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1. Introduction

To establish convergence of algorithms for convex minimization, a usual assumptionis, at
least, the existence of a minimum. This assumption has been removed for some methods
[11], [9], [8], [10], [17], [6], [15], [16]. The study of the minimizing sequence was
pioneered by Auslender, Crouzeix and their colleagues [3], [2], [1]. The relation between
minimizing and stationary sequences of unconstrained and constrained optimization
problems has appeared recently (see [5]). Similar results for complementarity problems
and variational inequalities appeared in [7]. These papers were motivated by examples
presented by Rockafellar [12] and Todd [14], which show that in general a stationary
sequence is not necessarily a minimizing sequence.

Todd’s example has the following properties:

e h: R" — Ris convex and continuously differentiable.
e The sequencéh(xk)} is monotonically decreasing and lim,, Vh(xx) = 0.
o limy_ o h(Xx) > infycrn h(X).

We call the above phenomenon the Rockafellar-Todd (RT) phenomenon. Since most opti-
mization algorithms produce a sequefqg thatis only stationary, i.e., lign, .o Vh(xx) =
0, it is therefore important to know what kind of algorithms generate such sequences
that are minimizing, i.e., ligL o, h(xx) = the infimal value oh.

The purpose of this paper is to propose a general model algorithm for minimizing
a proper lower-semicontinuous extended-valued convex fundtioR" — R U {oo}
and to establish the convergence properties without any additional assumption on
We focus on two aspects: the RT phenomenon and the convergence rdeg|daind
{f ()} when{xy} is unbounded anfif (xy)} is bounded from below. These two issues
have not been discussed in the literature to our knowledge.

Let || x|| denote the Euclidean norm of the vectoe R". The subdifferential off
atx is a nonempty convex compact set

af(x)={g:gecR", f(y)> f(X)+(g,y—x), forally e R"}. (1.1)
For anye > 0, let

.fX)={g:geR", f(y)> f(X)+(g,y—X) —¢, forally e R"}. (1.2)
If a real numberf * satisfies

fx)> ff —e¢, forall x e R", (1.3)
then we say it is aa-minimum value off . If x* € R" satisfies

f(x) > f(x*) —e, forall x e R", (1.4)
then we say thax* is ans-minimum point of f. Let f* = f§, the infimal value off,

R™ = {¢ € R:a > 0}, andR; = R" U {0}. With the above notation, we may now
state the method in detail:
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Algorithm 1. Let x; € R" be given. At thekth iteration, givenxx € R", generate

(81ks 82,k T, Xkt1, Okr1) € Ry x R x R x R"x R"andgk41 € 9s,, f (Xkt1) satisfying
the following inequality:

f(X1) < F X)) — t(Okt1s Okg1) + €1k (1.5)

The remainder of the paper is organized as follows. In Section 2 we give some basic
global convergence results for Algorithm 1 without any additional assumptiorfs on
We in particular give a sufficient condition for avoiding the RT phenomenon. In Section
3 we discuss the convergence rate of Algorithm 1. In Section 4 we demonstrate that a
number of methods for convex optimization problems are special cases of Algorithm 1.

In addition to results on the convergence rateg|ok||} and{f (xx)}, a class of
descent algorithms for minimizing a continuously differentiable function is studied
in [16].

2. Global Convergence

The following lemma, given in [17], is used in the global convergence analysis of
Algorithm 1.

Lemma 2.1 (Lemma 3.1 of [17]). If 7x > 0(k = 0,1,2,...) and ) 2y = +00,
then) 2 o (tk/ &) = +o0, where § = Zik:O 7.

Theorem 2.1. Let{(e1k, €2.k, tk, Xk+1, Ok+1)} be any sequence generated by Algorithm
1, satisfying) -, 1k < +oo and ) o, tx = +o00.

