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Abstract Microarray experiments offer the ability to
generate gene expression measurements for thousands of
genes simultaneously. Work has begun recently on at-
tempting to reconstruct genetic networks based on ana-
lyses of microarray experiments in time-course studies.
An important tool in these analyses has been the singular
value decomposition method. However, little work has
been done on assessing the variability associated with
singular value decomposition analyses. In this report, we
discuss use of the bootstrap as a method of obtaining
standard errors for singular value decomposition analys-
es. We consider use of this method both when there are
replicates and when no replicates exist. The proposed
methods are illustrated with an application to two data-
sets: one involving a human foreskin study, the other in-
volving yeast.
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Introduction

With the recent development of microarray technology, it
has become possible to measure gene expression simul-
taneously on a large-scale basis. Because mRNA levels
can be assessed simultaneously for thousands of genes,
work has now begun on attempting to elucidate genetic
networks and metabolic pathways in various model or-
ganisms. One type of experiment that is useful for under-
standing regulatory mechanisms is the synchronized
time-course study. In these experiments, cells are sus-
pended in a certain state and then released. At certain
time points, mMRNA is taken from the cells, and microar-
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rays are run on the mRNA samples. The result is a set of
measurements from chips at various points in time.

One technique proposed by several authors for ana-
lyzing microarray time-course data is the singular value
decomposition (SVD; Golub and van Loan 1996). By us-
ing the SVD, the raw, high-dimensional microarray mea-
surements are transformed into a set of independent vari-
ables in alower-dimensional subspace. The uses of SVD
analysis of microarray data have been manifold. There
have been several applications of SVD analysis to gene
expression data (Craig et a. 1997; Hilsenbeck et al.
1999; Dewey and Galas 2001). One proposal involved
using SVD as a means of filtering and preprocessing the
data (Alter et al. 2000). Another use has been to summa-
rize microarray time-course data (Raychaudhuri et al.
2000). A third application has been to summarize the
time-course data into so-called characteristic modes that
are easier to study (Holter et al. 2000). In fact, these au-
thors have suggested that a subset of these modes can ex-
plain much of the variation in gene expression dynamics
and have begun investigations into dynamic modeling of
gene expression data using these quantities (Holter et al.
2001).

However, there has been virtually no mention of vari-
ability assessment of SVD anayses. In Holter et al.
(2000), a SVD of arandomly generated dataset was con-
sidered as a comparison with that of the real data. How-
ever, without any type of formal variance estimation, it is
impossible to determine what are “real” patterns in the
SVD analyses versus those that arise by chance. Similar
issues arise in hierarchical clustering of microarray data
(Zhang and Zhao 2000; Kerr and Churchill 2001).

Assessing this variability requires development of a
statistical framework for SVD analyses of microarray
time-course data. Our focus will be on performing infer-
ence for the characteristic modes. In this article, we pro-
pose a nonparametric approach for variance estimation
involving the nonparametric bootstrap (Efron and
Tibshirani 1993) which is applicable when there are rep-
licate data available on time-course experiments. In
many instances, however, such replicate data are not



available. For this scenario, we describe the assumptions
made in applying bootstrap methods. We will then apply
the proposed methods to data from a human fibroblast
study (Cho et al. 2001) as well as ayeast study (Gasch et
al. 2000). While these data were generated using cDNA
arrays, we expect that similar considerations should hold
using other types of high-throughput technologies.

Materials and methods

Notation and singular value decomposition

Before describing the singular value decomposition, we first intro-
duce some notation. Let x; denote the gene expression measure-
ment for the jth gene of the ith sample (collected at time t;),
j =1,...,p, i=1,...n. Typicaly, pisin the order of several thousands,
while n is in the order of 40-60. We define the vector x;
=(x l,...,xip)", where @' is the transpose of the vector a, and the pxn
matrix X =[X;--x,]. The SVD of X is defined in the following
manner:

X =ADF 1)
where A is apxn matrix of loadings, D is a pxp diagonal matrix of
the singular values of X, and F is a pxp matrix. The SVD de-
scribes the structure of the matrix X. For example, the number of
non-zero singular values on the diagonal of D is equivalent to the
rank of X. Furthermore, we have that A'A=| and F'F=FF'=l,
where | is an nxn identity matrix. Typically, the authors have used
D or DF as the lower-dimensional summary of X; the rows of
these pxp matrices correspond to the characteristic modes of X
proposed by Holter et a. (2000). The computation of the SVD is
typicaly iterative; a good summary of algorithms for performing
thistask can be found in Golub and van Loan (1996).

