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Abstract. In this paper we prove new bounds on the sum of the Betti numbers of closed
semi-algebraic sets and also give the first single exponential time algorithm for computing
the Euler characteristic of arbitrary closed semi-algebraic sets.

Given a closed semi-algebraic t- R* defined as the intersection of a real variety,
Q = 0,degQ) < d, whose real dimension ik, with a set defined by a quantifier-
free Boolean formula with no negations with atoms of the fddm= 0, R, > 0, P <
0,degP) < d,1 <i < s, we prove that the sum of the Betti numbersSis bounded
by s¥(O(d))¥. This result generalizes the Oleinik—Petrovsky—Thom—Milnor bound in two
directions. Firstly, our bound applies to arbitrary unions of basic closed semi-algebraic sets,
not just for basic semi-algebraic sets. Secondly, the combinatorial part (the part depending
ons) in our bound, depends on the dimension of the variety rather than that of the ambient
space. It also generalizes the result in [4] where a similar bound is proven for the number of
connected components. We also prove that the sum of the Betti numtistodunded by
sK' 206" i case the total number of monomials occurring in the polynomial3in{ Q}
ism. Using the tools developed for the above results, as well as some additional techniques,
we give the first single exponential time algorithm for computing the Euler characteristic
of arbitrary closed semi-algebraic sets.

1. Introduction

LetP = {Py,..., Ps} € R[Xq,..., X(] be a family of polynomials whose degrees are
bounded byd andSis a closed semi-algebraic set defined by a quantifier-free Boolean

* This work was done while the author was a graduate student at the Courant Institute of Mathematical
Sciences, New York University, New York, NY 10012, USA, and was supported in part by NSF Grants CCR-
9402640 and CCR-9424398. A preliminary version of this paper appeared Frékeedings of th@8th
Annual ACM Symposium on the Theory of Computipg 408-417, 1996.
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formula without negations, whose atoms are of the f&m0 whereo € {>, <, =} for
1<ic<s

ThusSis defined by a disjunction of weak sign conditions on the farfijywhere a
weak sign condition is a conjunction of the form

P,010, ..., Psos0 where oj e {>,<,=} for 1<i<s

The Betti numberg; (S), the ranks of the singular homology groups)fare a mea-
sure of the topological complexity &and can be bounded in termsfl, andk as fol-
lows. Collins’ algorithm [9] for cylindrical algebraic decomposition gives a cellular de-
composition ofSinto (sd)2”" cells and thus the same bound applies t3ti&). In case
Sis a basic closed semi-algebraic set define®py O, ..., Ps > 0, withdeg P) < d,
the tighter bound of O(sd))¥ on the sum of the Betti numbers Sfwas proved in sepa-
rate papers by Oleinik and Petrovsky [25], Thom [29], and Milnor [23]. (Note that when
Sis the set of real zeros of a set of polynomials this bound can be redu¢@ddp)®.)
Similar bounds on the number of connected components of basic semi-algebraic sets
were also proved by Warren [30]. These bounds play an important role in algorithmic
real algebraic geometry [17], in discrete geometry [12], [13], and have been used recently
in proving lower bounds in the algebraic computation tree model (see [31] and [24]).

A difficulty in extending this bound to an arbitrary semi-algebraic set defined by the
polynomialsP, lies in the fact that the Betti numbers of the union of two disjoint sets
can be arbitrarily greater than the sum of the individual Betti numbers of the two sets
(see [31] for an easy example).

We extend this bound to arbitrary unions of basic closed semi-algebraic sets by proving
the following theorem:

Theorem 1. Let Sc RX be the intersection of a closed semi-algebraic set defined by a
guantifier-free Boolean formula without negations involving a famRibe {Py, . .., Ps},
of s polynomials whose atoms are of the forra® o € {>, <, =} with Z(Q), the zero
set of a polynomial QIf the geometric dimension of(®) is k', and the degrees of the
polynomials infP U {Q} are all bounded by dThen the sum of the Betti numbers of S is
bounded by (O (d))k.