(i) Eitherliminfy_ ., f(xx) = —oo or { f(xx)} is a convergent sequence

(i) If {f(xx)} is convergentthenliminfy_ |lgk|l = O. In particular, if {x} is
bounded then any of its accumulation pointg* € R", is an e*-minimum
point of f, % = f(x*), andlimy_ f(xx) = fX, where

e* g1

e = sup{ limsup e2x-1: Ki is anindex set such that

keKy,k—o0

keK'l',Tm”gk” = 0} . (2.1)

(i) If {f (x¢)} is convergent anéhf{t} > O, thenlimy_, |/gk|| = O. In this case
every accumulation point i} (if one existsis ane*-minimum point of f
where

et = sup{ limsup exk_1: whenever{xc: k € Ky}

keKy,k—o00

is a convergent subsequer}ce
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(iv) If e = 0, 2 tkezk < +oo, and there exists a positive number 0
such thatfor all large k,

M| X1 — Xkl < tellGrlls (2.2)
then f(xx) — fg. Furthermore if, for all large k,
Xi+1 — Xk = —tOkr1, (2.3)

then{xy} converges to a minimum point of f if one exists

Proof. (i) Suppose that a third case happens. By (X.B)x)} is bounded from above.
Then the only possibility is thdtf (x)} has a cluster point, and liminf_ . f(X) <
f. < f.. This implies that there exist two positive integer numkes ki such that

and
> e < 1(f - fo.
k=ky

So, we have

f, — %(f_* - f:*) < f(sz)

Hence,

WIN

f:*< f_*+%f*,

f. +

wWIN
Wl

whichisimpossible. This excludes the third case. Hence, either lim ipff (xx) = —o0
or { f (xx)} is a convergent sequence.
(ii) In this case we have

D T i) — F(x] > —oo, (2.4)
k=1

which combined with (1.5) implies that

liminf gl = 0. (2.5)
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Thus, there exists an infinite index d€t, such that limck, k- |0kl = 0. If {x} is a
bounded set, thefxk : k € K1} is also a bounded set. Without loss of generality, we
may assume that ligak, k- oo | Xk — X*|| = 0. Applying thee-subgradient inequality,

f(xX) > f(X) + (Gk, X — Xk) — €2k-1 (2.6)
and using (2.5), we have that, for alle R",

f(x) > f(x*) —&".

This implies thatf (x*) = f. Now, letx** be an arbitrary accumulation point pf}.
Since{ f (xk} is convergent, we have(x*) = limy_ o, f(xx) = f(x**). Thus, the above
conclusion is also true if we replagé by x**. This proves (ii).

(iii) In this case, combining (2.4) with (1.5), we have

Jim gl = 0. (2.7)

Let{xx : k € K} be any convergent subsequencéqf, i.e., limek koo llXk — X*|| = 0.
By (2.6) and (2.7)x* is ang*-minimum point of f .

(iv) From (i) and (iii), it suffices to consider the case whéféx,)} is bounded and
{xx} is unbounded. Suppose that there exist R", ¢ > 0, andky, such that, for all
k > ko,

(O, X — Xx) < —1.

Inequality (1.5) implies that

f () — F ) < —tllOkrall® + evk
(Or1, X — Xg1)
< tk||9k+1||ﬁ + &1k
— Xt

Therefore, we have that, for &|

f (X)) — F(X0) < —Ttk_”gki-H” + &1 k- (2.8)
1X — Xkqall

By (2.2),

k k
-1
s = Xall < ) X — Xill < tgiall.
i=1 i=1

which implies that

o]

| Okall = +o0 (2.9)
k=1

by using the unboundednesq k|| }. Therefore, there exisks, such that, forak > ki,

k
g -1
I} = XI| <™ "t gigall.

i=1
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Hence, for alk > ki,

k k
Xpa = X< fxa = X1+ i =%l < 2m7 ) "t 1gigall. (2.10)
i=1 i=1

By (2.8) and (2.10), we have
_ Mz GGl
2 Y tilgiall
This inequality, (2.9), and Lemma 2.1 yield that

f () — (X0 < (2.11)

