » @) inthe count-suffix DAG, we define the following
properties: path from the root to the node as tb@nonical path
— Each node is &-D string. The root is the:-D string (a1,1,6,...,8), (12,6, ...,€), .o (O my €, -5 E),
(5, e ,6). (04170[27176, e ’6)5 R (a17a27m27€7 ... 76)7
— There is a directed edge from nog@e,, . .., ;) to node e
(ﬁ1’ .. 7/6]6) |ff (Oél, e ,Oék;_]_, ak:,l)) ctty (ala) ak}—l7ak}7mk)7
— there existd < ¢ < k such that; is an immediate where for alll < i < kandl < j < m;, a; ,; is an immediate
prefix of 5;; and prefix of ; ;11 and for alll < i < k, i m, = .
—forallj #i,1 <j <k a; =0 Intuitively, the canonical path @fv1, . . . , a;,) corresponds

By “immediate prefix,” we mean that there does not exist an-© the path that “completes” first;, thena, and so on. For

other node(. ..., v, ...) in the trie, such thaty; is a proper example, for the nodéabc, 0) in Fig.9, the canonical path
prefix of v;, andy; is in turn a proper prefix of;. For con- {rom the root passes through the nodes, <) and (abc, ¢).
venience, we restrict all our discussion for thé case to 11iS path is guaranteed to exist in the DAG.

presence counting. Our techniques carry over easily to occur- Finally, to prune a count-suffix DAG to the correspond-
rence counting as well. ing count-suffix tree, any edge in the DAG that is not on any

Figure 9 shows the 2-D count-trie for a database with thecanonical path is discarded. In Fig. 9, the four edges marked

two 2-D stringgabe, 0) and(abd, 1). The root nodde, ¢) and ~ With || are not on any canonical path and are removed to give

the node(ab, <) have count = 2, while the remaining nodes all the count-suffix tree. . .
have count = 1. As compared with the original count-suffix DAG, the

Asis done for standard 1-D count-tries, a simple optimiza-count-suffix tree has the same number of nodes, but fewer
tion can be applied to compressD count-tries. For any two edges. Because of the canonical path condition, each node,

nodes connected by an edge, there is no need to store the coffCePt for the root, has exactly one parérgducing the DAG

mon prefix twice. In Fig. 9, for instance, the nodéd, ¢) can ~ 'Nto a tree.

simply be stored a&d, ¢); we show the prefix in the figure Itis important to note that, even though we introduee
only for clarity. D count-suffix trees as pruning the appropriate edges from

the corresponding-D count-suffix DAGs, in practice, &-

D count-suffix tree can be constructdiectly for a given
database, without explicitly constructing the DAG. Effective-
ly, to insert anyk-D string, we pick the canonical path as the
path for inserting the string into the count-suffix tree.

In 1-D, a suffix tree [Wei73,McC76] is a trie that satisfies |n the following, we use count-suffix trees and suffix trees
the following property: whenever a stringis stored in the jnterchangeably, for simplicity.

trie, all suffixes ofa are stored in the trie as well. The same

7.2 k-D count-suffix DAGs

property is preserved fde-D count-suffix DAGswhich are % The choice of the enumeration order turns out to be immaterial

k-D count-tries. Specifically: from the point of view of selectivity estimation. The only effect it
has is on the actual size of the resultant count-suffix tree. Since this

Property P1: For&-Dstring(as, ..., ax)inthe count-suffix s a second-order effect, we do not address this issue further in this

DAG, each of thek-D strings(v1,...,7%) is also in the paper.
DAG for all (improper) suffixesy; of a;,1 < i < k. 4 In the original DAG, each node may have upktparents.

224 H.V. Jagadish et al.: One-dimensional and multi-dimensional substring selectivity estimation

8 Direct construction of PSTs nodes are very likely to meet the- N threshold by them-
selves. However, if they do not, the rule ensures that these
8.1 The necessity of pruning nodes nodes are exempted from pruning. The exemption rule is set

up to facilitate the selectivity estimation algorithms presented
A k-D count-suffix tree compresses the correspondifigy in Sect. 9.
count-suffix DAG by removing edges not on any canonical
path. However, the number of nodes in both structures remain
the same. Itis easy to see that the number of nodes is huge fgr
very large databases and for> 2.

To be more precise, first consider a 1-D count-trie. IndeX-gjyen the above rules for pruning, the next question is how

ing IV strings, each of maximum length, requires at most gyactly to create the PST for the given databBsé naive

N - L nodes, assuming no sharing. For a 1-D count-suffixay is'to build the full-D count-suffix tree, and then to apply
tree, because of all the suffixes, the same database requir

.) pruning rule. For most circumstances, this method is in-
O(N - L) strings, each of maximum length Thus, the total fe5jhle because the amount of intermediate storage required

. 9 , .
number of nodes, assuming no shar|ngQ|(sN . L.). With is tremendous.
sharing of nodes between suffixes of a given string, the total ;yen memory restrictions for creating the pruned tree,

number of nodes can be reducedQN - L). Now consider e wish to be able to alternate between building and pruning
ak-D count-trie. IndexingV £-D strings, éach of maximum 4, the fly. An exact strategy to do so is to first form ten-