Nonparametric bootstrap with replicate data

We will first consider the scenario of replicated time-course exper-
iments. In thisinstance, there will be multiple X matrices. One can
use the bootstrap (Efron and Tibshirani 1993) to sample the indi-
vidual columns of X (i.e. the samples) from the available replicate
experiments. Alternatively, one could sample the rows of X (i.e.
the genes) from the experiments. Say we do this B times. For each
of the B bootstrapped gene expression matrices, we then apply the
SVD (Eg. 1). Thisyields a set of B bootstrapped DF matrices. We
can then plot the characteristic modes for the observed data, along
with the corresponding modes for the bootstrapped datasets. We
can use the bootstrapped datasets to construct pointwise confi-
dence intervals for the modes at each of the time points. We gener-
ate B=10,000 bootstrap samples and take the confidence limits to
be based on percentiles for the distribution of characteristic modes
at each time point. For example, we can construct 95% pointwise
confidence intervals by using the 2.5th and 97.5th percentiles for
the characteristic modes at each time point. If we want to have a
higher level of conservatism, we can construct 99% pointwise
confidence intervals by using the 0.5th and 99.5th percentiles for
the characteristic modes at each time point. It is important to note
that these procedures make no assumption about the dependence
of gene expression measurements within and across the n columns
of X.

Nonparametric bootstrap with no replicate data

In many situations, however, we only have data from one time
course experiment and no replicate experiments. Suppose we ap-
ply the bootstrap procedures described in the previous paragraph.
If we generate bootstrapped datasets by resampling from the rows
(i.e. the genes) of X, then we assume that the correlation between
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any two genes are the same. If we resample from the columns (i.e.
the time points) of X, then there is an assumption that for all
genes, the correlation between the gene expression measurements
at any two time points is the same. This does not seem to be area-
sonable assumption in most instances, so we will instead focus on
resampling genes later in the paper.

These are important assumptions that need to be carefully ex-
amined. By not replicating the time-course experiment, we lose
the flexibility to assume arbitrary dependence among genes and
among experiments across time points. In addition, any effects due
to time are confounded with the between-chip variation. Such as-
pects needed to be taken into account when analyzing the data
from a single time-course experiment.

Implementation

As was mentioned before, any of the standard software packages
that fit the SVD can be used to implement the methods described
in the algorithms section. All of these methods presented in the
Results section use the R language, a statistical software package
that can be freely downloaded at the following website:
http://cran.r-project.org/. The commands used to analyze the data
can be found at the author’s webpage, at the following URL:
http://www.sph.umich.edu/~ghoshd/COM PBIO/SV D2/index.html.

Results
Human fibroblast data

We have applied the resampling ideas described above
to a series of experiments conducted by Cho et al.
(2001). In these experiments, primary fibroblasts were
prepared from human foreskin and then arrested in the
late G, stage using a thymidine-block protocol (Rao
and Johnson 1970). The cells were then released and
collected every 2 h for 24 h. Using high-density oligo-
nucleotide arrays, mRNA was measured at 12 time
points. The authors of the study carried out the entire
experiment in duplicate; we use their notation and refer
to the two experiments as N2 and N3. While Cho et al.
(2001) were interested in determining cell-cycle regu-
lated transcripts, they averaged the data from the N2
and N3 experiments. We use their data simply to illus-
trate the techniques described in the algorithms. The
data can be found at the following website:
http://www.salk.edu/docs/labs/chipdata.

