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Summary. We report in this paper a relatively simple means of generating closed-form
approximants to the return map associated with a family of nonintegrable Hamiltonian
systems. These systems arise in consideration of legged locomotion by animals and
robots. The approximations proceed through the iterated application of the mean value
theorem for integral operators applied to a nonintegrable perturbation of the system of
interest. Both the accuracy of these approximants and their algebraic intractability grow
in a relatively controlled manner.
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1. Introduction

Natural locomotion systems rely on legs to gain tremendous advantage, relative to any
present-day engineered vehicle, in traversing general terrain. The advantages of legs
over wheels or treads are intuitively clear, but the field of robotics has been slow to
develop synthetic systems that begin to approach the dexterity of even the humblest
insect species. Legged robotic systems (excepting some very few pioneers to be dis-
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Fig. 1. (a) Left: The physical template: spring-loaded inverted pendulum (SLIP) monoped with
point mass,m, at hip and massless leg consisting of a spring with potentialU (qr ). By convention,
bothqθ andbx are defined to be negative to the left of vertical and positive to the right. (b) Middle:
Illustration of the template’s correspondence to Raibert’s hopper. (c) Right: Illustration of the
template’s correspondence to a human runner.

cussed below [25], [32]) have been designed to operate in static [26] or quasi-static [30]
stability. In contrast, animals seem to operate in the dynamical regime for all but the
slowest of walks [10], [12]. In this paper, motivated by certain questions common to
both robotics and biomechanics, we develop what may arguably be construed as the
simplest possible “plant model”1 for general dynamical locomotion behavior in both
robots and animals.

1.1. Motivation: A Descriptively Complex, but Analytically Tractable Model

That such a model would even exist may seem dubious. After all, legged animals present
an incredible diversity of shape, size, and morphology. In spite of these obvious and
important differences, biomechanists studying running2 [1], [4], [8], [10] have identified
a striking underlying uniformity in the center of mass (COM) behavior of the majority
of creatures studied. This seeming unity of strategy finds its archetype, ortemplate,
in the spring-loaded inverted pendulum (SLIP) depicted in Figure 1(a). The view of

1 From the perspective of systems engineering, a particular physical phenomenon may be represented by either
an input/output map or a full state internal model—the latter by linear or nonlinear dynamics; and these, in turn,
may be cast in continuous or discrete time; and so on. In the end, the “correct” mathematical representation is
dictated by the problem of concern and the available analysis and design tools. We will honor traditional usage
by calling this representation the “plant model.” The reader should beware that the term “plant” is accorded
multiple meanings in the systems literature. It sometimes denotes the actual physical system, sometimes an
idealized physical abstraction, and sometimes an appropriate mathematical representation. In this paper, we
use the term “plant model” strictly in the latter sense.
2 Running is not best defined by the presence or absence of a flight phase, as is commonly thought, but rather
by the phase difference between a body’s gravitational potential and forward kinetic energy during stance [2],
[29]. For example, Full demonstrates that a cockroach, while never having a flight phase, almost always uses
a running gait [11].
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animal dexterity as arising from the orbits of strategically tuned spring-loaded actuators
dates back to Bernstein [3], and contemporary biomechanists have posited the SLIP as
a specific template for fast legged locomotion behavior [4], [5], [10], [28]. Specifically,
Full has presented strong evidence suggesting that animals, whether using two, four, six,
eight or more legs, arrange their nerves and muscles in a manner that persuades their
COM it is riding on such a pogo stick [10]. This notion of a “virtual SLIP” is suggested
in Figure 1(c).

The utility of dynamical legged locomotion was introduced to robotics by Raibert
[32]. His machines were designed to be explicitly SLIP-like, incorporating a physically
identifiable spring connecting the toe to the body. The SLIP mechanics afforded simple
yet ground-breaking strategies that relied on the shaping of total energy and reverse time
symmetries for control. These strategies yielded stunning results for the planar monoped
depicted in Figure 1(b), and were extended with equal success to an entire family of
one-, two-, and four-legged machines running in three-dimensional space, again using
intuitive notions of a “virtual SLIP” as suggested in Figure 1(c).

1.2. Application: Control and Identification Schemes for Legged Locomotion

Even subsequent to Raibert’s pioneering designs, standard approaches to the control of
legged locomotion have continued to employ feedback controllers to track joint space
reference trajectories [23], [42], [45], [46]. A fundamental question arises regarding
the origin of these reference signals. Since translation of desired body motions into
joint space trajectories that achieve them represents a central unknown, a variety of
different approaches have been proposed. In character animation, for example, these
signals are often generated via playback of motion capture recordings from animals
[13] or from interpolation of tediously assigned key frames [9]. In robotics, reference
trajectories are often derived by minimization of an energy or torque cost function [6],
[34]. Each of these previous techniques requires storage of a library of reference motions
which must be derived off-line. Obviously such libraries will not be complete, and
motions not represented must be interpolated from the others. Other approaches avoid
this problem by implicitly encoding the desired motion either in terms of constraint
equations [20], [21], [17], [16] or in terms of simpler dynamical systems [7], [30],
[32], [36]. In any case, from our perspective, it seems that for control of the body
using the legs, one should seek analytically tractable principles that can be asserted in
terms of high-level control commands (or gait parameters) such as “run this fast” or
“jump this high” and which can be easily extended to runners with varying morphology
[36].

In the case of animals, one wishes to test from motion capture data how closely the
COM trajectory matches SLIP orbits [37], characterize the potential law of the effective
virtual spring [37], trace back the contribution of the physical joint torques toward this
overall target, and begin to hypothesize about the muscle recruitment strategies that might
achieve it. This is a problem (at least in the beginning stages) of statistical parameter
estimation. Identification, however, demands not merely a conveniently parametrized
family of appropriate potential functions but a view of how any specific instance manifests
itself in the resulting orbits.
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Fig. 2.Bottom to apex map (left) and apex return map (right).

For both control and estimation, the established techniques of systems engineering
presume a parsimoniously parametrized plant model. This forces the sharply revised
question of whether such a complex physical model as the SLIP can be used to generate
a plant model suitable for legged locomotion? Addressing that question constitutes the
central burden of our paper.

1.3. Scope: The Parametrized Return Map as Plant Model

For the stated purposes of control and estimation, the continuous time COM trajectories
of the SLIP leg do not represent an effective plant model. To begin with, this is a
hybrid dynamical problem. There are really two vector fields at play, since many runners
alternate between stance and flight modes. Moreover, as we have argued above, the task
of locomotion, while built on the orbits of the underlying Hamiltonian vector field, is
more naturally encoded in the abstract terms of heights and speeds and duty factors.
Finally, from the perspective of control authority, synthetic actuators do not possess
sufficient power density and natural proprioception likely does not provide sufficient
bandwidth to afford the traditional control theorist’s reliance on feedforward/feedback
techniques of trajectory tracking in the physical application settings of interest. It makes
much more sense to think in terms of the discrete time maps depicted in Figure 2 that
relate the runner’s states at bottom and apex of a trajectory. In this formulation, the
plant model arises as a “controlled return map” whose states represent the elements of a
Poincaré section transverse to the periodic orbits of running and whose inputs represent
the integrated effect of certain parameter settings—the ones representing all actuator
activity that transpires over a given cycle.

This approach introduces an obvious new difficulty. The Hamiltonian vector field
that generates the SLIP COM trajectories takes the general form of the restricted three-
body problem whose nonintegrability was established a century ago by Poincar´e [19].
In other words, our presumed plant model cannot even be written down. However, in
our experience, for purposes of systems engineering (i.e., both from the controls and
the identification points of view), plant models need to be written down in some con-
veniently parametrized closed form. Numerical simulation can be used to gain human
insight into the salient features of the physical setting. But designing realtime feed-
back control laws—at least any sort whose effects are to be predictably reliable—
involves devising policies that are functionally related to the plant model. Further-
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more, implementing such policies involves the use of computational data structures
whose entries are functionally related to calibrated instances of the plant model param-
eters. Similarly, parameter identification—at least any sort that can entail empirically
refutable hypotheses—involves fitting parsimonious functional representations to lim-
ited observed behavior with the object of making automated predictions about the future
behavior.

In short, some representation of the plant must be available in closed form. But
for the phenomena of interest, the plant model amounts to the return map of a non-
integrable dynamical system and, hence, seems to defy the possibility of representa-
tion.

1.4. Contribution: Approximations through Iterated Application of the Mean Value
Theorem for Integrals

This impasse motivates the central problem addressed in this paper. We seek a close
approximation to the stance map of the SLIP leg that can be written as a closed-form
function of its Hamiltonian vector field. How close is close? Our somewhat pragmatic
attitude is that this depends upon the application. For purposes of control, particularly
when relatively high authority feedback is possible, plant models that capture more
than ninety percent of the systematic variation in a physical process may suffice. In
contrast, for purposes of estimation, when each step—the sensor noise floor, uncontrolled
sources of process variation, and so on—contributes to the residual error, one seeks
absolutely the most accurate possible useful representation of the systematic variations
that preserves the key physical properties. Finally, our interest in pursuing the SLIP as
a template for higher degree of freedom systems [36] argues for as great an accuracy
as possible. We report in this paper a relatively simple means of generating closed-
form approximants whose accuracy and algebraic intractability both grow in a relatively
controlled manner through the iterated application of the mean value theorem for integral
operators.