Ie_n.gthL, requiresO(Lk)kpossible prefixe§ forgaoth string, pleted databasegomp(D), of the given databas® of k-D
giving a total ofO(N - L") nodes in the trie. Finally for &-D

3 Inadequate ways of creating pruned trees

. P . : strings. That is, for each original stririg, . .., ax) in D, we
count-suffix tree, there ar@(L") possible ggfﬂxes for each 4 its completed seaccording to Property P1, which is the
k-D string. This gives a grand total 6f(N - L") nodes in the set{(71,...,) | for all (improper) suffixes; of a; for all

k-D count-suffix tree. No sharing of nodes between suffixe
is possible here.
In summary, going from 1 t& dimensions increases the

S1<i< k}. We then sort (out-of-memory) the completed
databaseomp(D) lexicographically according to the canon-

) L _ ical enumeration of the dimensions. Finally, we can simply
database size by only a factor bf butkltllncreas_es the size p,ild the pruned tree by reading in sorted order and prun-
of the count-suffix tree by a factor ¢#*~1. Eveninthe 1-D j;0"\whenever the given memory is exceeded. This strategy,
case, it has been argued [KVI96] that one cannot afford tQhije exact, is in general too prohibitive in cost, because of
store the whole count-suffix tree for many applications andq gorting involved on a set many times larger than the original
that pruning is required. In the D case, the need for pruning yaahas@. Furthermore, as updates are made to the database,
becomes even more urgent. there is no obvious incremental maintenance technique.

For most applications, it may be sufficient to construct an
approximatePST. Recently, there has been considerable re-
search activity around the creation of synopsis data structures
in a fixed amount of space [GM98]. In particular, based on the
notion of a concise sample, which is “a uniform random sam-
le of the data set such that values appearing more than once

the sample are represented as a value and a count” [GM98],
ibbons and Matias developed an incremental maintenance
algorithm to maintain a concise sample. In the following, we
refer to this as the GM algorithm.

For a given amount of working memory space, the GM
orithm gives guarantees on the probabilities of false pos-
itives and negatives. To be more precise, we wish to find all
requentvalues, i.e., values occurring at least a certain number

8.2 Rules for pruning

A tree can be pruned by using any well-formulated pruning
rule that ensures that when a node is pruned all its child node,
are pruned as well. In this paper, we consistently use a prun:
ing rule that prunes a node if its count is less than a prune
count thresholg - N. (We will find it convenient to think of

p as the prunegrobability threshold. IfN is the count at the

root, then, with a frequency interpretation of probability, we
getp- N as the corresponding count threshold.) The threshol%lg
may be fixed a priori, or, for the approximate, probabilistic
construction algorithms presented next, the threshold may a

just itself in order to meet given memory restrictions. Since ¢y e o <ot et us ugeto denote the set of all

the count associated with any node_ IS _guarantee_d to be nt‘?uly frequent values and to denote the set of all frequent
greater than the count associated with its parent in the tre€ . 1les reported based on the concise sample. The GM algo-

our pruning threshold rule is well formulated. : . . P
While the above discusses which nodes to prune, we alsgthm provides guarantees on the probabilityof 7 given

have a specific rule that stipulates which nodasnotbe thata € 7 (i.e., false negative), and the probabilitycot F

pruned, regardless of their counts. These are nodes of the forgfven thata: ¢ F (i.e., false positive) [GM98, Theorem 7].
(a1, ..., a) such that for alll < i < k, the length ofu; is Thus, one way to create an approximate pruned suffix tree for

less than or equal to 1. Hereafter, we refer to this as the unit 9iven amount of working memory space is to apply the GM
cube pruning exemption rule. Note that the counts of thesé@!gorithm oncomp(D).

® Because of the dramatic increase in the size of the suffix tree, in
practice, giverk alphanumeric attributes, it is ill-advised to blindly
build ak-D count-suffix tree. Itis expected that some kind of analysis
be carried out, such as correlation testing, to select subgroups of
attributes to be indexed. We do not concern ourselves in this paper
on how such a selection can be made.

H.V. Jagadish et al.: One-dimensional and multi-dimensional substring selectivity estimation 225

8.4 A two-pass algorithm
3 I
There are, however, two problems with a direct application of
the GM algorithm to our task.

2 I
Inversions: Recall that fok-D count-tries and count-suffix |

trees, the count associated with a node must not exceed t

count associated with a parent. When appliegtop(D),

the GM algorithm does not make that guarantee, and it is a b C

possible that, based on the concise sample, the relative or-

dering of the count values are reversed. In fact, it is everfFig. 10.2-D query with GNO estimation

possible that, while a certain node is reported to have a

frequency exceeding a given threshold, some of its ances-) .

tors are not reported as such, i.e., nade F but some (91:---,0k), whereforalll < i < ko; € A* (and can be
; . the null string), we use the PST to give the selectivityy If

of its ancestorg ¢ F.

