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1. Introduction

To establish convergence of algorithms for convex minimization, a usual assumption is, at
least, the existence of a minimum. This assumption has been removed for some methods
[11], [9], [8], [10], [17], [6], [15], [16]. The study of the minimizing sequence was
pioneered by Auslender, Crouzeix and their colleagues [3], [2], [1]. The relation between
minimizing and stationary sequences of unconstrained and constrained optimization
problems has appeared recently (see [5]). Similar results for complementarity problems
and variational inequalities appeared in [7]. These papers were motivated by examples
presented by Rockafellar [12] and Todd [14], which show that in general a stationary
sequence is not necessarily a minimizing sequence.

Todd’s example has the following properties:

• h: Rn→ R is convex and continuously differentiable.
• The sequence{h(xk)} is monotonically decreasing and limk→∞ ∇h(xk) = 0.
• limk→∞ h(xk) > infx∈Rn h(x).

We call the above phenomenon the Rockafellar–Todd (RT) phenomenon. Since most opti-
mization algorithms produce a sequence{xk} that is only stationary, i.e., limk→∞ ∇h(xk) =
0, it is therefore important to know what kind of algorithms generate such sequences
that are minimizing, i.e., limk→∞ h(xk) = the infimal value ofh.

The purpose of this paper is to propose a general model algorithm for minimizing
a proper lower-semicontinuous extended-valued convex functionf : Rn → R ∪ {∞}
and to establish the convergence properties without any additional assumption onf .
We focus on two aspects: the RT phenomenon and the convergence rates of{‖xk‖} and
{ f (xk)} when{xk} is unbounded and{ f (xk)} is bounded from below. These two issues
have not been discussed in the literature to our knowledge.

Let ‖x‖ denote the Euclidean norm of the vectorx ∈ Rn. The subdifferential off
at x is a nonempty convex compact set

∂ f (x) = {g : g ∈ Rn, f (y) ≥ f (x)+ 〈g, y− x〉, for all y ∈ Rn}. (1.1)

For anyε ≥ 0, let

∂ε f (x) = {g : g ∈ Rn, f (y) ≥ f (x)+ 〈g, y− x〉 − ε, for all y ∈ Rn}. (1.2)

If a real numberf ∗ε satisfies

f (x) ≥ f ∗ε − ε, for all x ∈ Rn, (1.3)

then we say it is anε-minimum value off . If x∗ ∈ Rn satisfies

f (x) ≥ f (x∗)− ε, for all x ∈ Rn, (1.4)

then we say thatx∗ is anε-minimum point of f . Let f ∗ = f ∗0 , the infimal value off ,
R+ = {α ∈ R : α > 0}, andR+0 = R+ ∪ {0}. With the above notation, we may now
state the method in detail:
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Algorithm 1. Let x1 ∈ Rn be given. At thekth iteration, givenxk ∈ Rn, generate
(ε1,k, ε2,k, tk, xk+1, gk+1) ∈ R+0 ×R+0 ×R+×Rn×Rn andgk+1 ∈ ∂ε2,k f (xk+1) satisfying
the following inequality:

f (xk+1) ≤ f (xk)− tk〈gk+1, gk+1〉 + ε1,k. (1.5)

The remainder of the paper is organized as follows. In Section 2 we give some basic
global convergence results for Algorithm 1 without any additional assumptions onf .
We in particular give a sufficient condition for avoiding the RT phenomenon. In Section
3 we discuss the convergence rate of Algorithm 1. In Section 4 we demonstrate that a
number of methods for convex optimization problems are special cases of Algorithm 1.

In addition to results on the convergence rates of{‖xk‖} and { f (xk)}, a class of
descent algorithms for minimizing a continuously differentiable function is studied
in [16].

2. Global Convergence

The following lemma, given in [17], is used in the global convergence analysis of
Algorithm 1.

Lemma 2.1 (Lemma 3.1 of [17]). If τk > 0 (k = 0, 1, 2, . . .) and
∑∞

k=0 τk = +∞,
then

∑∞
k=0(τk/Sk) = +∞, where Sk =

∑k
i=0 τi .

Theorem 2.1. Let{(ε1,k, ε2,k, tk, xk+1, gk+1)} be any sequence generated by Algorithm
1, satisfying

∑∞
k=1 ε1,k < +∞ and

∑∞
k=1 tk = +∞.