D I 1) — f ()] = —o0,
]

which contradicts thaftf (xx)} is bounded from below. Therefore, for alle R",

lim sup{gk, X — Xx) > 0. (2.12)

k—o0

Thee-subgradient inequality,
fOO — F) = (G, X — %) — e2k-1
and (2.12) yield that, for akt € R",

f(x) > limsup f(x) > f§.

k— o0

This implies thatf (xx) — f§, which completes the proof of the first conclusion of (iv).
We now prove the second conclusion of (iv). It is easy to verify that, fox allR"
and allk,

1% — X% = X2 = XIZ + X = Xiera I 4 20 — X1, X1 — X). (2.13)
By (2.3) and the definition ofi.1, for all largek,

(Xk = X1, X1 — X) = W[ F pn) — F(X) — e2].
Combining it with (2.13), we have

1% = XI1% = 1Xcs1 — X[ + 2l Gerall® + 2t f () — FO0) — e24]. (2.14)
Using any given minimum point* in (2.14), we have

X = X*1% = lIXies — X*I1Z = 2tezke

This implies that

k
X1 = X*I17 < fIxa = X* 2+ > 2tiep; < +oo.
i=1
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Thus,{||xx — x*||} is bounded. This further implies thfix||} is also bounded. With an
argument similar to the proof of (i) of this theorem, we can show that

lim || — x*[|? =1 < +o0.
k— o0
Suppose there are two accumulation poxit&indx; of {xc}. From (i), x; andx; are

two &*-minimum points off. Sinces,x — 0, by the definition of*, £* = 0. Hence,
bothx} andx3 are minimum points off . By the above arguments, we have

lim |[xx — x| =1} < 400, for i=1,2

k— o0
Sincexj andx; are accumulation points ¢k}, l; = 0 fori = 1, 2. Hencexj = X3
and{xy} converges to it. O

3. Local Convergence

In this section we discuss the convergence rate of Algorithm 1 in the following two cases:
Casel: x* minimizes f andimy_, o Xk = x*.

Case2: A global minimizer of f does not exist bafycgn f(X) > —co. In this case
{IIXc|l} is unbounded andij > —oo.

Let
&1k = &2k
llGkrll? llGksall’
and
f(x) — f(x*
Ck = (tk — &) (X )

(b + X1 — x*[)2

Theorem 3.1. Suppose that®xminimizes f andimy_, ., xx = x*. If, forall k, ty > a,
then

f(Xkp1) — F (X% < «/1+4Ck—1' (3.1)
f(x¢) — f(x*) 2c
Consequently
(i) if, forallk, ¢, > c* € (0, +00), then
Wf(xkﬂ) — f(x" - V1+4cr -1
koo f(xq) — f(x*) — 2c*
(i) if liMygek koo Ck = +00, then

FOw) = 106) _
keK.k—oo f(X¢) — f(x*)

< 1;
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Proof. Usinggki1 € 9;,, f (Xk+1), we have

fOX) = f () + Gea (X — Xesn) — g2k
> F(Xkrr) = NGkqalHIX* — Xeqall — ol Gkl

This implies

- f (X)) — F(x¥)

k41l = o,
b + [[Xk+1 — X*||

which combined with (1.5) yields

\%

fOw) > f () + tellGerall® — e1k
f (1) + tellGerall? — allGerall?

t — ax 2
f f — f(xM]2
) + ||Xk+1_X*||)2[ (Xir1) — F(x)]

v

Hence

—a(f —
F 0 — FO¢) > [ () — F 6] |:1 n (te — a) (f (Xks2) (x ))}

(b + X1 — X*1)2
Therefore

fOwrD) = FOX) _ 1/ <1+ ( f (1) — f(X*)> (t — a) (f () — f(X*))>
fa) — fxo — f(x) — f(x*) (b + X = x*D2 )~

Thus, (3.1) follows.
Sinces/1+4t/2t (t > 0) is a decreasing function, by (3.1), we have conclusions
(i) and (ii). O

The following theorem extends the related result of [16] for smooth optimization to
the case wheré is only a proper lower-semicontinuous extended-valued function.