>) . _ .._is actually kept in the pruned tree, the exact caliptan be
Inaccurate counts: While the GM algorithm gives probabilis- rf:*turned. The challenge is whetis not found, and”, has to

gfo%?(?era;liztsjn?ggglzi F':ﬁzIt:;ﬁas'[i\?gde?r%gr]st:;/feti’étrde%%SrtZ%)ve estimated based on the content of the pruned tree. Below
counts (i.e., the error od’,). As will be clear in our e consider two algorithms to do so.

discussion in Sect.9 on selectivity estimation, inaccurate

counts in the pruned suffix tree may be compounded t .

give grossly inaccurate estimates feb strings not kept .1 The GNO algorithm
in the tree.

Given queryy, the GNO (Greedy Non-Overlap) algorithm ap-

To deal with the above two problems, we augment the GMplies greedy parsing to obtain non-overlappinB substrings
algorithm into the following two-pass algorithm: of ¢. This generalizes the KVI algorithm for the 1-D problem.
Before we go into the formal details of the algorithm, we give

1. ;gz?it%]:mConstruebmp(D) on the flyand apply the GM an example to illustrate the idea,

. - Consider the 2-D querfubc, 123) shown in Fig. 10. The
2. Pasg 2: Do a second pass over Fhe o_rlglnaIAdataBaee call GNO(abc, 123) firgt fin%Ls the Io)ngest prefix (gfbc from
obtain exact counts for all the stringsdomp(¥). the pruned tree, and then from there the longest prefix of 123.
The second pass of the above algorithm serves two purposek our example, this turns out to be the substiinl 12) (rect-
First, because counts are obtaineddmnp(ﬁ), noinversion anglel). Thenrecursive calls are made to find other substrings
is possible. Note that in general because of the GM algorithn{0 complete the whole query. In our gxample, the recursive
the size ofomp() — F should not be large compared with €@l are&GNO(ab, 3) andGNO(c, 123).° As it turns out, the

. . - substrings b, 3) (rectangle 1) and¢,123) (rectangle Ill) are
the size ofF. Second, the extra pass over the original databas : : P
eliminates any possibility of incorrect counts due to the sam-‘f;'ound in the pruned tree. T'h'eln the estimated selectivity is the
~ product of the three selectivities.

pling done by the GM algorithm. If the strings imp(F) Probabilistically,GNO(abe, 123) is given by:
can all fitin main memory (e.gs 1 million strings), which is '

achievable for many computer systems these days, the secodty{ (abc,123)} = Pr{(ab,12)} - Pr{(ab,123) | (ab,12)}
pass amounts to a single scan of the database. -Pr{(abc,123) | (ab, 123)}

Thus, in summary, the above two-pass algorithm repre- - .
sents a space- and time-efficient algorithm for constructing a ~ Pr{(ab,12)} - Pr{(ab, 3)}

PST directly. It gives probabilistic guarantees on false posi- Pr{(c,123)}
tives and negatives (via the GM algorithm) and at the same = (Clab,12)/N) - (Can,3)/N)
time avoids inversions and inaccurate counts. Furthermore, to (Clenas/N),

implement the unit-cube pruning exemption rule mentioned in]]

Sect. 8.2, the algorithm can simply skip over the strings to bevhereN is the count of the root node (i.e., the total number of

exempted in the first pass, but count them in the second pas8trings in the database). Itis essential to observe that GNO as-
When update€\D are made to the databa®e the first ~ sumes conditional independera@ong the substringlote

pass can be performed in an incremental fashion. Only whe#hat this is not as simplistic as assuming conditional indepen-
there is a change t& is there a need for a pass ot AD. dence among the attributes/dimensions. If that were the case,

If there is no change t&F, then it is sufficient to perform a GNO would not have used counts Such(ags, 2 from the

pass oveAD to update the counts of the existing nodes in theg;lang dtree, andwould have simply used counts such s,
(e,12)"
PST. A skeleton of the GNO algorithm is givenin Fig. 11. Step 1
can be implemented by a search of the pruned tree that finds

9 GNO and MO: k-D selectivity estimation algorithms 6 Alternatively, the recursive calls can b@NO(C7 12) and

GNO(abc, 3). Regardless, in each case, the identified substrings
We now come to the heart of the multi-dimensional substringfrom the pruned tree do not overlap. Experimental results for both
selectivity estimation problem. GivenkaD query stringg = alternatives will be presented in Sect. 10.