The data normalization procedure we used was the
same as that used by previous authors (Shedden and
Cooper, personal communication). While there are mea-
surements available on 7,129 genes, we excluded genes
that had fewer than two positive expression measure-
ments for either N2 or N3. This was done because the
transcript levels for these genes were so low that it
would be difficult to distinguish signal from background
expression. Thisleft atotal of 5,914 genes. The next step
was to apply a transformation of log(x+200) using base
2; this was done to stabilize the distribution of the gene
expression measurements. Then the genes on each chip
were centered and scaled to have mean 0.0 and variance
1. This was done to adjust for between-chip variation in
hybridization. The second transformation corrected for
difference in between-gene variation by centering and
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Fig. la—d Plot of the first four characteristic modes (solid line)
for N2 data from Cho et al. (2001), along with 90% (dotted) and
95% (dashed) pointwise confidence intervals. Intervals were ob-
tained by applying bootstrap to columns (time points) of data ma-
tricesfrom N2 and N3

scaling the measurements such that for each gene, the
mean is 0.0 and varianceis 1.0.

We first utilized the replicate data from both N2 and
N3 and applied the bootstrap. We generated 10,000 boot-
strapped datasets for each study. We took two separate
scenarios; in the first, the columns (i.e. the individual
time points) of the matrix were resampled while for the
second, the rows (i.e. the individual genes) of the matrix
were resampled. We cal culated 90% and 95% confidence
intervals for the modes at each time point; these values
tend to be close to one another. The first four characteris-
tic modes for the observed data (based on N2), along
with the bootstrapped confidence intervals, are given in
Fig. 1 for the first scenario and in Fig. 2 for the second.
The modes themselves appear to suggest periodic varia-
tion; furthermore, based on resampling time points,
many of the observed patterns in the modes cannot be
explained by chance. If we decide to resample genes
from the replicate experiments, we tend to find more sig-
nificant patterns in the data.

We then used only the data from N2 so that we had no
replicate data available. In Fig. 3, we show the results for
the first four characteristic modes and the associated
confidence intervals when the rows (i.e. the genes) of the
gene expression matrix are used for resampling. Note
that there is an assumption in this procedure that for each
gene, the correlation between measurements at any two
time points is the same. In addition, we are unable to in-
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Fig. 2a—d Plot of the first four characteristic modes (solid line)
for N2 data from Cho et a. (2001), along with 90% (dotted) and
95% (dashed) pointwise confidence intervals. Intervals were ob-
tained by applying bootstrap to rows (genes) of data matrices from
N2 and N3
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Fig. 3a—d Plot of the first four characteristic modes (solid line) for
N2 data from Cho et al. (2001), along with 90% (dotted) and 95%
(dashed) pointwise confidence intervals. Intervals were obtained
by applying bootstrap to rows (genes) of data matrices from N2
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Fig. 4a—d Plot of the first four characteristic modes (solid line)
for the first set of heat shock experiments from Gasch et al.
(2000), along with 90% (dotted) and 95% (dashed) pointwise con-
fidence intervals. Intervals were obtained by applying bootstrap to
rows (genes)from two replicate heat shock experiments

corporate the variability from replicate time-course ex-
periments. Comparing these graphs with those in Figs. 1
and 2 suggests that there is substantial variability be-
tween replicate time-course experiments. Consequently,
our results appear to be much more significant by resam-
pling only time points from one dataset.

Yeast data

Our second data analysis involved a series of yeast mi-
croarray experiments conducted by Gasch et al. (2000).
They were interested in characterizing the global gene
expression profile response to various types of environ-
mental stimuli, such as temperature shock, starvation and
nitrogen depletion. They conducted 177 microarray ex-
periments, of which 142 were reported in the study. Each
chip contained approximately 6,200 known or predicted
yeast genes that had been identified at the time of the
study.