Theorem 3.2. Suppose thafxy} is generated by Algorithni with ¢, — 0 and
Zﬁil /€1x < -+oo. Suppose thaf2.2) holds and{tc} is a bounded setf {xy} is
unbounded andf (xc)} is boundedthen the rate of/ f (xc) — 5 converging to zero is

less than geometri¢urthermore {||x||?/k} is bounded
Proof. From (2.2), we have, for aK,

k

Xepr = Xall < D %2 — il
i=1

k
<m > tgal.
i=1
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which implies that

0]

tOk+1ll = +o0, (3.2)
k=1

using that{xx} is unbounded.
Since, for allk, f(xx) > f§ and{tc} is bounded, we obtain from (1.5) that
fo — F) < F ) — F )

—tllGesall® + e

IA

IA

1 2
_t—(tk||gk+1||) + &1k
K

Hence

1
NALC e max{o, \/;(tk”gk-rlu) - «/51.k} :

This inequality and our assumptions rande; x yield

> V) — 5 = oo,
k=1

which implies that,/ f (xx) — f§ cannot converge to 0 with a geometric rate.
We now prove the second part of the theorem. From (1.5) and (2.2),

f (k1) — FO%) < —tllGkrall® + €1k

m? )
=< — Xkr1 — Xkll© + €1k,
K

which implies
mz k k
f(Xern) — Fx0) < —inf{t—_ Ho= 1,...,k}Z||xi+1—xi||2+281,i.
! i=1 i=1

On the other hand,

K 2
2
X4z — Xall? < (Z %2 — X ||>

1

2
<k lIxisa =%

i=
k
i=1

Hence we obtain the following inequality by combining the above two inequalities:

o (m X = X1l &~
f(xk+1)—f(xl)s—lnf{T.l—1,...,k}f+i;el,.,
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which implies thaf||x1 — X1||%/K} is bounded sincéf (x¢)} is bounded from below.
Therefore || x¢||?/ K} is bounded. O

4. Applications

In this section we demonstrate that a number of methods for convex optimization prob-
lems are special cases of Algorithm 1. These include:

o A family of variable metric proximal methods proposeh
e The convex minimization methods giveiidh
e The proximal point algorithms introduced jh3].

Exampled.1. A Family of Variable Metric Proximal Method4]

In [4] the authors proposed a family of variable metric proximal algorithms based on the
Moreau—Yosida regularization and quasi-Newton approximations. GiverR" and a
symmetric positive definita x n matrix B, let

9e(2) = f(2+ 1(B(z—x),z—x), (4.1)

xP = pp(x) := argmingg(2) : z € RV}, 4.2)

Si=f 060 — FOX0) — 3(9¢, Whgd), (4.3)
whereW, = B, ! andg! is a subgradient iaf (x), satisfying

XY = x — Wigy. (4.4)

With the notation in (4.1)—(4.3), we can state the algorithm of [4] as follows:

Algorithm 4.1 (GAP of [4]).

Step 0. Start with some initial point; and matrix B;; choose some parameter
mp € (0, 1); setk = 1.
Step 1. Withsy given by (4.3), computey, ; satisfying

f(Xkr1) < f(Xk) — Modk. (4.5)
Step 2. Updatdy, increasek by 1, and loop to Step 1.