226 H.V. Jagadish et al.: One-dimensional and multi-dimensional substring selectivity estimation

Algorithm GNO (o4, . ..,0%)

{ 1. Find from the pruned trefy1, . . ., vx) wherey;
is the longest prefix of1, and givery;, 2 is

the longest prefix of2, and so on. 2

2.9n0 = C(qy ...y /N

3. [(y1,...,vk) equal(oy, ..., ok)], return gno). m

4.ForG=1;i<kiit+){ 1
4.1 Computey; such that; equaly;d;.
4.2 If (6; not equal to null) a b c
gno =gno-GNO(y1,...,%i-1, 6i, Oit1, ..., Ok). Fig. 12.2-D query with MO estimation

5. Return ¢no).

} MO also finds three substrings, corresponding to the ones
. . shown in Fig.10. (In general, MO may find a lot mdteD

Fig. 11.Pseudo code of algorithm GNO maximal substrings, i.ek-D substringsy, such thaty is not

a substring of? and vice versa.) While the substriggp, 12)

the longest prefix in the order of the dimensions. As usual, thérectangle I) remains the same, MO now firds, 23) (rect-

N in Step 2 is the count of the root node. angle Il) and(bc, 123) (rectangle Ill). _
It should be obvious that in the worst case GNO searches 1€ question now is how to “combine” all these substrings
the pruned tre@(|o+| - . .- |o%|) times. This brings us back to together. Let us begin by consideririgb, 12) and (ab, 23).
the unit-cube pruning exemption rule mentioned in Sect. 8.2Probabilistically, we have:
The productoy | - .. .- |ox| gives the total number of unit (hy- _ .
per)cubes ftor t|he qu|ery‘. The exemption rule guarantees th£r{(ab’ 123)} = Pr{(ab,12)} - Pr{(ab,123) | (ab, 12)}
the pruned tree has a count for each of the unit cubes. De- ~ Pr{(ab,12)} - Pr{(ab,23) | (ab,2)}
pending on the outcome of Step 1, GNO may not need any = Pr{(ab,12)}
of the unit cubes. Strictly speaking, we can do away with the -Pr{(ab,23)}/Pr{(ab,2)}.

exemption rule, and if a unit-cube is needed but is not found
in the pruned tree, we can simply use the pruning probabilityThus, unlike GNO, MO does not assume complete condi-
p. We prefer to adopt the exemption rule, because in this wagional independence among the substrings. Whenever pos-
the selectivity of the unit cube is the most accurate. This acsible, it allows conditioning up to the overlapping substring
curacy is particularly significant when the actual selectivity is[€.9.,(ab, 2)] of the initial substrings under consideration [e.g.,
much lower tharp, such as for the so-called negative queries(ab, 12) and(ab, 23) here].
considered in Sect. 10. Operationally, we can view the above probabilistic argu-
In terms of formal properties of GNO, the following the- ment as a counting exercise. When we take the product of
orem shows that GNO generalizes the KVI algorithm. Given Pr{(ab, 12)} and Pr{(ab,23)}, we are basically counting
ak-D PSTT, we use the notatioproj(7,i), for somel < rectangleslandllinFig.12. The problemisthat we have “dou-
i < k, to denote the subtree @f such that: ble” counted the rectangle corresponding to substfirg2).
L To compensate, we divide the product with{(ab, 2)}.
— the set of nodes is given by | the node(e, ..., €, a;, To continue now by taking into considera{ti(on re)ciangle I,
€....,¢)isinT}, wherea; canbe the null string; and o take the product of probabilitiesPr{(ab, 12)},
— thesetofedgesis given by the set of edgéSieonnecting Pr{(ab,23)} andPr{(bc, 123)}, basically counting all three
only nodes of the fornfe, ..., &, ai, &, ..., €). rectangles. To compensate for double counting, we divide
For example, the tree shown in Fig.9, when projected on théhe product by the three 2-way intersections: Ka) (ab, 2) }
first dimension, consists of the root node &nd, ¢), (abc,c) between | and II; (b)Pr{(b,12)} between | and lIl; and

and(abd, £), and the edges connecting these nodes. (c) Pr{(b,23)} between Il and IlI.
However, by dividing the 2-way intersections, we have
Theorem 10 For any-D pruned tre€T, andk-D queryg = «qyercompensated.” Specifically, the substriftg2) is ini-

(€,.-:,6,04,€,...,¢), the estimate given by GNO feusing a1y counted three times in the product, butis then discounted

T is identical to the estimate given by the KVI algorithm for , e times in the division of the three 2-way intersections.

o; usingproj (T,). U To make up, we need to multiply what we have so far with
Pr{(b,2)}, which is the 3-way intersection between the three

. initial substrings.
9.2 The MO algorithm: Example inftiat substrings

MO for multiple dimensions tries to find maximum overlap-)

ping substrings just as in the 1-D case. The complication is tha?-3 The MO algorithm: Pseudo code

the nature of overlap can now be considerably more complex.