It is natural to inquire how well any method of approximation handles qualitative
changes in the object being approximated. Unfortunately, the formal view of “qualita-
tive difference” in the setting of dynamical systems has an asymptotic character (e.g.,
has the topology of some limit set changed?) while we are only concerned with the
short-term behavior of the underlying continuous time dynamics. For example, because
our approximants assume a Hamiltonian system and because no Hamiltonian system
is structurally stable, there is no reason to expect that our approach will yield useful
asymptotic results when friction is present. To the contrary, however, in one degree of
freedom settings (where everything is integrable, so approximation is not at issue), apex
return maps of the sort depicted in Figure 2 derived from Hamiltonian models have
been used to stand in for the behavior of lossy hopping [22] and juggling [33] with very
favorable physical outcomes—arguably because the short-term behaviors of the “quali-
tatively different” systems are quite similar. Abandoning formal notions of “qualitative
difference,” we take the more utilitarian approach of presenting statistical summaries
of numerical comparisons between simulated orbits (the presumed “truth”) and various
parametrically different models.
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A feeling for the nature of these results is provided by a glance at the function

h1
U (qr ) =


t̂ s1(qr )

q̂θ 1(qr )

p̂θ 1(qr )

p̂r 1(qr )

 =



tsb+ m
H−1

pert(ξ̂r ,q̂θ 0(ξ̂r ), p̂θ 0(ξ̂r ))
(qr − rb)

θb + p̂θ 0(ξ̂r )

ξ̂2
r H−1

pert(ξ̂r ,q̂θ 0(ξ̂r ), p̂θ 0(ξ̂r ))
(qr − rb)

pθb + m2gξ̂r sin(q̂θ 0(ξ̂r ))

H−1
pert(ξ̂r ,q̂θ 0(ξ̂r ), p̂θ 0(ξ̂r ))

(qr − rb)

H−1
pert(qr , q̂θ 1(qr ), p̂θ 1(qr ))


, (1)

which we obtain by applying our approximation technique to the Hamiltonian vector
field,

XHpert(q, p) =


pr

m
pθ

mq2
r

p2
θ

mq3
r
− DU (qr )

0

+


0
0

−mgcos(qθ )
mgqr sin(qθ )

 ,
arising from the SLIP of Figure 1(a) forced by a spring with the potential energy function
U (qr ). Here

H−1
pert(qr ,qθ , pθ ) =

[
2m [(U (rb)−U (qr ))+mg(rb cos(θb)− qr cos(qθ ))]

+
(

p2
θb

r 2
b

− p2
θ

q2
r

)] 1
2

,

andξ̂r = (1/4)qr+(3/4) rb. Additionally, the numerical subscript identifies the particular
iterate—bothq̂θ 0 and p̂θ 0 are defined in (2). Other notations are defined in Table 1.

Although XHpert is nonintegrable and the spring potential,U , is not prescribed at
all, h1

U closely approximates the results of numerically integrating trajectories ofXHpert
from stance bottom states (where the leg spring is maximally compressed) to flight apex
states (where the body’s vertical height is greatest) for all instances we have examined
whenU is a convex function (i.e., the spring resists compression with a nonnegative
stiffness). For example, when we take the potential function of (47),

UT H K(qr ) = k

2

(
arccos

[
q2

r − l 2
1 − l 2

2

2l1l2

]
− arccos

[
q2

rl − l 2
1 − l 2

2

2l1l2

])2

,

resulting from a torsional Hooke’s law spring at the “knee” of the slightly more zoomor-
phic leg (see Appendix B) of Figure 8, we produce with (1) and (2) a map that takes the
cubic cell of bottom states shown in Figure 7(a) into a twisted volume of apex states sim-
ilar to that of Figure 7(b). The bottom state cube of Figure 7(a) contains leg lengths in the
rangerb ∈ [0.75,0.975]m, angular momentum in the rangepθb ∈ [1.5,6.5] kgm2 rad/s,
and spring potential energy in the rangeU (rb) ∈ [2.5,7.5] kg m2/s2, and we shall use it
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throughout the paper as a means of comparing approximants, since it results in a typical
range of human gaits: hopping heights in the rangeya ∈ [0.77,1.74] m, forward veloc-
ities in the rangėxa ∈ [1.56,9.26] m/s, and duty factors in the rangeβ ∈ [0.01,0.41],
where we assume a leg length of 1m at liftoff and a mass of 1 kg.

To characterize the quality of an approximant, such ash1
U , we compare its image to

the result of numerically integratingXHpert over this entire cube. We report the average
and maximum percent errors and the standard deviations for a number of relevant state
variables, as shown in Figure 6. We will find it convenient to report all such numerical
comparisons in a similar format throughout the paper. For instance, computing the leg
angle at liftoff,qθ l , usingh1

U incurs a mean error of 3.25%, with standard deviation of
1.46% and maximum error of 14.6%.

According to the reasoning above, we may, depending upon the application, prefer
instead ofh1

U a less accurate approximant with a simpler closed-form representation or a
more accurate approximant involving correspondingly more complicated terms. Trading
off accuracy for functional simplicity is achieved in our approximation technique by the
iteration number of the functional composition procedure detailed in Section 4. For
example, the zeroth iterate of this procedure is given by

h0
U (qr ) =


t̂s0(qr )

q̂θ0(qr )

p̂θ0(qr )

p̂r0(qr )

 =



m(qr−rb)[
p2
θb

(
1

r 2
b

− 1
ξ̂2
r

)
+2m(U (rb)−U (ξ̂r ))

] 1
2

pθb(qr−rb)

ξ̂2
r

[
p2
θb

(
1

r 2
b

− 1
ξ̂2
r

)
+2m(U (rb)−U (ξ̂r ))

] 1
2

pθb[
p2
θb

(
1
r 2

b
− 1

q2
r

)
+ 2m(U (rb)−U (qr ))

] 1
2


(2)

and results in an approximation accuracy yielding mean error of 7.11% with standard
deviation of 3.74% and maximum error of 30.9% for qθ l . The approximant previously
examined,h1

U , results from one application of the iterative procedure. In contrast, the
second iterate, which takes the same form as (1) except with the subscript 1 replaced
with the subscript 2 and the subscript 0 replaced with the subscript 1, results in an
approximation accuracy yielding mean error of 1.51% with standard deviation of 1.04%
and maximum error of 7.01%.

1.5. Organization of the Paper

The SLIP monoped operates in two distinct dynamical phases, depending on whether it
is on the ground or in the air. Section 2 introduces the Hamiltonian dynamics of both
phases.

The first question addressed is the importance of the spring law. While virtually all
successful running robots to date have adopted the revolute-prismatic kinematics of the
SLIP monoped, biomechanists have heretofore adopted this model [5] only in analogy
to the more biologically valid revolute-revolute kinematics, the toe and knee depicted
in Figure 8. Thus, while it is straightforward to express a given spring law in one or
another set of coordinates, it is equally clear that simple expressions in one set will yield
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very complex expressions in the other, and vice versa. More fundamentally, actuation
technology in robotics is incredibly diverse, and the form and function of animal muscles
is similarly varied. We seek a mode of analysis that does not commit to any specific spring
form. Any physically interesting SLIP spring potential law must be repulsive in nature.
That is, its force must increase with increased leg compression. While a multitude of such
springs could be proposed, certain special cases yield solvable elliptic integrals in the
completely integrable setting when there is no gravity during stance (a case we refer to as
the unperturbed SLIP). Might such an exemplar do a “good enough” job of capturing the
behavior of other springs? Simulation evidence presented in Section 3 demonstrates that
the particular functional form of the spring law is important, especially for predicting
quantities such as stance time and duty factor.

Motivated by this observation, we introduce a means of generating closed-form ap-
proximants for the unperturbed stance dynamics forarbitrary spring laws. This result
relies on a novel application of the Mean Value Theorem for Integrals. Simulation data
is presented for the adequacy of this approach in the unperturbed setting.

After removing the restriction on the functional form of the spring, it remains to
address the absence of gravity during stance. In most previous robotics research, gravity
has been ignored during stance, with the presumption that the spring contributes the
dominant radial force and that the angular momentum about the toe is almost constant
[22], [27], [39], [43]. Simulation results presented in Section 4 demonstrate that gravity
cannot be ignored in stance if a wide range of orbits is desired. We thus introduce
an iteration procedure, combining Picard style iterates with the Mean Value Theorem
for Integrals result of Section 3, to construct approximate solutions to the perturbed
dynamics whose accuracy and complexity grow in a controlled manner as exemplified
in equations (1) and (2). Again, simulation data is compared to establish the efficacy of
this approach.

2. The SLIP Template

2.1. Notation and Terminology

The SLIP template, depicted in Figure 1(a), is defined according to the following as-
sumptions. The leg is assumed to be a massless spring, with potential lawU (qr ), that
connects the toe to a point mass,m, at the hip. It is assumed that there are no losses
during stance or flight and that the only force acting during flight is gravity. Furthermore,
it is assumed that once on the ground the toe does not slip, effectively acting as a hinge
about which the leg is free to rotate in the sagittal plane.

The hopping cycle consists of two primary phases: the stance phase, when the foot
is on the ground, and the flight phase, when the leg is airborne. The stance phase can
be further decomposed into two subphases: compression and decompression.3 Four
important events must occur during one hopping cycle: Touchdown, the moment the foot
makes contact with the ground; Bottom, the moment during stance when the robot reaches

3 A third subphase is often introduced—the thrust phase [22], [32], [43]. For purposes of this paper, it suffices
to assume that any thrust occurs instantaneously.
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Table 1.Notation used throughout the paper.