If S can be more simply described as=€0, P, > 0, ..., Ps > 0, then we have the
slightly better bound of¢) (O(d))* on the sum of the Betti numbers of S

If Q is the zero polynomial, thed (Q) = RX, k' = k, and we obtain the Oleinik—
Petrovsky—Thom—-Milnor bound extended to arbitrary closed semi-algebraic sets as a
special case. Note that a bound({ij (O(d))* on the zeroth Betti number for arbitrary
semi-algebraic sets (which is just the number of connected components) was known
before (see [4]) and our bound is a generalization of this result to the sum of the Betti
numbers in the case of closed semi-algebraic sets.

Note also that a lower bound ¢fd/ k') on the zeroth Betti number is easily obtained
by considering the set of nonzerossgbolynomials, each of them a productafinear
polynomials, restricted to k& dimensional linear subspace.

The dependence of the combinatorial part (the part dependirg) ohthe bound
in Theorem 1 ork’ instead ofk is important when we consider low-dimensional semi-
algebraic sets embedded in a higher-dimensional space, and this is sometimes important
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in applications. For example, the bound on the number of connected components in [4]
plays a crucial role in the proof of the main result in [13], where the variety is the real
GrassmanniaiGm n (the space om-dimensional subspaces &"), embedded as an

m(n — m)-dimensional variety iR,

Remark 1. We note that a bound @O (sd))2 on the sum of the Betti numbers of com-
pact semi-algebraic sets can be deduced from Theorem 1 in [31] or from Theorem 1.10
in [24]. Also note that recently Barvinok [1] has proved a new bound on the sum of Betti
numbers of semi-algebraic sets definedgoyadraticinequalities which is polynomial

in the number of variables when the number of inequalities is constant.

Remark 2. Even though we state our results for closed semi-algebraic sets over the
reals the same bounds hold over any real closed field through the application of well-
known transfer principles. We refer the reader to the article by Knebusch [21] and to [6]
for the intricacies of semi-algebraic topology over general real closed fields.

In order to achieve the bound in Theorem 1 we prove that an arbitrary closed semi-
algebraic set has the same homology groups as a compact semi-algebraic set defined by
polynomialsin general position. This result generalizes a similar resultin [7] where itwas
proved for semi-algebraic sets defined by a single sign condition, and this intermediate
result might be of independent interest.

Next we consider the problem of computing the Euler characterjats), of a closed
semi-algebraic se®. The Euler characteristic, which is the alternating sum of the Betti
numbers ofS, is an important topological invariant and thus can be used as a test to rule
out topological equivalence. Also, computing the Euler characteristic of semi-algebraic
sets occurs as an important subproblem in some recent work due to Gabrielov [11] on
computing multiplicities of the zeros of polynomial functions along the trajectories of a
polynomial vector field.

We prove the following theorem.

Theorem 2. Let Sc R¥be areal closed semi-algebraic set defined by a quantifier-free
Boolean formula without negatipmwith atoms of the form ;B0 wheres € {>, <, =}
forl <i < s,whereP = {Py,..., P} C Z[Xq,..., X4, is a family of s polynomi-
als whose degrees are bounded hyamd the bit lengths of the coefficients qf dfe
bounded by L Then there exists an algorithm for computipgS) which performs at
most(ksd)°® LD bit operations

We remark that computing the homology groups of semi-algebraic sets in single expo-
nential time is a central open problem of computational real algebraic geometry. Single
exponential algorithms for determining certain other (weaker) topological properties of
semi-algebraic sets are known. For example, itis possible to compute the number of con-
nected components [15], [7], [14], [18], the semi-algebraic description of the connected
components [8], [19], as well as to decide whether two points are in the same connected
component of a semi-algebraic set [7], [5], in single exponential time.
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Collins’ algorithm for computing a cylindrical algebraic decomposition [9] gives
sufficient topological information for computing the Euler characteristic, and in fact
the homology groups of a given semi-algebraic set [27]. However, this algorithm has
double exponential complexitgd)2”* LO® whereL is a bound on the number of bits
used in specifying the coefficients of the input polynomials. Previously, this was the
best algorithm for computing the Euler characteristic of general semi-algebraic sets. A
single exponential algorithm for computing the Euler characteristic of a smooth algebraic
hypersurface is mentioned in [26].