To illustrate, consider again the 2-D quénbc, 123) shown The counting exercise illustrated in the above example is gen-
in Fig. 10. While GNO finds three 2-D non-overlapping sub- eralized in Fig.13, which gives a skeleton of théd MO
strings, MO finds overlapping substrings. In Fig. 12, to high-algorithm. Step 1 first finds all the maxin¥alD substrings of
light the comparison between MO and GNO, we assume thathe queryg from the pruned tree. Let these ke, ..., \, for

H.V. Jagadish et al.: One-dimensional and multi-dimensional substring selectivity estimation

Algorithm MO (o1, ...
{1

7Uk)

Find from the pruned tree all the maximal
k-D substrings of o1, . .., o%). Let these be
A1, ..., A\, fOr someu.
. Initialize S to {(A1, 1), ..., (A, 1)}, andi to 1.
. Repeaf
3.1 Initialize Spew to 0.
3.2 For all(a, w) € S such thatw equali
Foralll <j<u{
If [(a not equal);) and
(N A; non-empty)],
add @ N Aj, i+ 1) t0 Shew-

3.35 = S U Shew, andi + +
} until (Shew equal@)
. Initialize mo to 1.
. Forall(a,w) € S {
5.1 Get count’,, from the pruned tree.
5.2 If (w is an odd integeryno = mo - (Co/N)
Elsemo = mo/(Ca/N)

6.
}

Fig. 13.Pseudo code of algorithm MO

Return {no).

someu. Then Steps 2 to 3 find all the non-empty 2-way inter-
sections (i.e.); N A;), 3-way intersections (i.eA; N A; N),
and so on, up ta-way intersections fow < u.

After all possible intersections amonk,...,\, are

found, Step 5 of MO computes the final estimate. It obtains
the appropriate counts from the PST. Note that the suffix tree

guarantees that if there are nodes correspondiagaind) ;,
then their non-empty intersectienn A; must have a corre-
sponding node in the tree. Thus, for glay w) in S, the count

C, can always be obtained from the tree in Step 5.1. Finally,

Step 5.2 puts the probability”,, /N) in the numerator or the
denominator, depending on whethers odd or even. That is,
if ais aw-way intersection amongy, ..., A,, andw is odd,

then the probability appears in the numerator, but otherwise

in the denominator.

9.4 The MO algorithm: Properties

A natural question to ask at this pointis if Step 5.2 is “correct.”
As motivated in the example shown in Fig. 12, by “correct,” we
mean that each substring of querys countedexactlyonce,

227

=255
expansion(l —z)¥ = ([1+ >

(=1)7(¥)]. Now consider the well-known binomial
(=1)7(})=’]. By substi-

tutingz = 1, we getd = (1 — 1)];1: [1+300 (D7)]
Hence [~ 31, (~1)7(¥)] = 1. 0

Next, we investigate how tHeD MO algorithm discussed
in this section generalizes the 1-D MO algorithm presented in
the first half of the paper.

Suppose for the quenpcde, 1-D MO finds three maximal
substrings:abc, bed, andcde. Then 1-D MO, as presented
earlier, gives the following estimate:

CVabc . C'bcd . Ccde

N Cbc Ccd .
On the other hand, the-D MO procedure shown in Fig. 13
gives the following estimate:

CabC/N) i (Cbcd/N) i (Ccde/N) i (CC/N)
(Cb(:/N) : (Ccd/N) : (CL/N)

While it is easy to see that both estimates are identical, we

must point out two more subtle details:

— Inthek-D MO calculation above, there are terms that can-
cel each other out, notabllC./N). While the (C./N)
term in the numerator corresponds to the 3-way intersec-
tion between the three maximal substrings, the/N)
term in the denominator corresponds to the 2-way inter-
section betweebc and cde. The point here is that the
3-way intersection ofibc, bed, andcde is exactly the 2-
way intersection of the first and the last ones.

The use of the words “first” and “last” precisely under-
score the fact that in 1-D, all the maximal substrings can
be linearly orderedwith respect to the query. Thus it

is unnecessary to consider anyway intersections for

w > 3, and even unnecessary to consider the 2-way inter-
section between; and); for j > ¢ + 1. In other words,

it is sufficient to just consider 2-way intersections of two
successive maximal substrings (e.g., the intersebtibe-
tweenabc andbed). The complication irk-D is that there

is no linear order to fall back ork; may “precede’); in
some dimensions and vice versa for the other dimensions.

Thatk-D MO is a proper generalization of 1-D MO is easy
to show by considering the nature of overlap possible in one
dimension. Since each maximal substring has a new starting
position, and the length of any maximal substring is finite,
there can be at most a finite number of overlapping strings,
and these can be ordered based on their starting positions.
Wherever strings andk + 2 overlap, we must also havet 1

Pr{abcde} =

Pr{abede} ~ (

i.e., neither over-counting nor over-discounting. We offer the®veriap. Thus, the three-overlap term exactly cancels the 2-

following lemma:

Lemma 2 For any (o, w) in S, representing av-way inter-
section, Step 5.2 of MO is correct in that egeld substring
« is counted exactly once.