We focussed on the heat shock experiments conduct-
ed by these authors. To briefly summarize these studies,
yeast cells were first grown continuously at 25°C, col-
lected by centrifugation, resuspended and then returned
to growth at 37°C (Gasch et a. 2000). While microarray
data were collected at several time points, replicate chip
experiments were performed at 5, 15, 30 and 60 min, so
we will focus on these time points. In contrast to the
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Fig. 5a—d Plot of the first four characteristic modes (solid line)
for the first set of heat shock experiments from Gasch et al.
(2000), along with 90% (dotted) and 95% (dashed) pointwise con-
fidence intervals. Intervals were obtained by applying bootstrap to
columns (time points) from two replicate heat shock experiments

study by Cho et a. (2001), these authors utilized the
spotted array technology for performing microarray ex-
periments. The reference pool, labeled with the Cy3 dye,
consisted of the mMRNA samples from all the time points,
while the mRNA at the particular time point was |abeled
with the Cy5 dye.

The first set of results pertains to utilizing the repli-
cate data for the bootstrap method. We first used the
replicate data for the bootstrap; the results based on re-
sampling time points are given in Fig. 4, while those
based on resampling genes are given in Fig. 5. Based on
these plots, it appears that most of the patterns in the
characteristic modes can be explained by chance, with
some exceptions at both early and late time points. In
comparison to the data from Cho et al. (2001), we only
have four data points, so any trends should be interpret-
ed cautiously.

We then applied the bootstrap to the first experiment,
resampling the genes. The plots of the confidence inter-
vals of the characteristic modes are given in Fig. 6.
Based on these graphs, there appear to be more signifi-
cant patterns in the characteristic modes relative to those
found in Figs. 4 and 5. However, it is important to re-
member that the between-experiment variability is not
incorporated in this procedure so that any patterns found
here might be particular to the experiment.
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Fig. 6a—d Plot of the first four characteristic modes (solid line)
for the first set of heat shock experiments from Gasch et al.
(2000), along with 90% (dotted) and 95% (dashed) pointwise con-
fidence intervals. Intervals were obtained by applying bootstrap to
rows (genes) of data from the first heat shock experiment

Discussion

The goal of this paper is to bring out the importance of
assessment of variability of SVD analyses in microarray
experiments. Since data from high-throughput technolo-
gies are extremely multivariate, there will be a large
number of trends that will arise due to randomness. It is
important not to treat these findings as confirmatory
without statistical and/or external experimental valida-
tion.

Our primary interest in applying SVD was to study
patterns in the characteristic modes. In particular, this
method studies the aggregate variation over al the genes
on the microarray and it is not possible to make inferenc-
es on individual genes based on the results of the SVD
analysis.

The methods proposed here would be useful in the
situation where replicate time-course data exist. While
replicating microarray time-course experiments can be
expensive, such an analysis could still be performed if
one were performing a meta-analysis of time-course ex-
periments using a publicly available microarray dat-
abase. However, in many situations, it is not feasible to
perform replicate time-course experiments. It would be
desirable to develop model-based techniques for SVD
analyses of microarray time-course data in the absence
of replicate experimental data. In addition, such an ap-

proach could allow for performing inference on the num-
ber of characteristic modes.

The choice of which method to use in practice de-
pends on two criteria. The most desirable method to use
is the nonparametric bootstrap with replicate experi-
ments. This method makes the fewest assumptions on
correlation between genes and between experiments. If
replicate data are available, there is no clear winner be-
tween resampling genes or resampling experiments. If no
replicate data are available, then the analyst should de-
termine what is a more realistic assumption, exchange-
ability between genes or exchangeability between time
points. If the answer is the former, then one should re-
sample genes, otherwise, one should resample experi-
ments.

If the measurement error changes over time, then
this will not affect the validity of the bootstrap with
replicate data. On the other hand, the confidence inter-
vals for the bootstrap with no replicate data will not be
valid.

Another issue has to do with the spacing of the time-
course experiments. The information on the time points
at which the measurements are taken is not utilized in
the SVD analysis. However, in practice, measurements
will be taken at potentially irregularly spaced time
points. Aach and Church (2001) have proposed using dy-
namic programming-type algorithms for aligning gene
expression time-series data. An alternative approach
would be to treat the sequence of gene expression mea-
surements over time as a function and to consider func-
tional SVD techniques for analyzing gene expression dy-
namics. This is another interesting area for research that
we are currently exploring.
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