Lemma4.1. Suppose thaf(Xx;1, gf)} is generated by Algorithm.1.Let

2k = F (1) — F ) — (G Xerr — %), (4.6)
thenezx > 0,
O € ey F (Xics) (4.7)
and
Mo, p P
f (X)) < FO) — 7(gk, Wig,)- (4.8)

Thus (1.5)holds with t = (Mg/2) Amin(Wk), Whereimin (W) denotes the smallest eigen-
value of a symmetric matrix W



Convergence Properties of Some Methods for Nonsmooth Convex Optimization 151

Proof. Usinggy € 9f (x{), we have, for alk € RV,
fx) > f(x)+ (g, x —x9)
f (i) + (98, X — X)) — [FXier) — FO) — (OF, Xir1 — X)) (4.9)

By the convexity off, we sees, > 0 and that (4.7) follows (4.9).
Since, for allx € RN,

f ) 4+ 3(Br(XE — %), X — Xi) < F(X) + 5(Br(X — X), X — X).

Settingx = xk, we have
Fx¢) < f (%) — (98, Wiegg) (4.10)
by (4.4). Relations (4.10), (4.3), and (4.5) imply (4.8). O
Conclusion (a) in the Theorem 4.1 is the global convergence result of [4]. We give
a simple proof here using our general results. Conclusion (b) is new for this algorithm.
Theorem 4.1.

(@) (Theorem2.3 of [4].) Assume that f has a nonempty bounded set of mjnima
and let{xx} be a sequence generated(@AP). Then{xy} is bounded andf

> Amin(Wh) = +o0, (4.11)
k=1

any accumulation point dfx} minimizes f The same properties hold for the
sequence of proximal pointxlf}. It also holds thatim infk_>oo||gkp|| =0.
(b) Suppose there exidissuch thatfor all large k,

Xier1 = X + T — %), (4.12)
wherely <t < +o0. If {||Wi||} is bounded an@4.11)holds then f(x) — f§.
Proof. (a) Sincef has a nonempty bounded set of minima, the level set§ afe

bounded. Hencgx} and{x,f} are bounded by (4.8) and (4.4). (In fact, this conclusion
follows due to Theorem 2.3 of [4].) Using (4.5), we have

& — 0. (4.13)
By (4.8), we obtain

(98> Wigg) — 0. (4.14)
Hence,

f om0 — f ) — (98, Wegd) = 8k — 3(9¢, Wkgd) — O. (4.15)

Results (4.13), (4.14), and (4.15) imply that if ligg ||g|f|| = 0, then limk 2k = 0.
By the definition ofe*, we haves* = 0. Let ty = (mg/2) Amin(Wk), then (4.11) and (ii)
of Theorem 2.1 yield the first conclusion.
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By (4.13) and (4.14), we have
kIi_)mOc f(x¢) = kIi_)rrgo f(x)).

This implies that every accumulation pointiof’} minimizes f by the first conclusion.

Using (4.8) and (4.11), we have liminf..||g/|| = O.
(b) From (4.12) and (4.4), we have, for all largethat

p
X1 = Xicll < G l-

Tl Wkl

Using (4.4), (4.15), and the fact th&txc,1) < f(Xk), we have, for alk,
g2k < (0 — 10¢) — (9. Whg?) < b

On the other hand, from (4.5), we have
Y 8= mpt(f o) — ).
k=1

Therefore
g2k < Mo t(f(x1) — f§) < +oo. (4.16)
k=1

Letm = 1/(tsup{||Wk||}) and letty = 1 for all largek, then (4.16), the assumptions in
(b), and the result (iv) in Theorem 2.1 yield thiagx,) — f5. O

Theorem 4.2. Suppose that the assumptions(bf in Theorem4.1 hold. If {xy} is
unbounded and;f > —oo, then the rate of/ f (xx) — 3 converging to zero is less than
geometric and||x«||?/k} is bounded

Proof. The conclusions follow Lemma 4.1, Theorem 3.2, and (b) of Theorem #11.