Proof. For anyw-way intersection, let us assume, with-
out loss of generality, that is the intersection okq, ..., A,.
Thena must have been countgyl) times initially, then dis-

counted(¥) times due to 2-way intersections, then countedqg = (e, ...

apart 2-way overlap term. Similarly, where stririgandk + 3
overlap, we must also have+ 1 andk + 2, leading to two

as yet unaccounted for 3-way overlap terrhg: (+ 1,k + 3)

and &,k + 2,k + 3), which exactly cancel the 3-apart 2-way
overlap term and the 4-way overlap term. Proceeding thus,
we can argue that all terms except two-way overlap cancel
amongst neighboring terms. This leads to the following result:

Theorem 11 For any k-D pruned tree7, and k-D query
,E,04, €,...,€), the estimate given by the MO

(¥) times due to 3-way intersections, and so on. So the toalgorithm shown in Fig. 13 fog using7 is identical to the
tal number of timesy has been counted and discounted is estimate given by the 1-D MO algorithm fet using proj

(1) -)=

)+ (& —(=1)"(w). This can be rewritten as

(T’ Z) O

228 H.V. Jagadish et al.: One-dimensional and multi-dimensional substring selectivity estimation

When the underlying dimensions are independent of each Pos—Hi Pos—Med Pos-Lo
other, the above theorem can be generalized to the following mo (+4%, 3.89) (+16%, 10.35) —(11%, 3.38)
result. It is proved by showing that for any term with multi- gnQ (-98%, 35.3) (-95%, 19.13) {90%, 3.99)
ple dimensions expressed as the product of the corresponding
component 1-D terms (due to independence between dimeriHg. 14. Estimation accuracy for positive queries
sions), all the one-dimensional terms generated will cancel.

Theorem 12 Suppose thedimensions are mutually indepen- while relative error measures accuracy in relative terms,
dent, i.e., for all nodegav, ..., ay) in the k-D count-suffix mean squared error measures accuracy in absolute terms. For
tree T, Cla,,....a0)/N = I (Ce.....a....c)/N). Then for some of the cases below, we give the square root of the average
anyk-D prunedtree]” of T, andk-D queryg = (01,...,0k), mean squared error for positive queries. We refer to this as the
the estimate given by-D MO for g using 7" is equal to average mean standard error.

the product of the estimates given by 1-D MO égrusing Negative queries are 2-D strings that were not in the data-
proj(T',i),1 <i<k. O base or in the un-pruned tree. That is, if the un-pruned tree

were available, the correct count to return for such a query
would be 0. To avoid division by 0, estimation accuracy for
negative queries is measured using mean standard error as the
metric.

Last, but not least, let us analyze the complexity of the MO
algorithm. Inthe worst case, Step 1 requitd$o; |*-. . .| o |?)
searches of the pruned tree. Step 5 may need anoX)
searches of the tree, since in the worst caseéS'ssimputed
in Step 3 may be of sizé(2"). Thus, in terms of worst-case
complexity, MO is far inferior to GNO. The practical ques- . _
tions, however, are: how much more absolute time is required0-2 MO versus GNO: Positive queries
by MO, and whether the extra runtime gives better accurac

in return. We rely on experimentation to shed light on theseyrhet"jIble in Fig. 14 compares the estimation accuracy between
guestions. MO and GNO. Each entry in the table is a pair, where the first

number gives the average relative error, and the second num-
ber gives the average mean standard error. For example, the

10 Experimenta| evaluation first pair (—98%, 353) for GNO indicates that GNO underes-
timates by a wide margin, and for a “typical” positive query
10.1 Experimental setup of actual count being 36, GNO estimates the count to be 36

35.3 =0.7. In contrast, MO gives a very impressive average
We implemented the-D MO and GNO algorithms. Theywere relative error of 4%, and for a “typical” positive query of ac-
written in C. We paid special attention to ensure that MO istual count being 36, MO estimates the count to be 36 + 3.89
not affected by round-off errors. Below we report some of the= 39.89.
experimental results we collected. The reported results were As the actual counts of the positive queries drop, GNO
obtained using a real AT&T data set containing office informa-gradually gives better results. This is simply because GNO
tion about most of the employees. In particular, the reporteclways underestimates, but the underestimation becomes less
results are based on two attributes: the last name and the offigrious as the actual counts themselves become smaller. Onthe
phone number of each employee. For these two attributes, thether hand, no such trend can be said about MO. Sometimes
un-pruned 2-D count-suffix tree has 5 million nodes. The re-it underestimates, and other times it overestimates. But there
sults reported here are based on a pruned tree that keeps the @gnot be any doubt that MO is the winner.
1% of the nodes (i.e., 50000 nodes) with the highest counts. ~ InSect. 9.1, we pointout thatthere are many differentways
Following the methodology used in [KVI96], we consid- to make the recursive calls in Step 4.2 of GNO. For 2-D, there
ered both “positive” and “negative” queries and used relativeare two ways. Besides the version of GNO as shown in Fig. 11,
error as one of the metrics for measuring accuracy. Positivéve alsoimplemented and experimented with the other version.
gueries are 2-D strings that were present in the un-pruned treld general, there are some slight differences in the estimations.
or in the database, but that were pruned. We further dividediowever, in terms of accuracy, the other version remains as
positive queries into different categories depending on howPoor.
close their actual counts were to the pruned count. Below we
use Pos-Hi, Pos-Med, and Pos-Lo to refer to the sets of positive
gueries whose actual counts were 36, 20 and 4 respectivel}}0.3 MO versus GNO: Negative queries and runtime
where the pruned count was 40. Each of the three sets above
consists of 10 randomly picked positive queries. Those werd'he mean standard error for negative queries (averaged over
picked to cover different parts of the pruned tree. 10 randomly picked ones) is 0.002 for GNO and 0.01 for MO.
To measure the estimation accuracy of positive queries, w&Vhile GNO is more accurate for negative queries than MO,
give the average relative error over the 10 queriesin the set, i.ethe accuracy offered by MO is more than acceptable.
(estimated count- actual count)/actual count. Thus, relative By now it is clear that MO offers significantly more accu-
error ranges from-100% to infinity theoretically. Becauserel- rate estimates than does GNO. The only remaining question is
ative error tends to favor underestimation to overestimationwhether MO takes significantly longer to compute than does
we adjust an overestimated count by the pruning count, whenGNO. For our three sets of positive queries, MO often finds
ever the former is greater than the latter, i.e., [min(estimated 2—16 maximal 2-D substrings, whereas GNO uses only 3-5
count,pruning count}- actual count]/actual count. substrings. Consequently, while GNO tak&d 0~¢) seconds