Leg Coordinates
qr Leg Length
qθ Leg Angle from Vertical
pr Radial Momentum
pθ Angular Momentum
bx Horizontal Position of Body
by Vertical Position of Body
px Horizontal Momentum
py Vertical Momentum
b Cartesian Position Coordinates, [bx,by]T

b Cartesian Velocity Coordinates, [ḃx, ḃy]T

pb Cartesian Momentum Coordinates, [px, py]T

Tb [b, ḃ]T

T∗b [b,pb]T

q Polar Position Coordinates, [qr ,qθ ]T

q̇ Polar Velocity Coordinates [q̇r , q̇θ ]T

pq Polar Momentum Coordinates, [pr , pθ ]T

Tq [q, q̇]T

T∗q [q,pq]T

Bottom Parameters
rb Leg Length at Bottom
θb Leg Angle at Bottom
pθb Angular Momentum at Bottom
k Spring Constant

Liftoff Parameters
qrl Leg Length at Liftoff
qθ l Leg Angle at Liftoff
prl Radial Momentum at Liftoff
pθ l Angular Momentum at Liftoff
ḃxl Forward Velocity at Liftoff
ḃyl Vertical Velocity at Liftoff
ts Stance Time

Apex Parameters
ya Apex Hopping Height
ẋa Apex Forward Velocity
t f Flight Time
β Duty Factor = ts

2(ts+t f )

Dynamical Parameters
m Body Mass
g Acceleration due to Gravity

maximal compression and the radial momentum changes from inward to outward; Liftoff,
the moment the foot loses contact with the ground; and Apex, the moment in the flight
phase where the robot has maximum amplitude and vertical motion changes from upward
to downward.

Some further notational conventions are presented in Table 1.



542 W. J. Schwind and D. E. Koditschek

2.2. The SLIP Dynamics

The Hamiltonian vector fields for both stance and flight phases take the following form.

Stance Dynamics.Using the notation of Table 1, we can write the Hamiltonian (total
energy) in the following convenient form,

Hpert = Hunpert+ Hgrav, (3)

where

Hunpert= 1

2m

(
p2

r +
p2
θ

q2
r

)
+U (qr ) and Hgrav = mgqr cosqθ .

Note thatHunpert is the sum of the kinetic and spring potential energies, whileHgrav is
simply the gravitational potential energy.

The vector field,XHunpert arising from the Hamiltonian,Hunpert is given by


q̇r

q̇θ
ṗr

ṗθ

 = XHunpert(q, p) =


pr

m
pθ

mq2
r

p2
θ

mq3
r
− DU (qr )

0

 . (4)

Notice that these are the dynamics of a classic central force problem. There are two
integral invariants, and the system is completely integrable [14], [39], [44].

The vector field arising fromHgrav is given by


q̇r

q̇θ
ṗr

ṗθ

 = XHgrav(q, p)


0
0

−mgcos(qθ )
mgqr sin(qθ )

 , (5)

and when added to that of (4) destroys theqθ symmetry, resulting in a nonintegrable
problem.

Although (4) will be referred to as the unperturbed dynamics and (4) with the addition
of (5) as the perturbed dynamics, in contrast to traditional perturbation methods, we do
not impose the restriction that the perturbation is “sufficiently” small.

Flight Dynamics. As the leg decompresses during the stance phase, it reaches a point
where the rising hip pulls the leg off the ground and the flight phase begins. At this point
it is convenient to change from polar (stance,q= [qr ,qθ ]T , pq = [ pr , pθ ]T ) to cartesian
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(flight, b= [bx,by]T , pb = [ px, py]T ) coordinates using the following relationships:4

b= g(q) =
[

qr sinqθ
qr cosqθ

]
(6)

and5

pb = MB DgM−1
Q pq, (7)

where

MB=
[
m 0
0 m

]
, MQ=

[
m 0
0 mq2

r

]
, and Dg=

[
sinqθ qr cosqθ
cosqθ −qr sinqθ

]
. (8)

The monoped flies through the air as a two degree-of-freedom point mass subject to
gravity, until the leg touches down again. We assume that the leg angle at touchdown
can be freely selected in flight. For such a model, the Hamiltonian can be written as

HF = 1

2m
(p2

x + p2
y)+mgby. (9)

Then the vector field,XHF , arising from the Hamiltonian,HF , is given by
ḃx

ḃy

ṗx

ṗy

 = XHF (b, p) =


px

mpy

m
0
−mg

 . (10)

3. Integrating the Unperturbed Stance Dynamics

3.1. Integration by Quadratures

Newtonian free flight dynamics (10) are readily integrable, so the only point of inquiry
concerns the stance dynamics. As mentioned above, the vector fieldXHunpert (4) cor-
responding to the unperturbed system is completely integrable—having two constants
of motion: the total energy,E0 = Hunpert, and the angular momentum,L0. Integrating
by quadratures,6 we use constantL0 to give pθ and this, in addition to constantE0, to
give pr ,

pθ (qr ) = L0

pr (qr ) =
[
2m(E0−U (qr ))− L2

0

q2
r

] 1
2

. (11)

4 Here, bothqθ andbx are defined to be negative to the left of vertical and positive to the right, as defined in
Figure 1(a).
5 We denote the jacobian ofg and all other functions by the symbolDg.
6 Choosingqr as the dependent variable conforms to tradition [14, §3–5] [24, §1.3c] [44, §48], suits well the
need to leave unspecified the spring lawU (qr ), and easily allows the convention of characterizing the transition
from stance to flight by the achievement of a particular leg length,qr = qrl [22], [27], [32], [39], [43].
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With no loss of generality, we focus attention on the decompression phase (pr > 0) in
this work and, therefore, select the positive square root solution forpr . With the results
of (11), the remaining (elliptic) integrals are given by

qθ (qr ) = θb +
∫ qr

rb

pθ
ρ2 pr (ρ)

dρ = θb +
∫ qr

rb

L0

ρ2
[
2m(E0−U (ρ))− L2

0
ρ2

] 1
2

dρ,

ts(qr ) = tsb+
∫ qr

rb

m

pr (ρ)
dρ = tsb+

∫ qr

rb

m[
2m(E0−U (ρ))− L2

0
ρ2

] 1
2

dρ, (12)

where the initial condition (the bottom state, since we are focusing on decompression) is
[rb, θb,0, pθb]T . Substituting the angular momentum and the energy at bottom,L0 = pθb

andE0 = 1
2m

p2
θb

r 2
b
+U (rb), we find

pθ (qr ) = pθb,

pr (qr ) =
[

p2
θb

(
1

r 2
b

− 1

q2
r

)
+ 2m (U (rb)−U (qr ))

] 1
2

,

qθ (qr ) = θb +
∫ qr

rb

pθb

ρ2[ p2
θb(

1
r 2

b
− 1

ρ2 )+ 2m(U (rb)−U (ρ))]
1
2

dρ,

ts(qr ) = tsb+
∫ qr

rb

m

[ p2
θb(

1
r 2

b
− 1

ρ2 )+ 2m(U (rb)−U (ρ))]
1
2

dρ. (13)

3.2. Exact Solution for an Air Spring

While the equations of motion for the unperturbed system are integrable in the formal
mathematical sense (13), the resulting elliptic integrals are almost as opaque to the kind
of parametric insight desired in our applications as Runge-Kutta simulations would be.
Indeed, for a general spring potential, the integrals given in (13) cannot be written in
terms of elementary functions.

Whittaker [44, §48] exhibits a small class of spring laws for which the central force
problem can be integrated in terms of elementary functions. One in particular,

UA(qr ) = k

2

(
1

q2
r

− 1

q2
rl

)
and DUA(qr ) = − k

q3
r

, (14)

offers the virtue of a “simple” closed-form solution while also providing a simplistic,
but not unreasonable, model of the compressed air spring that Raibert used in many of
his robots [22], [32], [39]. For this reason, throughout the remainder of the paper we will
refer to this spring as the Air Spring.

For this choice, the integrals of (13) can be written in terms of elementary functions as

pθ (qr ) = pθb,

pr (qr ) =
[
(p2

θb +mk)(q2
r − r 2

b)

q2
r r 2

b

] 1
2

,



Approximating the Stance Map of a 2-DOF Monoped Runner 545

qθ (qr ) = θb + pθb√
p2
θb +mk

arccot

[√
r 2

b

q2
r − r 2

b

]
,

ts(qr ) = tsb+mrb

√
q2

r r 2
b

p2
θb +mk

. (15)

In the introduction we briefly discussed the importance of the spring law. It is natural
to ask at this point whether such concern is justified. In other words, could we use the
closed-form Air Spring solution given in (15) as an approximant to the solution of the
integrated stance dynamics (13) for other spring laws?

This question is more than academic, since other spring laws appear prominently in
the running literature. For example, the familiar Hooke’s law spring is used extensively
by the biomechanists in their running studies [4], [5], [8], and it also accurately models
the springs used in Buehler’s running machines [15], [31].