(i) Either lim inf k→∞ f (xk) = −∞ or { f (xk)} is a convergent sequence.
(ii) If { f (xk)} is convergent, then lim inf k→∞‖gk‖ = 0. In particular, if {xk} is

bounded, then any of its accumulation points, x∗ ∈ Rn, is an ε∗-minimum
point of f, f ∗ε∗ = f (x∗), and limk→∞ f (xk) = f ∗ε∗ , where

ε∗ = sup

{
lim sup

k∈K1,k→∞
ε2,k−1: K1 is an index set such that

lim
k∈K1,k→∞

‖gk‖ = 0

}
. (2.1)

(iii) If { f (xk)} is convergent andinf{tk} > 0, thenlimk→∞‖gk‖ = 0. In this case,
every accumulation point of{xk} (if one exists) is an ε̄∗-minimum point of f,
where

ε̄∗ = sup

{
lim sup

k∈K2,k→∞
ε2,k−1: whenever{xk: k ∈ K2}

is a convergent subsequence

}
.
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(iv) If ε2,k → 0,
∑∞

k=1 tkε2,k < +∞, and there exists a positive number m> 0
such that, for all large k,

m‖xk+1− xk‖ ≤ tk‖gk+1‖, (2.2)

then f(xk)→ f ∗0 . Furthermore, if, for all large k,

xk+1− xk = −tkgk+1, (2.3)

then{xk} converges to a minimum point of f if one exists.

Proof. (i) Suppose that a third case happens. By (1.5),{ f (xk)} is bounded from above.
Then the only possibility is that{ f (xk)} has a cluster point̄f∗ and lim infk→∞ f (xk) ≤¯̄f∗ < f̄∗. This implies that there exist two positive integer numberk2 > k1 such that

f (xk2) > f̄∗ − 1
3( f̄∗ − ¯̄f∗),

f (xk1) <
¯̄f∗ + 1

3( f̄∗ − ¯̄f∗),

and

∞∑
k=k1

ε1,k <
1
3( f̄∗ − ¯̄f∗).

So, we have

f̄∗ − 1
3( f̄∗ − ¯̄f∗) < f (xk2)

< f (xk1)+
k2∑

k=k1

ε1,k

< ¯̄f∗ + 1
3( f̄∗ − ¯̄f∗)+ 1

3( f̄∗ − ¯̄f∗).
Hence,

2
3 f̄∗ + 1

3
¯̄f∗ < 2

3 f̄∗ + 1
3
¯̄f∗,

which is impossible. This excludes the third case. Hence, either lim infk→∞ f (xk) = −∞
or { f (xk)} is a convergent sequence.

(ii) In this case we have

∞∑
k=1

[ f (xk+1)− f (xk)] > −∞, (2.4)

which combined with (1.5) implies that

lim inf
k→∞

‖gk‖ = 0. (2.5)
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Thus, there exists an infinite index setK1, such that limk∈K1,k→∞‖gk‖ = 0. If {xk} is a
bounded set, then{xk : k ∈ K1} is also a bounded set. Without loss of generality, we
may assume that limk∈K1,k→∞‖xk − x∗‖ = 0. Applying theε-subgradient inequality,

f (x) ≥ f (xk)+ 〈gk, x − xk〉 − ε2,k−1, (2.6)

and using (2.5), we have that, for allx ∈ Rn,

f (x) ≥ f (x∗)− ε∗.

This implies thatf (x∗) = f ∗ε∗ . Now, letx∗∗ be an arbitrary accumulation point of{xk}.
Since{ f (xk} is convergent, we havef (x∗) = limk→∞ f (xk) = f (x∗∗). Thus, the above
conclusion is also true if we replacex∗ by x∗∗. This proves (ii).

(iii) In this case, combining (2.4) with (1.5), we have

lim
k→∞
‖gk‖ = 0. (2.7)

Let {xk : k ∈ K } be any convergent subsequence of{xk}, i.e., limk∈K ,k→∞‖xk−x∗‖ = 0.
By (2.6) and (2.7),x∗ is anε̄∗-minimum point of f .