H.V. Jagadish et al.: One-dimensional and multi-dimensional substring selectivity estimation 229

Pos-Hi Pos-Med Pos-Lo Negative 10.5 Accuracy for large area positive queries
Indep —-23% —-17% —-27% 0.25
MO +4% +16% —11% 0.01

So far, all the positive queries used are “small area,” by which
we mean that the “area” (i.el¢1| - |o2]) covered byg =

Fig. 15.Estimation accuracy: the independence assumption (01,02) is between 5 and 12. Two-dimensional strings corre-
sponding to a smaller area tend to always be kept in the pruned
MO Indep GNO tree. Figure 16 shows results for positive queries with “large
relative error 33% -57% —99% areas,” which are defined to be18.
Compared with the small-area positive queries, MO be-
Fig. 16.Estimation accuracy for large-area positive queries comes less accurate for large-area positive queries. One pos-

sible explanation is as follows: The larger the area covered by
a query, the greater the number of maximal substrings found.
Thus, in finding alkv-way intersectionsy tends to become a
ﬁarger number than before. Apparently, inaccuracies incurred
in the earlier counts are compounded to give a less-accurate
final estimate. Nonetheless, compared with the alternatives,
MO is still the best. Finding a way to improve accuracy with
large-area positive queries is an interesting open problem.

to compute, MO usually take®(10~*) seconds (on a 225
MHz machine). Nonetheless, we believe that the extra effor
is worthwhile.

10.4 MO versus two 1-D exact selectivities

The next question we explore experimentally is as follows.
Since we know that a 2-D count-suffix tree is much larger than 1 Conclusions and future work
two 1-D count-suffix trees (i.e., like comparing the product
with the sum), there is always the questiongifien the same Queries involving wildcard string matches in one or more di-
amount of memory, and in the presence of pruning, wouldnensions are becoming more important with the growing im-
direct 2-D selectivity estimation give more accurate resultsportance of LDAP directories, XML and other text-based in-
than using the product of the two 1-D selectivitid&@cause it formation sources. Effective query optimization thus requires
is difficult to adjust the settings to get two equal-sized PSTsgood (one- and multi-dimensional) substring selectivity esti-
we did the following: mates.
In this paper, we formally addressed the substring selectiv-
y estimation problem, using PSTs. We presented several esti-
ation algorithms based on probabilistic and constraint satis-
faction approaches, compared them with previously known
echniques, both formally and experimentally, and demon-

suffix trees. In sum, the two trees have more than 16000 ateq the advantages of the MO family of estimation algo-
nodes for a total size of 2.3 Mbytes. fithms.

Thus, for the latter setting, we used exact 1-D selectivities, Many open problems remain. Whereas our techniques are

without any estimation involved. Essentially, this is an exercisesubstantially better than previously known techniques, we do

of comparing MO with applying the independence assumptiornot know yet if they are “optimal.” Also, we have assumed the

to k-D selectivity estimation. We gave the independence aspruned suffix tree as a given in most of the foregoing — Is it

sumption an unfair advantage over MO by allowing the formerpossible to adjust the pruning technique to minimize estima-

three times as much space. tion error? Is this adjustment sensitive to the choice of esti-
Nevertheless, Fig. 15 shows that MO compares favorablynation algorithm? Finally, we have dealt with multiple string

for both positive and negative queries. For positive queries, théatches in parallel, but not yet included possible sharing be-

figure only gives the average relative error; and for negativdween strings to be matched. Such sharing is likely to be com-

queries, the figure gives the average mean standard error. F8ton aswe consider path queriesin the context of XML. For ex-

easier comparison, the results of MO are repeated in the figur@mple, univ.dept.name=CS AND univ.dept.bldg.name=

from the earlier discussion. Gates. Can one extend our algorithms to such situations?
Despite the fact that exact 1-D selectivities are used, and

that more space is given to the independence assumption aRcknowledgementsThe research effort of H.V. Jagadish was sup-

proach, the approach gives results less accurate than those Qe in part by the NSF under grant 115-9986030.