In an attempt to address this question, we introduce two different spring models, a
SLIP Hooke’s Law Spring,

UH (qr ) = k

2
(rl − qr )

2 and DUH (qr ) = −k(rl − qr ), (16)

and a “Torsional Hooke’s Law” pulled back from the “knee” of the revolute-revolute leg
shown in Figure 8. The potential and force law for this spring, which are derived more
thoroughly in Appendix B, are given by

UT H K(qr ) = k

2

(
arccos

[
q2

r − l 2
1 − l 2

2

2l1l2

]
− arccos

[
q2

rl − l 2
1 − l 2

2

2l1l2

])2

and

DUT H K(qr ) = −2qr k
(arccos [

q2
r −l 2

1−l 2
2

2l1l2
] − arccos [

q2
rl−l 2

1−l 2
2

2l1l2
])√

4l 2
1l 2

2 − (q2
r − l 2

1 − l 2
2)

2
. (17)

To compare the Air Spring solution to those of the other springs, we numerically
integrate the unperturbed stance dynamics from bottom (pr = 0) to liftoff (qr = qrl ) for
a large number of initial (bottom) conditions for both of these Hooke’s law springs. Each
of the simulated results is compared to the solutions given by (15) for the same initial
conditions. For all the simulations shown in this paper we assume thatqrl = 1 andm= 1
and select the angle at bottom to be zero,θb = 0. The initial conditions are varied by
changing the leg length, angular momentum, and spring potential energy at bottom. The
data reported in Figure 3 arises from 1000 initial conditions7 selected from an equally

7 All simulations are run from the same set of initial conditions. We take as the initial conditionsθb = 0, prb = 0
(ensuring a symmetric stance) and 1000 different values of(rb, pθb,U (rb))selected from an equally spaced grid
of the parameter cube,rb ∈ [0.75,0.975]m, pθb ∈ [1.5,6.5] kg m2 rad/s, andU (rb) ∈ [0.25,6.25] kgm2/s2.
This set of initial conditions results in a variety of gaits characterized by (forUA, but similarly for UH

andUT H K ) ya ∈ [0.76,1.63] m, ẋa ∈ [1.57,9.20] m/s, andβ ∈ [0.02,0.45]. For Figures 3 and 4, which
represent the unperturbed setting, only 982 of the 1000 initial conditions are summarized in this plot. Any
initial conditions with low spring potential, large leg compression, and high angular velocity at bottom are
ignored (simultaneouslyU (rb) ≤ 11

12 kg m2/s2, rb ≤ 0.80 m, and pθb ≥ 29
6 kg m2 rad/s) because they

correspond to gaits which are “unrealistic” due to their simultaneously high velocities and high duty factors.
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Fig. 3. Errors in liftoff and apex parameters arising from
using the closed-form solution to the unperturbed stance dy-
namics for the Air Spring (15) as a functional approximant to
the unperturbed dynamics (13) for the Air Spring, the Hooke’s
law spring, and a torsional Hooke’s law spring at the knee of
a revolute-revolute leg.

spaced grid within the cube formed byrb ∈ [0.75,0.975]m, pθb ∈ [1.5,6.5] kgm2 rad/s,
andU (rb) ∈ [0.25,6.25] kgm2/s2 with θb = 0 rad. To make the comparisons as fair as
possible, the spring constant for each respective Hooke’s law spring is chosen to ensure
that the spring potential energies at bottom are equal (UA(rb) = UH (rb) = UT H K(rb)).
As expected, there are no errors inprl andpθ l , since we are considering the unperturbed
case where both energy and angular momentum are constant. However, even so, the
integrals forts andqθ l have maximum errors8 between 23.8% and 25.7% and mean errors
between 8.22% and 11.4%. Additionally, the apex variablesya and ẋa have maximum
errors between 2.53% and 6.22% and mean errors between 0.81% and 2.60%, while the
duty factor shows maximum errors between 23.7% and 25.5% and mean errors between
10.1% and 14.1%.

Whether the errors9 reported in Figure 3 are acceptable or not may depend on
the application of interest. For control applications, such as those discussed in Sec-

8 We report errors in terms of percent errors (PE), whereP E = 100
‖xtrue−xapprox‖2

‖xtrue‖2 . See Appendix E for

details.
9 These results are for the unperturbed dynamics. The perturbed dynamics remain nonintegrable even for the
Air Spring. Even so, simulation evidence suggests that using the “exact” solution for the Air Spring (obtained
by numerical integration) as an approximant to that of the other springs in the perturbed case yields slightly
worse results than those of Figure 3.
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tion 1.2, the addition of feedback correction may make the plant errors indicated in
Figure 3 acceptable. However, for purposes of spring law identification, these errors
may not be acceptable. Notice that in this case the errors inya and ẋa are reason-
ably small, but the duty factor has the highest mean errors. Since the comparison
between the springs assumes a fixed leg length, angular momentum, and spring po-
tential, these results suggest, loosely speaking, that the spring potential at bottom is a
primary factor in determining hopping height, the angular momentum at bottom is a
primary factor in determining forward speed, and the functional form of the spring is
instrumental in determining duty factor. Therefore to more accurately identify spring
laws in animal running, one would hope to have a better approximant for the duty
factor.

3.3. Approximate Solution for General Spring Law

In the introduction we have tried to motivate the utility of physically parametrized
closed-form approximations to the elliptic integrals (13), which arise from integrating
the unperturbed SLIP dynamics with a general spring law,U (qr ). For example, in control
applications [32], the spring potential itself acts as a control input, and therefore it is
important, if possible, to maintain the explicit appearance of the spring potential in the
solutions.

The mean value theorem (MVT) for integrals states that under reasonable assumptions
on f (x) there exists a mean value,ξx, such that∫ x

a
f (t)dt = f (ξx)(x − a). (18)

In this manner, we can formally write down a closed-form integral solution for the
unperturbed SLIP dynamics in which the spring law appears explicitly. Of course, the
MVT only guarantees the existence of the mean value,ξx. It provides no means for
computing it, and, in general, no exact method will be available. However, the strategy
is attractive and we focus our attention on the utility of a linear approximation to the
mean value function,ξx.

Specifically, in [38] we have shown

Theorem 1. Suppose f is continuous on(a,b] and g is integrable on(a,b) with
g(t) ≥ 0 for all t ∈ (a,b). Let x∈ (a,b]. If both

lim
t→a

f (t)− K

(t − a)r
lim
t→a

g(t)

(t − a)s

exist and are nonzero for some constant K , some nonzero r, and some s> −1 with
r + s> −1, then

1. there exists aξx ∈ (a, x] such that∫ x

a
f (t)g(t)dt = f (ξx)

∫ x

a
g(t)dt; (19)
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2. for any such choice ofξx,

lim
x→a

ξx − a

x − a
=
(

s+ 1

r + s+ 1

) 1
r

. (20)

A practical observation [38] follows immediately from this theorem.

Observation 1. If, motivated by (20), we approximateξx by

ξ̂x = a+
(

s+ 1

r + s+ 1

) 1
r

(x − a) for x near a, (21)

and replaceξx by ξ̂x in (19), we obtain an approximation scheme to the integral∫ x

a
f (t)g(t)dt ≈ f (ξ̂x)

∫ x

a
g(t)dt for x near a. (22)

For the case at hand, applying Theorem 1 and Observation 1, we find

pθ (qr ) = pθb,

pr (qr ) =
[

p2
θb

(
1

r 2
b

− 1

q2
r

)
+ 2m(U (rb)−U (qr ))

] 1
2

,

q̂θ (qr ) = pθb(qr − rb)

ξ̂2
r [ p2

θb(
1
r 2

b
− 1

ξ̂2
r
)+ 2m(U (rb)−U (ξ̂r ))]

1
2

,

t̂s(qr ) = m(qr − rb)

[ p2
θb(

1
r 2

b
− 1

ξ̂2
r
)+ 2m(U (rb)−U (ξ̂r ))]

1
2

, (23)

where under very reasonable assumptions on the spring potential (see Appendix A) we
have

ξ̂r = rb + 1

4
(qr − rb). (24)

Beyond yielding a good approximation whenqr is close torb, these approximations
are quite effective over a reasonably large portion of the parameter space. Figure 4 sum-
marizes simulation data7 for theUA, UH , andUT H K springs. In each case the maximum
percent error is less than 12% and the mean percent error is less than 2.7%. Comparing
with Figure 3, one sees that this Mean Value approach results in better approximants to
the Hooke’s Law cases (UH , UT H K ) than using the Air Spring solutions (15). In partic-
ular, the maximum errors ints andqθ l drop from more than 23% to less than 3.75%,
while the mean errors drop from more than 8.3% to less than 2.7%. Also the maximum
errors in duty factor,β, drop from more than 23% to less than 12% and the mean errors
from more than 10% to less than 2%.

4. “Integration” of the Perturbed Stance Dynamics

In the previous section, we “turned off” gravity during stance, introduced a good approx-
imation method for the elliptic integrals, and exhibited a closed-form bottom-to-apex
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Fig. 4. Errors in liftoff and apex parameters arising from
using mean-value inspired approximations of (23) as a func-
tional approximant to the unperturbed dynamics (13) for the
Air Spring, the Hooke’s Law Spring, and a Torsional Hooke’s
Law Spring at the knee of a revolute-revolute leg.

map. Our choice to ignore gravity during stance is not uncommon in the robotics lit-
erature [22], [27], [40], [43]. In these papers, this choice is made primarily to simplify
the analysis and relies upon the assumptions that the spring force dominates the grav-
itational force and that the angular momentum is nearly constant during stance. Under
such assumptions the unperturbed mapping derived in the last section should work well.

In order to test how well, we repeat the simulations of Figure 4, except in this case
we compare the results of the unperturbed MVT approximants (23) and (24) to the
simulation results of the perturbed system. The data, reported in Figure 5, arises from
1000 initial conditions10 selected from an equally spaced grid within the cube formed by
rb ∈ [0.75,0.975] m, pθb ∈ [1.5,6.5] kg m2 rad/s, andU (rb) ∈ [2.5,7.25] kg m2/s2

with θb = 0 rad.
In this case the maximum errors are as high as 60% and the mean errors are as high

as 20%. These are considerably worse than the results shown in Figure 4, demonstrating
that the effects of gravity cannot be ignored in general locomotion. In other words, the
general assumptions made to justify ignoring gravity in stance are not valid over a large
range of running gaits.