(iv) From (ii) and (iii), it suffices to consider the case where{ f (xk)} is bounded and
{xk} is unbounded. Suppose that there existx̄ ∈ Rn, τ > 0, andk0, such that, for all
k ≥ k0,

〈gk, x̄ − xk〉 < −τ.

Inequality (1.5) implies that

f (xk+1)− f (xk) ≤ −tk‖gk+1‖2+ ε1,k

≤ tk‖gk+1‖〈gk+1, x̄ − xk+1〉
‖x̄ − xk+1‖ + ε1,k.

Therefore, we have that, for allk,

f (xk+1)− f (xk) ≤ −τ tk
‖gk+1‖
‖x̄ − xk+1‖ + ε1,k. (2.8)

By (2.2),

‖xk+1− x1‖ ≤
k∑

i=1

‖xi+1− xi ‖ ≤ m−1
k∑

i=1

ti ‖gi+1‖,

which implies that
∞∑

k=1

tk‖gk+1‖ = +∞ (2.9)

by using the unboundedness of{‖xk‖}. Therefore, there existsk1, such that, for allk > k1,

‖x1− x̄‖ ≤ m−1
k∑

i=1

ti ‖gi+1‖.
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Hence, for allk > k1,

‖xk+1− x̄‖ ≤ ‖x1− x̄‖ +
k∑

i=1

‖xi+1− xi ‖ ≤ 2m−1
k∑

i=1

ti ‖gi+1‖. (2.10)

By (2.8) and (2.10), we have

f (xk+1)− f (xk) ≤ −mτ

2

tk‖gk+1‖∑k
i=1 ti ‖gi+1‖

+ ε1,k. (2.11)

This inequality, (2.9), and Lemma 2.1 yield that

∞∑
k=1

[ f (xk+1)− f (xk)] = −∞,

which contradicts that{ f (xk)} is bounded from below. Therefore, for allx ∈ Rn,

lim sup
k→∞

〈gk, x − xk〉 ≥ 0. (2.12)

Theε-subgradient inequality,

f (x)− f (xk) ≥ 〈gk, x − xk〉 − ε2,k−1

and (2.12) yield that, for allx ∈ Rn,

f (x) ≥ lim sup
k→∞

f (xk) ≥ f ∗0 .

This implies thatf (xk)→ f ∗0 , which completes the proof of the first conclusion of (iv).
We now prove the second conclusion of (iv). It is easy to verify that, for allx ∈ Rn

and allk,

‖xk − x‖2 = ‖xk+1− x‖2+ ‖xk − xk+1‖2+ 2〈xk − xk+1, xk+1− x〉. (2.13)

By (2.3) and the definition ofgk+1, for all largek,

〈xk − xk+1, xk+1− x〉 ≥ tk[ f (xk+1)− f (x)− ε2,k].

Combining it with (2.13), we have

‖xk − x‖2 ≥ ‖xk+1− x‖2+ t2
k‖gk+1‖2+ 2tk[ f (xk+1)− f (x)− ε2,k]. (2.14)

Using any given minimum pointx∗ in (2.14), we have

‖xk − x∗‖2 ≥ ‖xk+1− x∗‖2− 2tkε2,k.

This implies that

‖xk+1− x∗‖2 ≤ ‖x1− x∗‖2+
k∑

i=1

2ti ε2,i < +∞.
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Thus,{‖xk− x∗‖} is bounded. This further implies that{‖xk‖} is also bounded. With an
argument similar to the proof of (i) of this theorem, we can show that

lim
k→∞
‖xk − x∗‖2 = l < +∞.

Suppose there are two accumulation pointsx∗1 andx∗2 of {xk}. From (ii), x∗1 andx∗2 are
two ε̄∗-minimum points of f . Sinceε2,k → 0, by the definition of̄ε∗, ε̄∗ = 0. Hence,
bothx∗1 andx∗2 are minimum points off . By the above arguments, we have

lim
k→∞
‖xk − x∗i ‖2 = l i < +∞, for i = 1, 2.

Sincex∗1 andx∗2 are accumulation points of{xk}, l i = 0 for i = 1, 2. Hence,x∗1 = x∗2
and{xk} converges to it.