The rest of the paper is organized as follows. In Section 2 we show how to perturb the
polynomials to bring them into general position without changing the homology groups
of the given semi-algebraic set. In Section 3 we prove our bound on the Betti numbers of
closed semi-algebraic sets. In Section 4 we prove a bound on the sum of the Betti numbers
of a closed semi-algebraic set, in which the algebraic part of the complexity depends
only on the number of monomials appearing in the polynomials and is independent of the
degree. In Section 5 we describe our algorithm for computing the Euler characteristic.
In Section 5.2 we give an algorithm for computing the Euler characteristic of a basic
semi-algebraic set, and in Section 5.3 we give an algorithm for computing the Euler
characteristic of an arbitrary union of such sets.

2. Going to General Position

In the proofs of our theorems as well as in the algorithms to be described later we often
make use of perturbations liyfinitesimals For the purposes of this paper it is enough

to consider an infinitesimal as a sufficiently small positive real number. We also use the
notatione; > e, > e3---, Whereey, €, e3 are infinitesimals and; is positive and
sufficiently small g, is positive and sufficiently small with respectdgq and so on.

2.1. General Position

We say that a family of polynomial® in k variables is ingeneral positiorif no k + 1
of them have a common real zero. In this section we show that given a semi-algebraic
set, S, defined by a family,P, of s polynomials with degrees bounded dy we can
define a new compact semi-algebraic Setwhich has the same homology groups as
S, but which is defined by a family?’, of polynomials in general position. Moreover,
|P’| < 4s+ 1, and the degrees of the polynomialsftare bounded by’, whered’ is
the least even number greater tltaisimilar results appear in [7], where they are proved
for semi-algebraic sets defined by one single sign condition. Our proof techniques are
similar to those used in [7], but our results apply to arbitrary closed semi-algebraic sets.
We firstrecall a few facts from algebraic topology. Given a semi-algebrais setR,
we denote byH, (S) the graded singular homology group &f
The following theorem appears in [28] (Theorem 4.1.7).

Theorem 3. The singular homology functor commutes with direct limits



On Bounding the Betti Numbers 5

We also need the following fundamental property of@hechhomology groups of a
compact space (see p. 257 of [10]).

Theorem 4. If X is compact and the inverse limit of compact sets then theCech
homology group K(X) is the inverse limit of th€ ech homology groups.iX,).

Note that, since compact semi-algebraic sets are triangulable, their singueahd
homologies coincide.

We first ensure that a given semi-algebraic set has the same homology groups as a
bounded one.

Lemmal. LetS beany closed semi-algebraic @t S = SN(X2+- .-+ X2 < Q).
Then for sufficiently large2, H.(S) = H.(S).

Proof. Let S c RX*! be the set defined by the same formulaSaplus the new
inequalityT (X2 +- - -+ X2) < 1. Letw andr, denote the projections onto tiieand the
X coordinates, respectively. Then, by Hardt’s triviality theorem [16], for all sufficiently
large2, and for allt € (0, 1/Q), S N7 ~%(t) is homeomorphic t& N7 ~1(1/ Q).
Moreover, eacl Nz ~1(t) is compact an® = Uiao 7x(S N ~L(t)). Itis also clear
that the singular chain complex &fis the direct limit of the singular chain complexes
of (S N ~1(t)). Now, by Theorem 3H,(S) is the direct limit of the groupsl, (S N
77 ).
Hence H,(S) = H, (S N7 1(1/Q)) = H.(). O

Let She a compact semi-algebraic set defined by the formula

(\/ aj(P))A(x§+~--+x§5sz),

1<j=L

where eachy; is a nonempty weak sign condition for the famf®y; and<2 is positive
and sufficiently large.

For any weak sign conditionand a new variablewe denote by (P, ¢) the following
formula: For every weak inequality in we replace the corresponding conjuigt> 0
(resp.P, < 0) by P, > —e (resp.P; < ¢). For every equality inr we replace the
corresponding conjund® = 0 by the conjunctP;, > —¢) A (P} < ¢).

Let S denote the semi-algebraic set defined by the foryija; _, oj (P, ¢).

We have the following lemma.

Lemma 2. LetS be compactand let Be as aboverhen for sufficiently smalt > 0,
H.(S) = H.(S).

Proof. Let S denote the semi-algebraic set definedSaswith the difference that
every inequality is replaced by the corresponding weaker version and the constraint
X2 +...+ X2 < Ris added, wher® is the radius of a ball containir§ It follows that
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S is compact. Again by Hardt's triviality theorem, for sufficiently smatt- 0, and all
0 <6 < ¢, S is homeomorphic t&,.