10 All simulations are run from the same set of initial conditions. We take as the initial conditionsθb = 0,
prb = 0 (ensuring a symmetric stance), and 1000 different values of(rb, pθb,U (rb)) selected from an
equally spaced grid of the parameter cube,rb ∈ [0.75,0.975], pθb ∈ [1.5,6.5], andU (rb) ∈ [2.5,7.5].
These initial conditions produce a variety of gaits characterized by (forUA, but similarly forUH andUT H K )
ya ∈ [0.76,1.73]m, ẋa ∈ [1.58,9.34]m/s, andβ ∈ [0.02,0.46].
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Fig. 5. Errors in liftoff and apex parameters in the approx-
imate mappings of the unperturbed system (23) when com-
pared to the “true” simulated values of the perturbed sys-
tem. Errors are computed for three springs introduced in Sec-
tion 3.2, i.e. the compressed air spring,UA(qr ), the Hooke’s
Law Spring,UH (qr ), and the effective spring arising from a
Torsional Hooke’s Law Spring at the knee,UT H K(qr ).

This motivates the need for a reasoned approach to modify the unperturbed mapping
to account for the presence of gravity.

4.1. “Exact” Gravity Correction

The presence of the gravitational perturbation preserves total energy as a constant of
motion, but not angular momentum. Therefore the perturbed dynamics can be rewritten
as the following set of three coupled nonlinear differential equations,

dts
dqr

(qr ,qθ , pθ ) = m

pr (qr ,qθ , pθ )
,

dqθ
dqr

(qr ,qθ , pθ ) = pθ
q2

r pr (qr ,qθ , pθ )
, (25)

dpθ
dqr

(qr ,qθ , pθ ) = m2gqr sin(qθ )

pr (qr ,qθ , pθ )
,

with the additional constraint imposed by constant energy:pr solves the implicit function
H(qr ,qθ , pr , pθ ) = H0 that we denote by

pr (qr ,qθ , pθ , H0) = H−1(qr ,qθ , pθ , H0). (26)
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For ease of exposition, introduce the following notation:y = [ts,qθ , pθ ]T andz =
H−1(qr , y). Notice that the explicit dependence ofH−1 on H0 has been dropped for
simplicity. Now, we can express the system of (25) and (26) as

y′ = fp(qr , y, z), (27)

z = H−1(qr , y). (28)

4.2. Integration of the Perturbed System Using Unperturbed Solutions

As observed earlier, this system cannot be solved in general. However, we do have a
solution to the unperturbed system given in (13). Let these solutions be denoted byy0(qr )

andz0(qr ) = H−1(qr , y0).
Since these unperturbed solutions are functions solely ofqr , our strategy is to substitute

these approximations into the right-hand side of (27) fory andz. The result is a set of
separable differential equations which can easily be written as integrals in terms ofqr .
This observation motivates the following iteration procedure,11 where the unperturbed
solution is used to generate iterates that converge to the solution of the perturbed system,

y(n+1)(qr ) = yb +
∫ qr

rb

fp(ρ, yn(ρ), H−1(ρ, yn(ρ)))dρ, (29)

z(n+1)(qr ) = H−1(qr , y(n+1)(qr )). (30)

4.3. Approximate Integration of the Perturbed System: An Iterative Approach

As in the unperturbed case, we can approximate the integrals of interest using Theorem 1
and Observation 1, obtaininĝy0(qr ) andẑ0(qr ) = H−1(qr , ŷ0) as shown in (23).

Using these solutions and again applying the MVT result of Section 3.3, we can write
the iteration as

ŷ(n+1)(qr ) = yb + fp(ξ̂r , ŷn(ξ̂r ), H−1(ξ̂r , ŷn(ξ̂r )))(qr − rb), (31)

ẑ(n+1)(qr ) = H−1(qr , ŷ(n+1)(qr )). (32)

Expressed in all its detail, the procedure appears as

t̂ s(n+1)(qr ) = tsb+ m

H−1
pert(ξ̂r , q̂θ n(ξ̂r ), p̂θ n(ξ̂r ))

(qr − rb),

q̂θ (n+1)(qr ) = θb + p̂θ n(ξ̂r )

ξ̂2
r H−1

pert(ξ̂r , q̂θ n(ξ̂r ), p̂θ n(ξ̂r ))
(qr − rb),

p̂θ (n+1)(qr ) = pθb + m2gξ̂r sin(q̂θ n(ξ̂r ))

H−1
pert(ξ̂r , q̂θ n(ξ̂r ), p̂θ n(ξ̂r ))

(qr − rb),

11 Note that the previous iterate is used to constructy(n+1), but the current iterate is used to constructz(n+1).
This choice is made because it preserves constant energy for all iterates. See Appendix D for the details.
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p̂r (n+1)(qr ) =
[

2m
[
(U (rb)−U (qr ))+mg(rb cos(θb)− qr cos(q̂θ (n+1)(qr )))

]
+
(

p2
θb

r 2
b

− p̂θ
2
(n+1)(qr )

q2
r

)] 1
2

, (33)

where in each case we findξ̂r = rb + 1
4(qr − rb) (see Appendix A).

This iteration method for generating the perturbed solution is strongly reminiscent of
Picard iterations, which are used to prove the existence and uniqueness of solutions of
differential equations. This relation to Picard iterates suggests that the iteration procedure
of (31) and (32) would converge to the correct solution if the exact mean value were
known. Recall that the mean value approximations introduced in Section 3.3 are “exact”
asqr approachesrb. It can be shown (see Appendix C) that under appropriate assumptions
the combination of the iteration steps and MVT approximations converges to the solution
of the perturbed dynamics forqr close torb.

There remains one difficulty. The result presented in Appendix C assumes the vec-
tor field is continuous and Lipschitz. While the original Hamiltonian system meets
all required continuity and Lipschitz conditions, the “quadrature” system, (25) and
(26), set up to integrate this Hamiltonian system does not—pr is in the denominator
of equations (25) and, by definition,pr = 0 at the bottom point (the selected ini-
tial condition). Therefore, these equations are neither continuous nor Lipschitz on a
closed region containing the initial conditions of interest. However, 1/pr “blows up”
in a particularly nice manner asqr goes torb, that is, in an integrable fashion (as
1/(qr − rb)

1
2 ). In fact, it is exactly this property that allows the application of Theo-

rem 1 to this problem. This suggests that a similar proof may exist for the existence
and uniqueness properties of this system. We are currently pursuing such an argu-
ment.

4.4. Rate of Convergence Studies

From the perspective of engineering applications, we are concerned with finding a “good”
approximate plant model. In other words, we would like to know how many iterations
it takes to get “close enough” to the actual solution over a sufficiently large region of
interest.12 In traditional Picard iterations, it is possible to place a bound on the error
between the solution and a particular iterate. However, in our case, because of the errors
introduced by violating theqr close torb assumption, we resort to simulation evidence
as in Figure 6. In these simulations, the zeroth approximant is given by the approxi-
mate solutions to the unperturbed system (23), while first and second approximants are
generated using the iteration procedure of (33). In both cases the mean value is given
by (24). These results are compared to simulation results of the perturbed system for
the same set of initial conditions10 considered in Figure 5. Notice that the plots show a
progression where both the maximum and mean errors are reduced for each increasing

12 If the iteration scheme presented in (31) and (32) does not perform sufficiently for a particular application,
two alternative approximate solutions for the perturbed SLIP are presented in Appendix F.
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Fig. 6. Errors in liftoff and apex parameters in the approximate iterates of (33) when compared
to the “true” simulated values of the perturbed system: (left) zeroth iterate (unperturbed solution);
(middle) first iterate; (right) second iterate. Errors are computed for three springs introduced in
Section 3.2, i.e. the compressed air spring,UA(qr ), the Hooke’s Law Spring,UH (qr ), and the
effective spring arising from a Torsional Hooke’s Law Spring at the knee,UT H K(qr ).

iterate. The largest maximum errors proceed from 60% for the zeroth iterate to 25% for
the first iterate to 10% for the second iterate. Similarly the largest mean errors decrease
from 20% to 7% to 3.5% as the iterates increase.

The goal of this research is to develop plant models valid over a large range of
running and hopping gaits. For this reason, it is important to test the approximation
for a sufficiently large set of bottom initial conditions. Of course, what constitutes
such a set is somewhat difficult to determine, since the meaning of the bottom coor-
dinates is not easily interpreted in our experience. The apex coordinate system, which
is specified in terms of height, velocity, and duty factor, is a much more natural set
of coordinates for interpreting gaits. Figure 7(a) is a scatter plot of the 1000 initial
bottom conditions used to generate the data of Figure 6. The resulting set of apex co-
ordinates generated from this set of bottom initial coordinates is shown in the scat-
ter plot of Figure 7(b). It is seen that the initial bottom conditions provide a rich
set of apex gaits which, when interpreted in terms of a human’s ability, include hop-
ping heights which range from barely getting off the ground13 to Michael Jordan–like
jumping, ya ∈ [0.77,1.74]m; forward velocities which include the the slowest run-
ner as well as those with near world-class speed,ẋa ∈ [1.56,9.26]m/s; and duty fac-
tors which range from almost never on the ground to almost always on the ground,
β ∈ [0.01,0.41].

5. Conclusion

Motivated by the need for a “plant model” for robot and animal running, we propose a
relatively simple means of approximating the integral maps of a class of nonintegrable
Hamiltonian systems. By appeal to an appropriate generalization of the mean value
theorem [38], the approximants involve closed-form expressions read directly from the

13 Apex heights less than the nominal leg length, 1m in these simulations, would require the leg to be retracted
in order to swing into position for the next touchdown.
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Fig. 7. (a) Top: Scatter Plot of the set of bottom initial conditions used to calculate the errors of the
approximation procedures presented in this section. Shown are 1000 different initial conditions
(rb, pθb,U (rb)) selected from an equally spaced grid of the parameter cube,rb ∈ [0.75,0.975]m,
pθb ∈ [1.5,6.5] kg m2 rad/s, andU (rb) ∈ [2.5,7.5]kg m2/s2. (b) Bottom: Scatter Plot of the set
of apex final conditions arising from integrating the set of bottom initial conditions through the
SLIP dynamics with a Hooke’s law spring. The results are gaits which include hopping heights
in the rangeya ∈ [0.77,1.74]m, forward velocities in the rangėxa ∈ [1.56,9.26]m/s, and duty
factors in the rangeβ ∈ [0.01,0.41]. Simulations were run assuming a leg length of 1m and a
mass of 1kg.