3. Local Convergence

In this section we discuss the convergence rate of Algorithm 1 in the following two cases:

Case1: x∗ minimizes f andlimk→∞ xk = x∗.

Case2: A global minimizer of f does not exist butinfx∈Rn f (x) > −∞. In this case
{‖xk‖} is unbounded andf ∗0 > −∞.

Let

ak = ε1,k

‖gk+1‖2 , bk = ε2,k

‖gk+1‖ ,

and

ck = (tk − ak)
f (xk)− f (x∗)

(bk + ‖xk+1− x∗‖)2 .

Theorem 3.1. Suppose that x∗ minimizes f andlimk→∞ xk = x∗. If, for all k, tk > ak,
then

f (xk+1)− f (x∗)
f (xk)− f (x∗)

≤
√

1+ 4ck − 1

2ck
. (3.1)

Consequently,

(i) if, for all k, ck ≥ c∗ ∈ (0,+∞), then

lim
k→∞

f (xk+1)− f (x∗)
f (xk)− f (x∗)

≤
√

1+ 4c∗ − 1

2c∗
< 1;

(ii) if limk∈K ,k→∞ ck = +∞, then

lim
k∈K ,k→∞

f (xk+1)− f (x∗)
f (xk)− f (x∗)

= 0.
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Proof. Usinggk+1 ∈ ∂ε2,k f (xk+1), we have

f (x∗) ≥ f (xk+1)+ gT
k+1(x

∗ − xk+1)− ε2,k

≥ f (xk+1)− ‖gk+1‖‖x∗ − xk+1‖ − bk‖gk+1‖.

This implies

‖gk+1‖ ≥ f (xk+1)− f (x∗)
bk + ‖xk+1− x∗‖ ,

which combined with (1.5) yields

f (xk) ≥ f (xk+1)+ tk‖gk+1‖2− ε1,k

= f (xk+1)+ tk‖gk+1‖2− ak‖gk+1‖2

≥ f (xk+1)+ tk − ak

(bk + ‖xk+1− x∗‖)2 [ f (xk+1)− f (x∗)]2.

Hence

f (xk)− f (x∗) ≥ [ f (xk+1)− f (x∗)]
[
1+ (tk − ak)( f (xk+1)− f (x∗))

(bk + ‖xk+1− x∗‖)2
]
.

Therefore

f (xk+1)− f (x∗)
f (xk)− f (x∗)

≤ 1

/ (
1+

(
f (xk+1)− f (x∗)
f (xk)− f (x∗)

)
(tk − ak)( f (xk)− f (x∗))
(bk + ‖xk+1− x∗‖)2

)
.

Thus, (3.1) follows.
Since

√
1+ 4t/2t (t > 0) is a decreasing function, by (3.1), we have conclusions

(i) and (ii).

The following theorem extends the related result of [16] for smooth optimization to
the case wheref is only a proper lower-semicontinuous extended-valued function.

Theorem 3.2. Suppose that{xk} is generated by Algorithm1 with ε2,k → 0 and∑∞
k=1
√
ε1,k < +∞. Suppose that(2.2) holds and{tk} is a bounded set. If {xk} is

unbounded and{ f (xk)} is bounded, then the rate of
√

f (xk)− f ∗0 converging to zero is
less than geometric. Furthermore, {‖xk‖2/k} is bounded.

Proof. From (2.2), we have, for allk,

‖xk+1− x1‖ ≤
k∑

i=1

‖xi+1− xi ‖

≤ m−1
k∑

i=1

‖ti gi+1‖,
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which implies that

∞∑
k=1

‖tkgk+1‖ = +∞, (3.2)

using that{xk} is unbounded.
Since, for allk, f (xk) ≥ f ∗0 and{tk} is bounded, we obtain from (1.5) that

f ∗0 − f (xk) ≤ f (xk+1)− f (xk)

≤ −tk‖gk+1‖2+ ε1,k

≤ − 1

tk
(tk‖gk+1‖)2+ ε1,k.

Hence

√
f (xk)− f ∗0 ≥ max

{
0,

√
1

tk
(tk‖gk+1‖)−√ε1,k

}
.