Exampled.2. Algorithms Given irff6]

In [6] Correa and Lemachal presented a simple and unified technique to establish
convergence of a number of minimization methods. These include (i) the exact prox-
iteration, (ii) its implementable approximations, which include in particular (iii) bundle
methods, and finally (iv) the classical subgradient optimization scheme. Their methods
can be summarized as follows:

Algorithm 4.2.  From an arbitrary point; € R", the sequencix} is constructed with
the following formulas:

Xk+1 = Xk — TkVks (4.17)
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Yk € gy, F (X0, (4.18)

f (1) < FO%) — Mozl (4.19)

wherees  is nonnegativer, > 0 is the stepsize, and; is a positive constant.
The following lemma shows that Algorithm 4.2 is a special case of Algorithm 1.

Lemma 4.2. Suppose thaft(es k, Tk, Xk+1, ¥k)} iS generated by Algorithm.2. Let

te = My, (4.20)

£2k = mMax{0, ez + (1 — my)llwl|*). (4.21)
Then

Yk € Oeyy F (Xict1) (4.22)

and(1.5)holds for anye; x > 0.

Proof. It suffices to prove that (4.22) holds. By (4.18), we have, foxadl R",
f(X) > F(X) + (. X — Xk) — €3k

f ) + (6 X = Xiern) + F 0 — F(Xirn) + (W Xerr — %) — €3k

This inequality, (4.17), and (4.19) imply that

FOO = f () + (e X = Xiera) — [eak + (1= mo el ?]-
So (4.22) follows. O
The following is a main result of [6].

Theorem 4.3 (Proposition 2.2 of [6]). Suppose tha(es k, T, Xk+1, ¥«)} IS generated
by Algorithm4.2.

(i) Assume that

o0
> = +o0 (4.23)
k=1
and
€3k — 0. (424)

Then f(x) — 5.
(i) If {=x} is bounded and

> egx < +oo, (4.25)
k=1

then{xx} converges to a minimum point of f if there is such a minimum point
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Proof. (i) If the decreasing f (x«)} tends to—oo, then the conclusion follows. Other-
wise, from (4.19), we have

Dl < +oo. (4.26)

k=1
This and (4.21) imply thaes «} tends to zero if and only ife; } tends to zero. So the
conclusion follows by Lemma 4.2 and (iv) of Theorem 2.1.

(i) Supposef has a minimum point. Theff (xx)} is bounded from below. Thus,
(4.26) holds. Inequalities (4.26) and (4.25) imply that

o
Ztk82,k < 400
k=1

by the boundedness i} and (4.20). The results of (iv) in Theorem 2.1 imply tfvad}
converges to a minimum point df. O

Note that from (4.17) and Theorem 3.2, we obtain the following new convergence
rate for Algorithm 4.2.

Theorem 4.4. Let {(e3k, T, Xk+1, Yk)} be generated by Algorithm.1 with (4.23)
and (4.24).1f {r} is bounded {x.} is unboundedand f; > —oo, then the rate of
J/ T (x) — f§ converging to zero is less than geometric dhe||?/ K} is bounded

Example4.3. A Proximal Point Algorithm Introduced if13]

In [13] Rockafellar introduced two general criteria for finding the zero of an arbitrary
maximal monotone operator when the iteration points are given approximately. As an
application, he applied the results to a lower semicontinuous proper convex fufiction

In this case, one of the algorithms follows:

Algorithm 4.3.  For xk, generatéoy, Ak, Xk+1, Oks1) € Rg x RT x R" x R" (gk41 €
of (Xky1)) satisfying

dist(0, S(Xi1)) < :—tuxkﬂ — I, (4.27)
where
Zok < o0, (4.28)
k=1
and
1
S(x) = af (x) + (X = X0). (4.29)
k

In the following discussion we only assume that, forall

o« €0, 3]. (4.30)
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Lemma 4.3. Suppose thaft(ok, Ak, Xk+1, Okr1)} € Rg x Rt x R" x R"is generated
by Algorithm4.3.Let