Hamiltonian vector field. By casting the method as an iterative procedure, we gain
reasonable control over the inevitable tradeoff between accuracy and simplicity.

Although inspired by our specific interest in the stance map arising from a simple
model of legged locomotion, the procedure can be applied to any Hamiltonian system
expressed as a sum of an integrable along with a (not necessarily small) perturbation
term. Thus we have some reason to hope that the method reported here may generalize
to a larger class of problems. Because the approximants involve exact linearization of
the mean value function at one end point of the integral, their accuracy falls off as the
desired interval of integration increases. However, we have found them quite useful in
this running work because human-sized bipeds have a single-leg stance phase which is
quite short. Conceivably, in applications where longer intervals of integration are critical,
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generalizations of this idea involving either higher order estimates of the mean value
function or subdivisions of the integration range into shorter constituent intervals may
work effectively.

Appendix A. Derivation of the Mean Value Function Approximant, ξ̂x

Begin by considering thets(qr ) integral for the perturbed case. In (19) choose

gts(qr ) = 1

and

fts(qr ) = m[(
p2
θb

r 2
b
− p2

θ

q2
r

)
+ 2m((U (rb)−U (qr ))+mg(rb cos(θb)− qr cos(qθ )))

] 1
2

.

In this casests = 0. ChooseK = 0. Then by Theorem 1 we seekrts such that the
following limit exists and is nonzero:

lim
qr→rb

fts(qr )

(qr−rb)
rts
= lim

qr→rb

m(qr − rb)
(−rts− 1

2 )
[(

p2
θb

r 2
b

− p2
θ

q2
r

)
+2m((U (rb)−U (qr ))+mg(rb cos(θb)−qr cos(qθ )))

]
(qr−rb)


1
2

. (34)

Selectrts = − 1
2. The numerator of (34) simplifies tom, and the question reduces to

whether the following limit exists and is nonzero,

lim
qr→rb

[(
p2
θb

r 2
b
− p2

θ

q2
r

)
+ 2m((U (rb)−U (qr ))+mg(rb cos(θb)− qr cos(qθ )))

]
(qr − rb)

. (35)

Straightforward evaluation of this limit gives00. Applying L’Hospital’s rule and sub-
stituting the results of equation (25), we find

lim
qr→rb

[(
p2
θb

r 2
b
− p2

θ

q2
r

)
+ 2m((U (rb)−U (qr ))+mg(rb cos(θb)− qr cos(qθ )))

]
(qr − rb)

= lim
qr→rb

[
2p2

θ

q3
r

− 2pθ p′θ
q2

r

− 2mDU(qr )+ 2m2g(qr q
′
θ sin(qθ )− cos(qθ ))

]
= lim

qr→rb

[
2p2

θ

q3
r

− 2pθm2g sin(qθ )

qr pr
− 2mDU(qr )+ 2m2g

(
pθ

qr pr
sin(qθ )− cos(qθ )

)]
= lim

qr→rb

[
2p2

θ

q3
r

− 2mDU(qr )− 2m2g cos(qθ )

]
. (36)

This limit exists and is nonzero under very reasonable assumptions onU (qr ), namely
that DU (rb) exists and

DU (rb) 6= p2
θb

mr3
b

−mgcosθb. (37)
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In this case, substitutingrts andsts into (21) yields (24). The result is shown similarly
for qθ (qr ) and pθ (qr ).

Note from (4) and (5) that the exceptionDU (rb) = p2
θb

mr3
b
−mgcosθb implies ṗr (rb) =

0. Recall also thatrb is defined such thatpr (rb) = 0. For the unperturbed case (g = 0)
in which angular momentum is constant, it can be shown that this condition implies
q̇r (qr ) = 0. In other words, for the unperturbed case, the physical interpretation of this
exception is that the SLIP is acting as a stiff pendulum. That is, the leg is spinning about
the “toe” at a constant angular velocity with no change in leg length.

The physical interpretation is not so clear in the perturbed case. However, one can
easily see that the set of bottom conditions for which (37) is violated will be a “thin” set
and therefore unlikely to occur.

Appendix B. SLSK Leg

While bearing strong resemblance to the physical construction of many running robots
[32], [15], the SLIP leg bears little resemblance to animal legs, since they generally have
revolute, not prismatic, joints.

To begin to make the connection to more biologically plausible models, we introduce
the simplest physical correlate, the revolute-revolute leg with a spring at the knee, shown
in Figure 8. This leg will be referred to as the SLSK (Spring-Loaded Small Knee) leg.
In the case of negligible leg (knee) mass, there is a change of coordinates—an isometry,
in fact—between the SLIP and SLSK leg motions.14

As Figure 8 suggests, for any SLSK spring, there is a well-defined SLIP spring and vice
versa (the two are related, of course, through the transposed jacobian of the isometry),
such that SLSK motion from any initial condition can be read off the motion of the
SLIP mapped back through the isometry (assuming appropriately chosen SLIP initial
conditions). Since all properties of interest are invariant under change of coordinates,
and since the isometry can be written in closed form, it follows that we can derive the
same insights from either leg model.

B.1. SLSK/SLIP Isometry

Because each of the coordinate systems (SLSK, SLIP) may be useful, we introduce the
following maps between them,b= g(q) = g(q), where

g(q) =
[

qr sinqθ
qr cosqθ

]
(38)

and

g(q) =
[
l1 cosqθ1

+ l2 cos(qθ1
+ qθ2

)

l1 sinqθ1
+ l2 sin(qθ1

+ qθ2
)

]
. (39)

14 To be exact, the isometry breaks at the critical points (straight leg and doubled over leg), reflecting the fact
that the torus is a double cover of the punctured disk—see Appendix B.1 for details. It should be intuitively
clear, however, that monoped legs will not operate anywhere near these critical points.
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Fig. 8. The spring-loaded
inverted pendulum (SLIP)
monoped is dynamically
equivalent to the SLSK mono-
ped when there is no mass as
the knee (m0 = 0).

Let the pair(X ,MX ) represent the spaceX endowed with the metric,MX , which
defines a norm (the kinetic energy) on the tangent space at each point,TXp. We will
representMX as a matrix, but it should be understood that forxp ∈ X , the metric is
applied to the tangent vector,ẋp ∈ TXp, in the following manner,̇xT

p MX ẋp/2.
In this work, we will find it advantageous to consider the metric spaces,(B,MB),

(Q,MQ), and(Q,MQ), where

MB = m

[
1 0
0 1

]
, (40)

MQ = mDqgT Dqg

= m

[
1 0
0 q2

r

]
, (41)

and

MQ = mDqgT Dqg (42)

= m

[
l 2
1 + l 2

2 + 2l1l2 cosqθ2
l 2
2 + l1l2 cosqθ2

l 2
2 + l1l2 cosqθ2

l 2
2

]
.

By construction the mapsg: (Q,MQ) 7→ (B,MB) andg: (Q,MQ) 7→ (B,MB) are

isometries. Therefore the mapg−1 ◦ g: (Q,MQ) 7→ (Q,MQ),

h := g−1 ◦ g =


√

l 2
1 + l 2

2 + 2l1l2 cosqθ2

−qθ1
+ arccos

[
l2 sinqθ2√

l 2
1+l 2

2+2l1l2 cosqθ2

] , (43)
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is an isometry.
In the case that all the mass is concentrated at the hip (m0 = 0), the metrics introduced

above are exactly the kinetic energy. In this case, the Lagrangian vector field correspond-
ing to the SLSK dynamics,Lq, can then be given in terms of the Lagrangian vector field
corresponding to the SLIP dynamics,Lq, and the change of coordinates,h, as

Lq = D(T h−1) ◦ Lq ◦ T h, (44)

whereT h denotes the tangent map ofh.

B.2. Torsional Spring at the Knee of SLSK Leg

Consider a Torsional Hooke’s Law Spring in the knee of the SLSK model given by
UT H(qθ2

) = k
2(qθ2

− qθ2l )
2. Consequently,

DUT H(qθ2
) = k(qθ2

− qθ2l ), (45)

where

qθ2l = arccos

[
q2

rl − l 2
1 − l 2

2

2l1l2

]
.

The equivalent SLIP spring law is given by

DUT H K = [1,0]Dqh−1T [0, DUT H ◦ h−1]T

= −2qr k

(
arccos

[
q2

r −l 2
1−l 2

2
2l1l2

]
− arccos

[
q2

rl−l 2
1−l 2

2
2l1l2

])
√

4l 2
1l 2

2 − (q2
r − l 2

1 − l 2
2)

2
. (46)

The spring potential in this case is given by

UT H K = UT H ◦ h−1

= k

2

(
arccos

[
q2

r − l 2
1 − l 2

2

2l1l2

]
− arccos

[
q2

rl − l 2
1 − l 2

2

2l1l2

])2

. (47)

Appendix C. Picard Iterations

C.1. Existence and Uniqueness Theorems

For studying the existence and uniqueness of differential equations, one of the simplest
results is the Picard-Lindel¨of Theorem [18], [41] shown below. There are, of course, other
theorems that can be used, but Picard-Lindel¨of has the additional advantage of providing
in its proof a method for constructing a solution to the equations—the successive Picard
iterations.