This inequality and our assumptions ontk andε1,k yield

∞∑
k=1

√
f (xk)− f ∗0 = +∞,

which implies that
√

f (xk)− f ∗0 cannot converge to 0 with a geometric rate.
We now prove the second part of the theorem. From (1.5) and (2.2),

f (xk+1)− f (xk) ≤ −tk‖gk+1‖2+ ε1,k

≤ −m2

tk
‖xk+1− xk‖2+ ε1,k,

which implies

f (xk+1)− f (x1) ≤ − inf

{
m2

ti
: i = 1, . . . , k

} k∑
i=1

‖xi+1− xi ‖2+
k∑

i=1

ε1,i .

On the other hand,

‖xk+1− x1‖2 ≤
(

k∑
i=1

‖xi+1− xi ‖
)2

≤ k
k∑

i=1

‖xi+1− xi ‖2.

Hence we obtain the following inequality by combining the above two inequalities:

f (xk+1)− f (x1) ≤ − inf

{
m2

ti
: i = 1, . . . , k

} ‖xk+1− x1‖2
k

+
k∑

i=1

ε1,i ,
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which implies that{‖xk+1 − x1‖2/k} is bounded since{ f (xk)} is bounded from below.
Therefore,{‖xk‖2/k} is bounded.

4. Applications

In this section we demonstrate that a number of methods for convex optimization prob-
lems are special cases of Algorithm 1. These include:

• A family of variable metric proximal methods proposed in[4].
• The convex minimization methods given in[6].
• The proximal point algorithms introduced in[13].

Example4.1. A Family of Variable Metric Proximal Methods[4]

In [4] the authors proposed a family of variable metric proximal algorithms based on the
Moreau–Yosida regularization and quasi-Newton approximations. Givenx ∈ Rn and a
symmetric positive definiten× n matrix B, let

ϕB(z) := f (z)+ 1
2〈B(z− x), z− x〉, (4.1)

xp = pB(x) := argmin{ϕB(z) : z ∈ RN}, (4.2)

δk := f (xk)− f (xp
k )− 1

2〈gp
k ,Wkgp

k 〉, (4.3)

whereWk = B−1
k andgp

k is a subgradient in∂ f (xp
k ), satisfying

xp
k = xk −Wkgp

k . (4.4)

With the notation in (4.1)–(4.3), we can state the algorithm of [4] as follows:

Algorithm 4.1 (GAP of [4]).

Step 0. Start with some initial pointx1 and matrixB1; choose some parameter
m0 ∈ (0, 1); setk = 1.

Step 1. Withδk given by (4.3), computexk+1 satisfying

f (xk+1) ≤ f (xk)−m0δk. (4.5)

Step 2. UpdateBk, increasek by 1, and loop to Step 1.

Lemma 4.1. Suppose that{(xk+1, g
p
k )} is generated by Algorithm4.1.Let

ε2,k = f (xk+1)− f (xp
k )− 〈gp

k , xk+1− xp
k 〉, (4.6)

thenε2,k ≥ 0,

gp
k ∈ ∂ε2,k f (xk+1) (4.7)

and

f (xk+1) ≤ f (xk)− m0

2
〈gp

k ,Wkgp
k 〉. (4.8)

Thus, (1.5)holds with tk = (m0/2)λmin(Wk), whereλmin(W) denotes the smallest eigen-
value of a symmetric matrix W.
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Proof. Usinggp
k ∈ ∂ f (xp

k ), we have, for allx ∈ RN ,

f (x) ≥ f (xp
k )+ 〈gp

k , x − xp
k 〉

= f (xk+1)+ 〈gp
k , x − xk+1〉 − [ f (xk+1)− f (xp

k )− 〈gp
k , xk+1− xp

k 〉]. (4.9)

By the convexity off , we seeε2,k ≥ 0 and that (4.7) follows (4.9).
Since, for allx ∈ RN ,

f (xp
k )+ 1

2〈Bk(x
p
k − xk), xp

k − xk〉 ≤ f (x)+ 1
2〈Bk(x − xk), x − xk〉.

Settingx = xk, we have

f (xp
k ) ≤ f (xk)− 〈gp

k ,Wkgp
k 〉 (4.10)

by (4.4). Relations (4.10), (4.3), and (4.5) imply (4.8).

Conclusion (a) in the Theorem 4.1 is the global convergence result of [4]. We give
a simple proof here using our general results. Conclusion (b) is new for this algorithm.