1—O‘k

tk = ————— A, 4.31
T @r a0 (4.31)
then(1.5) holds fore1 x = €2k = 0. Furthermore
(1—ow)?
———— [ Xks1 — Xkl <t . 4.32
17 o2 X1 — Xl < ticll Gl (4.32)
Proof. By (4.27), (4.30), and (4.29), we have
1 o
Gert + — (Kip1 — X0 || < = %ieyr — Xull. (4.33)
Ak Ak
The inequality,
1 1
<gk+1 + /\—k(Xk+1 — Xi)s Xkl — Xk> < | Ok+1+ )L—k(Xk+1 =X | Xkr1 — Xl
and (4.33) imply that
1-— Ok 2
(ks Xkt — Xk) < — Xk — Xl
Therefore,
1— o
(D1, Xic — Xg1) > “ X1 — Xl (4.34)
On the other hand, by (4.33), we have
1+ ok
| Gkall < X1 — Xkl (4.35)
Inequalities (4.34) and (4.35) yield
(Ok+1 Xk — Xkt1) = te(Okr 1 Ok)- (4.36)

Applying the subgradient inequality for convex functions, we have

f () > f (1) + tellGerall

Hence, (1.5) follows.
By (4.33), we have

1—0‘k
Ak

Xkr1 — Xkl < IOkl

which implies that (4.32) holds. O
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The following theorem indicates that the RT phenomenon does not occur for the
well-known Algorithm 4.3. In view of Theorem 2.1 and Lemma 4.3, it does not require
proof.

Theorem 4.5. Suppose thaf(ok, Ak, Xk+1, Ok+1)} IS generated by Algorithm.3 with
Y kg Ak = +o0.

() Eitherlimy_, o f(xx) = —oo orliminfy_ |lgk|l = O. In particular, if {xy} is
boundedthen f(x) — f; and every accumulation point pfi} is a minimum
point of f.

(i) Ifinf{A¢} > O, then eithetiminfy_ ., f(xx) = —ooor ||gk|| — O.In this case
every accumulation point gk} (if one existis a minimum point of f

(i) ) — f5.

(iv) If, for all k, ox = 0O, then{xx} converges to a minimum point of f if such a
point exists

For Algorithm 4.3, we obtain the following two basic convergence rate results from
Theorems 3.1 and 3.2.

Theorem 4.6.

(a) Suppose that*xminimizes fxx — x*, and there exist two scalars* 0 and
M > 0 such thatfor any x satisfyingx — x*|| <,

f(x) — f(x*) > M|x — x*||2. (4.37)
(al) If
Jim jy =" € (0, +00).

then f(xx) tends to {x*) linearly.
(@2) If
klim Ak = +00,
then f(xx) tends to f{x*) superlinearly

(b) Suppose tha} "~ ; Ak = 00, {A} is bounded{xy} is unboundedand f; >
—oo. The rate of,/ f (xx) — 5 converging to zero is then less than geometric
and{||x||?/k} is bounded

Proof. We first prove (a). Since, for &,

o l—o o F(x) — F(X)
T 14002 e — X2

Ck

and

f Xy — F(X¥) -
fx) — f(x*) —
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Hence, we have, from (4.30), that

_ 1— ok fxi) — (X)) fFXiepr) — F(X¥)
A+ 002 T s — TOF) X — X*|12

v

Ck %M)»k,

which implies that (al) and (a2) hold by Theorem 3.1.
(b) From the definition ofn in (2.2), for Algorithm 4.3, we can choose = é In
this case,

(1 - 0w)?

" >m
1+ 00?2 ~

by (4.30). This implies that the results of (b) hold by using Theorem 3.2. O

Itis worth noting that the conclusions (iii) in Theorem 4.5 and (b) in Theorem 4.6 are
not contained in the convergence results given in [13]. Since Algorithm 4.3 is different
from those using line search to produce the next iteratign = xx + txdy, wheredy
is a linear search direction at théh iteration, it is surprising that we can easily obtain
the same convergence properties for these two types of methods. We believe that the
tool in this paper is useful in the convergence analysis for optimization problems under
a unified framework.
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