Theorem 2. Let f(x,y) be continuous and Lipschitz on R: x0 ≤ x ≤ x0+a, |y−y0| ≤ b.
There exists a number h> 0 with the property that the initial value problem

y′ = f (x, y) y(x0) = y0 (48)
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has one and only one solution, y= y(x), on the interval|x − x0| ≤ h.

This theorem is proved by showing that the sequence of functions,yn(x), defined by

y0(x) = y0,

yn(x) = y0+
∫ x

x0

f (t, yn−1(t))dt, (49)

converges to a functiony(x), which is a continuous solution of (48) and furthermore,
the only continuous solution.

Note 1. The proof will also go through for any initial iterate,y0(x), which is continuous
on R. In our applications, we use the solution to the unperturbed system as the initial
iterate.

C.2. Existence and Uniqueness of Mean Value Approximant for Perturbed System

In this section, we demonstrate that the approximate Picard iterations (where each Picard
iterate is evaluated using the mean value approximations of Section 3.3) converge to a
solution ŷ which is the unique continuous solution to (50) in the limit asx approaches
x0. In our applications, the approximant to the mean value will be the same for each
iterate. We will demonstrate the result in this case.

Theorem 3. Let fu(x, y) and fp(x, y) be continuous on R: x0 ≤ x ≤ x0 + a,
|y − y0| ≤ b, and furthermore let fp(x, y) be Lipschitz on R. There exists a number
h > 0 with the property that the initial value problem

y′ = fp(x, y) y(x0) = y0 (50)

has one and only one solution, y= y(x), on the interval|x − x0| ≤ h. Moreover, the
sequence of functions

ŷ0(x) = y0+ fu(ξ̂x, y0)(x − x0),

ŷn(x) = y0+ fp(ξ̂x, ŷn−1(ξ̂x))(x − x0), (51)

converges to y(x) as x approaches x0.

Proof. Since bothfu and fp are continuous onR, a closed and bounded set, there exists
an M such that both

| fu| ≤ M and | fp| ≤ M. (52)

Furthermore, sincefp is Lipschitz onR, there exists aK such that

| fp(x, y1)− fp(x, y2)| ≤ K (|y1− y2|) (53)

for all (x, y1) and(x, y2) in R.
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Now, selecth such that both

K h < 1 (54)

and

R′ ⊂ R where R′ = {(x, y)||x − x0| ≤ h, |y− y0| ≤ Mh}. (55)

To prove this theorem, it is necessary to show (i) the solutiony(x) to (50) exists and is
unique, (ii) the sequence of functionsŷn converges uniformly to a function̂y, and (iii) ŷ
converges toy(x) for x close tox0.

In this case, (i) follows from traditional Picard-Lindel¨of results [18], [41]. Now we
turn our attention to (ii).

Claim 1. Each iteratêyn lies in R′.

By definition(x0, y0) ⊂ R′. Additionally, if (x, y0) ⊂ R′, then(ξ̂x, y0) ⊂ R′.
As defined,ŷ0(x) = y0+ fu(ξ̂x, y0)(x − x0). It follows that

|ŷ0(x)− y0| = | fu(ξ̂x, y0)(x − x0)|
= | fu(ξ̂x, y0)||x − x0|
≤ Mh. (56)

So, ŷ0(x) ⊂ R′.
Now assumêyn−1(x) ⊂ R′.
Then, sincêyn(x) = y0+ fp(ξ̂x, ŷn−1(ξ̂x))(x − x0), we have

|ŷn(x)− y0| = | fp(ξ̂x, ŷn−1)(x − x0)|
= | fp(ξ̂x, ŷn−1)||x − x0|
≤ Mh. (57)

It follows that ŷn(x) ⊂ R′. Therefore, by induction Claim 1 is true.
Showing that the sequenceŷn(x) converges is identical to showing the convergence

of the sum

6y = ŷ0(x)+
∞∑

n=1

[ ŷn(x)− ŷn−1(x)], (58)

since by definition thei th partial sum is equal tôyi (x).
Since fu and fp are both continuous onR, it follows that ŷ0(x) and ŷ1(x) are both

continuous onR, and consequently thatŷ1(x)− ŷ0(x) is continuous onR′. SinceR′ is
a closed and bounded set, there exists ana such that

a = max
x∈R′
|ŷ1(x)− ŷ0(x)|. (59)

Claim 2. For x ∈ R′, |ŷn+1(x)− ŷn(x)| ≤ a(K h)n.
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Clearly by definition ofa, this is true forn = 0.
Assume that|ŷn(x)− ŷn−1(x)| ≤ a(K h)(n−1) and consider|ŷn+1(x)− ŷn(x)|,

|ŷn+1(x)− ŷn(x)| = |( fp(ξ̂x, ŷn(ξ̂x))− fp(ξ̂x, ŷn−1(ξ̂x)))(x − x0)|
= | fp(ξ̂x, ŷn(ξ̂x))− fp(ξ̂x, ŷn−1(ξ̂x))||(x − x0)|
≤ K |ŷn(ξ̂x)− ŷn−1(ξ̂x)||(x − x0)|
≤ K (a(K h)n−1)h

≤ a(K h)n. (60)

Thus, Claim 2 is shown by induction.
Each term in the series6y is less than or equal to each corresponding term in the

series

|max
x∈R′

ŷ0(x)| +
∞∑

n=1

a(K h)n−1, (61)

which converges by assumption (54). Consequently,6y converges uniformly to a func-
tion ŷ(x) [35]. It follows by definition of6y that the sequence of functionŝyn(x)
converges uniformly tôy(x), proving (ii).

It remains to show (iii). We will demonstrate this by showing thatŷ(x) is the unique
continuous solution to (50) asx approachesx0. Equivalently, this can be stated as

lim
x→x0

(
ŷ(x)− y0−

∫ x

x0

fp(t, ŷ(t))dt

)
= 0. (62)

By definition

ŷn(x)− y0− fp(ξ̂x, yn−1(ξ̂x))(x − x0) = 0. (63)

Therefore,

ŷ(x)− y0−
∫ x

x0

fp(t, ŷ(t))dt = ŷ(x)− ŷn(x)+ fp(ξ̂x, yn−1(ξ̂x))(x − x0)

−
∫ x

x0

fp(t, ŷ(t))dt. (64)

Letting the mean value offp be given byξx, we have

ŷ(x)− y0−
∫ x

x0

fp(t, ŷ(t))dt = ŷ(x)− ŷn(x)

+ ( fp(ξ̂x, ŷn−1(ξ̂x))− fp(ξx, ŷ(ξx)))(x−x0). (65)

Taking the absolute value on each side and using the triangle inequality, we find∣∣∣∣ŷ(x)− y0−
∫ x

x0

fp(t, ŷ(t))dt

∣∣∣∣
≤ |ŷ(x)− ŷn(x)| + | fp(ξ̂x, ŷn−1(ξ̂x))− fp(ξx, ŷ(ξx))||x − x0|
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≤ |ŷ(x)− ŷn(x)| + | fp(ξ̂x, ŷn−1(ξ̂x))− fp(ξ̂x, ŷ(ξ̂x))||x − x0|
+ | fp(ξ̂x, ŷ(ξ̂x))− fp(ξx, ŷ(ξx))||x − x0|
≤ |ŷ(x)− ŷn(x)| + K |ŷn−1(ξ̂x)− ŷ(ξ̂x)||x − x0|
+ | fp(ξ̂x, ŷ(ξ̂x))− fp(ξx, ŷ(ξx))||x − x0|. (66)

By uniform convergence, the first two terms can be chosen arbitrarily small by simply
selectingn large enough. The last term represents the error between the exact integral
and its mean value approximant. By Theorem 1 it can also be made arbitrarily small by
letting x approachx0. Therefore, the right-hand side and, consequently, the left-hand
side go to zero asn grows large andx becomes sufficiently close tox0, implying that
ŷ(x) is the solution to (50) in the limit.

Appendix D. Iteration Order—Does It Matter?

Since this iteration procedure is being used to “solve” a Hamiltonian system, it is desirable
for each iteration step to preserve the constant of motion,Ḣ = 0.

Consider the general Hamiltonian system,H(y, z), wherey andz represent a partic-
ular partition of the state. SinceH is constant, assumeH(y, z) = E0. Let z = H−1(y)
be defined such thatH(y, H−1(y)) = E0. Then clearlyd H(y,H−1(y))

dt = 0.
Consider the iterative approach,

y(n+1) = y0+
∫ t

t0

f (yn, zn)dτ,

z(n+1) = H−1(y(n+1)). (67)

In this case the energy of the(n+ 1)th iterate is given by

H(n+1) = H(y(n+1), z(n+1))

= H(y(n+1), H−1(y(n+1)))

= E0. (68)

Hence the iteration scheme given in (67), in which the new iterate fory is formed using
the old iterates fory andz and the new iterate forz is formed using the new iterate ofy,
is conservative.

However, the following iteration scheme,

y(n+1) = y0+
∫ t

t0

f (yn, zn)dτ,

z(n+1) = H−1(yn), (69)

in which each iterate is defined using only the previous iterate, is not conservative; that
is, each iterate does not maintain the Hamiltonian property,Ḣ = 0. In particular, the
energy of the(n+ 1)th iterate is given by

H(n+1) = H(y(n+1), z(n+1))

= H(y(n+1), H−1(yn)), (70)

which in general will not be equal toE0.



Approximating the Stance Map of a 2-DOF Monoped Runner 563

The above derivation suggests that the key determinant of the conservative nature of
the iteration procedure is whether any old iterates are used in the construction ofz(n+1).
If so, the iteration scheme is not conservative.