Theorem 4.1.

(a) (Theorem2.3 of [4].) Assume that f has a nonempty bounded set of minima,
and let{xk} be a sequence generated by(GAP). Then{xk} is bounded and, if

∞∑
k=1

λmin(Wk) = +∞, (4.11)

any accumulation point of{xk} minimizes f. The same properties hold for the
sequence of proximal points{xp

k }. It also holds thatlim inf k→∞‖gp
k ‖ = 0.

(b) Suppose there existst̄k such that, for all large k,

xk+1 = xk + t̄k(x
p
k − xk), (4.12)

wheret̄k ≤ t̄ < +∞. If {‖Wk‖} is bounded and(4.11)holds, then f(xk)→ f ∗0 .

Proof. (a) Since f has a nonempty bounded set of minima, the level sets off are
bounded. Hence,{xk} and{xp

k } are bounded by (4.8) and (4.4). (In fact, this conclusion
follows due to Theorem 2.3 of [4].) Using (4.5), we have

δk → 0. (4.13)

By (4.8), we obtain

〈gp
k ,Wkgp

k 〉 → 0. (4.14)

Hence,

f (xk)− f (xp
k )− 〈gp

k ,Wkgp
k 〉 = δk − 1

2〈gp
k ,Wkgp

k 〉 → 0. (4.15)

Results (4.13), (4.14), and (4.15) imply that if limk∈K‖gp
k ‖ = 0, then limk∈K ε2,k = 0.

By the definition ofε∗, we haveε∗ = 0. Let tk = (m0/2)λmin(Wk), then (4.11) and (ii)
of Theorem 2.1 yield the first conclusion.
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By (4.13) and (4.14), we have

lim
k→∞

f (xk) = lim
k→∞

f (xp
k ).

This implies that every accumulation point of{xp
k }minimizes f by the first conclusion.

Using (4.8) and (4.11), we have lim infk→∞‖gp
k ‖ = 0.

(b) From (4.12) and (4.4), we have, for all largek, that

1

t̄k‖Wk‖‖xk+1− xk‖ ≤ ‖gp
k ‖.

Using (4.4), (4.15), and the fact thatf (xk+1) < f (xk), we have, for allk,

ε2,k < f (xk)− f (xp
k )− 〈gp

k ,Wkgp
k 〉 < δk.

On the other hand, from (4.5), we have

∞∑
k=1

δk ≤ m−1
0 ( f (x1)− f ∗0 ).

Therefore

∞∑
k=1

ε2,k ≤ m−1
0 ( f (x1)− f ∗0 ) < +∞. (4.16)

Let m = 1/(t̄ sup{‖Wk‖}) and lettk = 1 for all largek, then (4.16), the assumptions in
(b), and the result (iv) in Theorem 2.1 yield thatf (xk)→ f ∗0 .

Theorem 4.2. Suppose that the assumptions of(b) in Theorem4.1 hold. If {xk} is
unbounded and f∗0 > −∞, then the rate of

√
f (xk)− f ∗0 converging to zero is less than

geometric and{‖xk‖2/k} is bounded.

Proof. The conclusions follow Lemma 4.1, Theorem 3.2, and (b) of Theorem 4.1.

Example4.2. Algorithms Given in[6]

In [6] Correa and Lemar´echal presented a simple and unified technique to establish
convergence of a number of minimization methods. These include (i) the exact prox-
iteration, (ii) its implementable approximations, which include in particular (iii) bundle
methods, and finally (iv) the classical subgradient optimization scheme. Their methods
can be summarized as follows:

Algorithm 4.2. From an arbitrary pointx1 ∈ Rn, the sequence{xk} is constructed with
the following formulas:

xk+1 = xk − τkγk, (4.17)



Convergence Properties of Some Methods for Nonsmooth Convex Optimization 153

γk ∈ ∂ε3,k f (xk), (4.18)

f (xk+1) ≤ f (xk)−m1τk‖γk‖2, (4.19)

whereε3,k is nonnegative,τk > 0 is the stepsize, andm1 is a positive constant.

The following lemma shows that Algorithm 4.2 is a special case of Algorithm 1.