2-D MO. In particular, for negative queries, 2-D MO appearswe would like to thank Flip Korn and Zhiyuan Chen for their com-

to be far superior. We can attribute this to the unit-cube pruningnents on an earlier version of the paper. We would also like to thank

exemption rule. the anonymous reviewers for their constructive suggestions, which
The outcome of this comparison is actually somewhat surhelped improve the paper considerably.

prising. Initially we expected that the last name attribute of

AT&T employees would be quite independent of their office

phone numbers. (Forinstance, office phone numbers and office

fax numbers would be far more correlated.) However, usingReferences

MO still gives better results than relying on the independence _ _ _
assumption. [GG96] Giancarlo R., Grossi R.: On the construction of classes

of suffix trees for square matrices: Algorithms and ap-
plications. Inf Comput, 130(2):151-182, 1996

— On the one hand, we used MO on the 2-D pruned tree w
have been using so far. This has 50000 nodes for a tot
size of 650 Kbytes.

— On the other hand, we used two-pruned1-D count-

230

[Gia95]

[GM98]

[HS95]

[loa93]

[IP95]

[JKM 98]

[JKNS99]

[INS99]

[KVI96]

H.V. Jagadish et al.: One-dimensional and multi-dimensional substring selectivity estimation

Giancarlo R.: A generalization of the suffix tree to square [LN90]
matrices, with applications. SIAM J Comput, 24(3):520—

562, 1995

Gibbons P.B., MatiasY.: New sampling-based summary
statistics for improving approximate query answers. In: [McC76]
Proceedings of the ACM SIGMOD Conference on Man-
agement of Data, pp. 331-342, 1998

Hernandez M.A., Stolfo S.J.: The merge/purge problem
for large databases. In: Proceedings of the ACM SIG-
MOD Conference on Management of Data, pp. 127-138,
1995

loannidis Y.: Universality of serial histograms. In: Pro-
ceedings of the International Conference on Very Large
Databases, pp. 256-267, 1993

loannidis Y., Poosala V.: Balancing histogram optimal- [PIHS96]
ity and practicality for query result size estimation. In:
Proceedings of the ACM SIGMOD Conference on Man-

agement of Data, pp. 233-244, 1995

Jagadish H.V., Koudas N., Muthukrishnan S., Poosala[SAC*79]
V., Sevcik K., Suel T.: Optimal histograms with quality
guarantees. In: Proceedings of the International Confer-

ence on Very Large Databases, pp. 275-286, 1998

Jagadish H.V., Kapitskaia O., Ng R.T., Srivastava D.:
Multi-dimensional substring selectivity estimation. In: [Sch86]
Proceedings of the International Conference on Very

Large Databases, pp. 387-398, Edinburgh, Scotland,

UK, September 1999 [Sha51]
Jagadish H. V., Ng R.T., Srivastava D.: Substring selec-

tivity estimation. In: Proceedings of the ACM Sympo- [Wei73]
sium on Principles of Database Systems, pp. 249-260,
Philadelphia, Pa., June 1999

Krishnan P., Vitter J.S., lyer B.: Estimating alphanumeric [WVI97]
selectivity in the presence of wildcards. In: Proceedings

of the ACM SIGMOD Conference on Management of

Data, pp. 282—-293, 1996

[MD88]

[P197]

Lipton R.J., Naughton J.F.: Query size estimation
by adaptive sampling. In: Proceedings of the ACM
SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, pp. 40-46, March 1990
McCreight E.M.: A space-economical suffix tree con-
struction algorithm. JACM, 23:262-272, 1976
Muralikrishna M., Dewitt D.: Equi-depth histograms
for estimating selectivity factors for multi-dimensional
queries. In: Proceedings of the ACM SIGMOD Confer-
ence on Management of Data, pp. 28-36, 1988
PoosalaV., loannidisY.E.: Selectivity estimation without
the attribute value independence assumption. In: Pro-
ceedings of the International Conference on Very Large
Databases, pp. 486-495, 1997

Poosala V., loannidis Y., Haas P., Shekita E.: Improved
histograms for selectivity estimation of range queries.
In: Proceedings of the ACM SIGMOD Conference on
Management of Data, pp. 294-305, 1996

Selinger P.G., Astrahan M., Chamberlin D., Lorie R.,
Price T.: Access path selection in a relational database
management system. In: Proceedings of the ACM SIG-
MOD Conference on Management of Data, pp. 23—-34,
June 1979

Schrijver A.: Theory of Linear and Integer Program-
ming. Discrete Mathematics and Optimization. Wiley-
Interscience, 1986

Shannon C.E.: Prediction and entropy of printed English.
Bell Syst Tech J, 30(1):50-64, 1951

Weiner P.: Linear pattern matching algorithms. In:
Proceedings of the IEEE 14th Annual Symposium on
Switching and Automata Theory, pp. 1-11, 1973
Wang M., Vitter J.S., lyer B.: Selectivity estimation in the
presence of alphanumeric correlations. In: Proceedings
of the IEEE International Conference on Data Engineer-
ing, pp. 169-180, 1997