The “accelerated” iteration scheme (74) treats each iteration in a sequential manner
and uses the most recent approximant in each successive step of the current iterate. By
assigningp̂r n(qr ) = H−1

pert(qr , q̂θ (n−1)(qr ), p̂θ n(qr )), it violates the principle discussed
above, implying thatḢ 6= 0. Nevertheless, this accelerated approach may prove useful
because it was found to produce better mean errors after one iteration than the other
approaches presented in Appendix F.

Appendix E. Approximation Error Data Collection Process

This appendix details the simulation procedure used to obtain the data presented in
Figures 6 and 9. All simulations are run in Mathematica and are done for the same set
of initial conditions.

For these figures, initial conditions are taken in bottom coordinates and are selected
to guarantee a symmetric stance,θb = 0, prb = 0. It should be noted that the restriction
to a symmetric stance is for convenience and is not required for the approximation
strategy presented in Section 4. In this work, initial conditions are selected from a
cube of the formrb ∈ [0.75,0.975] m, pθb ∈ [1.5,6.5] kg m2 rad/s, andU (rb) ∈
[2.5,7.5] kg m2/s2 for the perturbed case.15 To explore this cube, ten equally spaced
points in each interval are selected, yielding the 1000 point grid of initial conditions
shown in Figure 7(a).

The SLIP stance dynamics are numerically integrated using Mathematica’s NDSolve
routine condition. In each case, the liftoff condition is chosen asqrl = 1m, and the time
at which this occurs is obtained numerically using the Mathematica’s FindRoot routine.
Various liftoff (time, angle, radial and angular momentum) and apex (hopping height,
velocity, and duty factor) parameters are read off from these numerical solutions and
compared to their appropriate counterpart generated using the approximation method of
Section 4. The comparison is undertaken in terms of the percent error (PE), shown here
for the case of the apex hopping height,

P E = 100
‖ya − ŷa‖2
‖ya‖2 . (71)

After computing these errors for each initial condition, the mean and maximum
percent errors are calculated as shown below and reported in the figures.

MeanP E= 1

N

N∑
i=1

P Ei (72)

and

MaxP E= max
N

P Ei . (73)

15 For the unperturbed case, the cube of initial conditions is selected asrb ∈ [0.75,0.975] m, pθb ∈
[1.5,6.5] kg m2 rad/s, andU (rb) ∈ [0.25,6.25] kg m2/s2.
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Appendix F. Alternate “Simple” Solutions

For applications it will be desirable to generate sufficiently good approximants in a min-
imum number of steps, since each increasing iterate increases in functional complexity.
A larger number of iterates may be acceptable for spring identification because it pri-
marily involves evaluation of the functions and their derivatives. Since the iterates are
constructed by a number of function compositions, both the iterates and the derivatives
will have a reasonable amount of structure and will be “easy” to evaluate numerically.

For purposes of control, where parametric insight is necessary to achieve the de-
sired control objectives, more than one iterate may not be feasible. In addition to being
tractable analytically, it is also required that the iterate give “sufficiently” small errors.
In this light, it may prove useful, for applications purposes, to generate a first iterate
which is “better” than (33). We propose two alternative solutions. One is “better” in
that is generates smaller mean errors, and the other is better in that it is analytically
simpler.

The first approach is an “accelerated” iteration method. It is motivated by a consid-
eration of the effects of reintroducing gravity during stance. There are two major effects
of the gravitational perturbation during stance. The first is that angular momentum is no
longer constant. The second is that while total energy is still constant, its functional form
changes fromHunpert to Hpert.

“Accelerated” Iterate. The idea in the accelerated iteration is to first account for the
presence of gravity by modifyingpθ andpr and then use these solutions to generateqθ and
ts. This strategy is shown in (74). We begin by correctingpθ . That is, we first generate the
iterate p̂θ 1 using the unperturbed solution,q̂θ 0(qr ) and p̂r 0(qr ) = H−1

unpert(qr , p̂θ 0(qr )).
Then this updated approximant,p̂θ 1, along with the old approximant for̂qθ 0(qr ) is used
to adjust the total energy bŷpr 1(qr ) = H−1

pert(qr , q̂θ 0(qr ) p̂θ 1(qr )). Having adjustedpr

andpθ to account for gravity, we use these solutions to generate thet̂ s1(qr ) andq̂θ 1(qr )

iterates, resulting in

p̂θ 1(qr ) = pθb + m2gξ̂r sin(q̂θ 0(ξ̂r ))

H−1
unpert(ξ̂r , p̂θ 0(ξ̂r ))

(qr − rb),

p̂r 1(qr ) = H−1
pert(qr , q̂θ 0(qr ), p̂θ 1(qr ))

=
[

2m
[
(U (rb)−U (qr ))+mg(rb cos(θb)− qr cos(q̂θ 0(qr )))

]
+
(

p2
θb

r 2
b

− p̂θ
2
1(qr )

q2
r

)] 1
2

,

t̂ s1(qr ) = tsb+ m

p̂r 1(ξ̂r )
(qr − rb),

q̂θ 1(qr ) = θb + pθ 1(ξ̂r )

ξ̂2
r p̂r 1(ξ̂r )

(qr − rb). (74)

We call this approach “accelerated” because the most recent updates forp̂θ 1 and p̂r 1
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are used in the generation of the other iterates. This has the disadvantage of not preserving
energy, since the updatêpr 1(qr ) is constructed usinĝpθ 1 andq̂θ 0 (see Appendix D).

Linearized Perturbation. The second approach is not an iteration scheme, but rather
the solution to a problem somewhere between the perturbed and unperturbed solution.
In this solution we linearize the gravitational perturbation aboutqθ = 0. Then the
Hamiltonian becomes

Hmod= Hunpert+ Hlin, (75)

where

Hunpert= 1

2m

(
p2

r +
p2
θ

q2
r

)
+U (qr ) and Hlin = mgqr .

Then the vector field,XHmod, arising from the Hamiltonian,Hmod, is given by
q̇r

q̇θ
ṗr

ṗθ

 = XHmod(q, p) =


pr

m
pθ

mq2
r

p2
θ

mq3
r
− DU (qr )−mg

0

 . (76)

Notice that these also are the dynamics of a central force problem, albeit slightly
different from those in (4). As such, we can write down the integrals and apply the MVT
as before. The results are

pθ (qr ) = pθb,

pr (qr ) =
[

p2
θb

(
1

r 2
b

− 1

q2
r

)
+ 2m((U (rb)−U (qr ))−mg(qr − rb))

] 1
2

,

q̂θ (qr ) = pθb(qr − rb)

ξ̂2
r [ p2

θb(
1
r 2

b
− 1

ξ̂2
r
)+ 2m((U (rb)−U (ξ̂r ))−mg(ξ̂r − rb))]

1
2

,

t̂ s(qr ) = m(qr − rb)

[ p2
θb(

1
r 2

b
− 1

ξ̂2
r
)+ 2m((U (rb)−U (ξ̂r ))−mg(ξ̂r − rb))]

1
2

. (77)

This approximate solution is the simplest—it is not even an iterate, but rather the
solution to a modified central force problem. However, this solution is possible only
because of constant angular momentum in the central force problem. Hence is it farther
from the physical reality of the perturbed problem than the iterations of (33) and (74)
which account for changes in angular momentum.

Figure 9 shows the errors arising from these three different “simple” solutions.10

The data in this figure reveals no clear cut winner—there seems to be a tradeoff in
performance between certain parameters. For example, both the accelerated and the
linearized perturbation do better than the unaccelerated iterate forts, qθ , ya, andβ while
doing worse forpr , pθ , andẋa. Even so, the accelerated iterate appears to do better on
average. That is, while some of the maximum errors may be higher, the mean errors are
roughly the same or better than the other two. However this comes at the cost of a slight
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Fig. 9. Errors in liftoff and apex parameters in the approximate iterates when compared to the
“true” simulated values of the perturbed system: (left) first iterate (unaccelerated, conservative)
(33); (middle) first iterate (accelerated, not conservative) (74); (right) Modified central force solu-
tion (linearized perturbation) (77). Errors are computed for three springs introduced in Section 3.2,
i.e. the compressed air spring,UA(qr ), the Hooke’s Law Spring,UH (qr ), and the effective spring
arising from a Torsional Hooke’s Law Spring at the knee,UT H K(qr ).

increase in functional complexity. On the other hand, while the linearized perturbation
approach has some of the worst maximum errors,16 it offers the simplest functional form.

Acknowledgments

We are indebted to Tony Bloch and Phil Holmes for numerous tutorial discussions.
Additionally, we would like to thank Phil Holmes for a number of helpful suggestions
regarding the SLIP perturbed dynamics and Charles Doering for suggestions regarding
the mean value approximations. This work was supported in part by National Science
Foundation Grant IRI-9612357.

References

1. R. M. Alexander. Three uses for springs in legged locomotion.International Journal of
Robotics Research, 9(2):53–61, 1990.

2. R. M. Alexander and A. S. Jayes. Vertical movement in walking and running.Journal of
Zoology, London, 185:27–40, 1978.

3. N. Bernstein.The Co-ordination and Regulation of Movements. Pergamon Press, Oxford,
1967.

4. R. Blickhan. The spring-mass model for running and hopping.Journal of Biomechanics,
22:1217–1227, 1989.

5. R. Blickhan and R. J. Full. Similarity in multilegged locomotion: Bouncing like a monopode.
Journal of Comparative Physiology A, 173:509–517, 1993.

16 The linearized perturbation is integrable because it maintains angular momentum as a constant of motion.
This helps explain why the largest errors are observed inpθ andẋa.
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