Lemma 4.2. Suppose that{(ε3,k, τk, xk+1, γk)} is generated by Algorithm4.2.Let

tk = m1τk, (4.20)

ε2,k = max{0, ε3,k + (1−m1)τk‖γk‖2}. (4.21)

Then

γk ∈ ∂ε2,k f (xk+1) (4.22)

and(1.5)holds for anyε1,k ≥ 0.

Proof. It suffices to prove that (4.22) holds. By (4.18), we have, for allx ∈ Rn,

f (x) ≥ f (xk)+ 〈γk, x − xk〉 − ε3,k

= f (xk+1)+ 〈γk, x − xk+1〉 + f (xk)− f (xk+1)+ 〈γk, xk+1− xk〉 − ε3,k.

This inequality, (4.17), and (4.19) imply that

f (x) ≥ f (xk+1)+ 〈γk, x − xk+1〉 − [ε3,k + (1−m1)τk‖γk‖2].

So (4.22) follows.

The following is a main result of [6].

Theorem 4.3 (Proposition 2.2 of [6]). Suppose that{(ε3,k, τk, xk+1, γk)} is generated
by Algorithm4.2.

(i) Assume that
∞∑

k=1

τk = +∞ (4.23)

and

ε3,k → 0. (4.24)

Then f(xk)→ f ∗0 .
(ii) If {τk} is bounded and

∞∑
k=1

ε3,k < +∞, (4.25)

then{xk} converges to a minimum point of f if there is such a minimum point.
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Proof. (i) If the decreasing{ f (xk)} tends to−∞, then the conclusion follows. Other-
wise, from (4.19), we have

∞∑
k=1

τk‖γk‖2 < +∞. (4.26)

This and (4.21) imply that{ε3,k} tends to zero if and only if{ε2,k} tends to zero. So the
conclusion follows by Lemma 4.2 and (iv) of Theorem 2.1.

(ii) Supposef has a minimum point. Then{ f (xk)} is bounded from below. Thus,
(4.26) holds. Inequalities (4.26) and (4.25) imply that

∞∑
k=1

tkε2,k < +∞

by the boundedness of{τk} and (4.20). The results of (iv) in Theorem 2.1 imply that{xk}
converges to a minimum point off .

Note that from (4.17) and Theorem 3.2, we obtain the following new convergence
rate for Algorithm 4.2.

Theorem 4.4. Let {(ε3,k, τk, xk+1, γk)} be generated by Algorithm4.1 with (4.23)
and (4.24). If {τk} is bounded, {xk} is unbounded, and f∗0 > −∞, then the rate of√

f (xk)− f ∗0 converging to zero is less than geometric and{‖xk‖2/k} is bounded.

Example4.3. A Proximal Point Algorithm Introduced in[13]

In [13] Rockafellar introduced two general criteria for finding the zero of an arbitrary
maximal monotone operator when the iteration points are given approximately. As an
application, he applied the results to a lower semicontinuous proper convex functionf .
In this case, one of the algorithms follows:

Algorithm 4.3. For xk, generate(σk, λk, xk+1, gk+1) ∈ R+0 × R+ × Rn × Rn (gk+1 ∈
∂ f (xk+1)) satisfying

dist(0, Sk(xk+1)) ≤ σk

λk
‖xk+1− xk‖, (4.27)

where
∞∑

k=1

σk <∞, (4.28)

and

Sk(x) = ∂ f (x)+ 1

λk
(x − xk). (4.29)

In the following discussion we only assume that, for allk,

σk ∈ [0, 1
2]. (4.30)
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Lemma 4.3. Suppose that{(σk, λk, xk+1, gk+1)} ∈ R+0 × R+ × Rn × Rn is generated
by Algorithm4.3.Let

tk = 1− σk

(1+ σk)2
λk, (4.31)

then(1.5)holds forε1,k = ε2,k = 0. Furthermore,

(1− σk)
2

(1+ σk)2
‖xk+1− xk‖ ≤ tk‖gk+1‖. (4.32)

Proof. By (4.27), (4.30), and (4.29), we have∥∥∥∥gk+1+ 1

λk
(xk+1− xk)

∥∥∥∥ ≤ σk

λk
‖xk+1− xk‖. (4.33)

The inequality,〈
gk+1+ 1

λk
(xk+1− xk), xk+1− xk

〉
≤
∥∥∥∥gk+1+ 1

λk
(xk+1− xk)

∥∥∥∥ ‖xk+1− xk‖,

and (4.33) imply that

〈gk+1, xk+1− xk〉 ≤ −1− σk

λk
‖xk+1− xk‖2.

Therefore,

〈gk+1, xk − xk+1〉 ≥ 1− σk

λk
‖xk+1− xk‖2. (4.34)

On the other hand, by (4.33), we have

‖gk+1‖ ≤ 1+ σk

λk
‖xk+1− xk‖. (4.35)

Inequalities (4.34) and (4.35) yield

〈gk+1, xk − xk+1〉 ≥ tk〈gk+1, gk+1〉. (4.36)

Applying the subgradient inequality for convex functions, we have

f (xk) ≥ f (xk+1)+ tk‖gk+1‖2.

Hence, (1.5) follows.
By (4.33), we have

1− σk

λk
‖xk+1− xk‖ ≤ ‖gk+1‖,

which implies that (4.32) holds.
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The following theorem indicates that the RT phenomenon does not occur for the
well-known Algorithm 4.3. In view of Theorem 2.1 and Lemma 4.3, it does not require
proof.

Theorem 4.5. Suppose that{(σk, λk, xk+1, gk+1)} is generated by Algorithm4.3with∑∞
k=1 λk = +∞.

(i) Either limk→∞ f (xk) = −∞ or lim inf k→∞‖gk‖ = 0. In particular, if {xk} is
bounded, then f(xk)→ f ∗0 and every accumulation point of{xk} is a minimum
point of f.

(ii) If inf{λk} > 0, then eitherlim inf k→∞ f (xk) = −∞ or ‖gk‖ → 0. In this case,
every accumulation point of{xk} (if one exists) is a minimum point of f.

(iii) f (xk)→ f ∗0 .
(iv) If, for all k, σk = 0, then{xk} converges to a minimum point of f if such a

point exists.

For Algorithm 4.3, we obtain the following two basic convergence rate results from
Theorems 3.1 and 3.2.

Theorem 4.6.

(a) Suppose that x∗ minimizes f, xk → x∗, and there exist two scalars r> 0 and
M > 0 such that, for any x satisfying‖x − x∗‖ ≤ r ,

f (x)− f (x∗) ≥ M‖x − x∗‖2. (4.37)

(a1) If

lim
k→∞

λk = λ∗ ∈ (0,+∞),
then f(xk) tends to f(x∗) linearly.

(a2) If

lim
k→∞

λk = +∞,
then f(xk) tends to f(x∗) superlinearly.

(b) Suppose that
∑∞

k=1 λk = +∞, {λk} is bounded, {xk} is unbounded, and f∗0 >
−∞. The rate of

√
f (xk)− f ∗0 converging to zero is then less than geometric

and{‖xk‖2/k} is bounded.

Proof. We first prove (a). Since, for allk,

ck = 1− σk

(1+ σk)2
λk

f (xk)− f (x∗)
‖xk+1− x∗‖2

and

f (xk+1)− f (x∗)
f (xk)− f (x∗)

≤ 1.
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Hence, we have, from (4.30), that

ck = 1− σk

(1+ σk)2
λk

f (xk)− f (x∗)
f (xk+1)− f (x∗)

f (xk+1)− f (x∗)
‖xk+1− x∗‖2 ≥ 2

9 Mλk,

which implies that (a1) and (a2) hold by Theorem 3.1.
(b) From the definition ofm in (2.2), for Algorithm 4.3, we can choosem = 1

9. In
this case,

(1− σk)
2

(1+ σk)2
≥ m

by (4.30). This implies that the results of (b) hold by using Theorem 3.2.

It is worth noting that the conclusions (iii) in Theorem 4.5 and (b) in Theorem 4.6 are
not contained in the convergence results given in [13]. Since Algorithm 4.3 is different
from those using line search to produce the next iterationxk+1 = xk + tkdk, wheredk

is a linear search direction at thekth iteration, it is surprising that we can easily obtain
the same convergence properties for these two types of methods. We believe that the
tool in this paper is useful in the convergence analysis for optimization problems under
a unified framework.
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