Now,ScC S C S.Also,S=),.o, S. Hence, by Theorem 4,(S) is the inverse
limit of the groupsH.(S), and thus by the previous observatieh(S) = H.(S).
Finally, note thatS. = (J,_,.. §. and the singular chain complex & is the direct
limit of the singular chain complexes &.

Thus, by Theorem 3H.(S) is the direct limit of the group$.(S). However,
H.(§) = H.(S) for 0 < t < e. Thus, we have thaH,.(S) = H.(S) which im-
plies thatH,(S) = H.(S). O

Note that the se§. is defined by a disjunction of conjunctions of strict inequalities
involving 2s polynomials,

JP+e P—e)
PeP
and that there are no equalities in the formula.

We next prove that given a semi-algebraic set defined by a disjunct of conjuncts of
the form/\; Qjsj0wheres; € {<, >}, itis then possible to define a new semi-algebraic
set defined by polynomials in general position having the same homology group.

Let She a semi-algebraic set defined by the formylla ;| 0;(Q)), where eaclo;
is a sign-condition on a subs@ of a family of polynomialQ, ands; does not contain
equality. LetQ = {Qq, ..., Qs} and deg@Qi) <d, 1 <i <s.

Forl<i <2s/letH =1+), i/ X, whered'is the least even number larger
thand. ForQ; € 9, let Q" = (1-68)Qj + 8Hzi_1andQ;” = (1—8)Q; — §Hz, where
8 is a new variable. Le@’ be the familylJ, {Q;", Q; }.

Lemma 3. For sufficiently smalb > 0, the family of polynomial®Q’ is in general
position

Proof. See [3]. O

For a sign conditiorr on Q, without any equalities, define(Q, §) to be the formula
obtained as follows:

Every conjunctQ; > 0 is replaced byQ; > 0O, while every conjunctQ; < O is
replaced byQ;" < 0.

Let S be the set defined by';_;_, i(Q;, ).

Lemma4. LetS and g be as aboveThen for sufficiently smalb > 0, H.(§) =
H..(S).

Proof. Again by Hardt’s triviality theoremH,.(§) are isomorphic for alt € (0, §)
for sufficiently smalls. Also, S= (J,_, § . and the singular chain complex 8fis the
direct limit of the singular chain complexes §f. Again applying Theorem 3 we have
thatH..(S) = H.(S,), for all sufficiently smalls > O. O

Combining the previous four lemmas we obtain the following proposition.
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Proposition 1. Let S be any semi-algebraic set defined by a family of s polynomials
with degrees bounded by @Then there exists a se(S, ¢, §) defined by a family of at
most4ds + 1 polynomialsin Xy, ..., Xk, €, §,  with degrees bounded I2g such that

for sufficiently smalll/ Q2 > ¢ > § > 0, this new family of polynomials is in general
position and H(S(L2, ¢, §)) = H.(S). Moreover the set %2, ¢, §) is compactand
defined as a disjunction of conjunctions of weak inequalities

In our proofs we need a slightly stronger notion of general position.

Let Q be a polynomial such thaZ(Q) has geometric dimensidd. We say that a
family of polynomialsP is in general position with respect to,Qf no k' + 1 of the
polynomials in? have a real zero in common wit}.

We need the following proposition whose proof appears in [4].

Proposition 2. Given a family{Py, ..., Ps} of polynomials in RXy, ..., Xi] and a
variety Z(Q) of real dimension kand infinitesimals$; > - - - > 85 > §, the perturbed
family P* = [, {P — 8, B + &, P — 88, P + 88} is in general position with
respect to the variety @).

Using the above proposition we have the following more general version of Proposi-
tion 1.

Proposition 3. Let S be any semi-algebraic set defined by afamily of s polynomials with
degrees bounded by d and contained in a real variet ¥of real dimension k Then
there exists aset(®, ¢, 81, .. ., 8s, 8) defined by a family of at mo4s+ 1 polynomials

in Xq, ..., Xk, &, 8, 81, ..., 8s, 2 with degrees bounded [2d such thatfor sufficiently
smalll/Q > e > 81 > --- > & > & > 0, this new family of polynomials is in
general position with respect to,@nd H,(S(2, ¢, 81, . . ., 8s, §)) = H,(S). Moreover

the set $2, ¢, 81, ..., 8s, 8) is compactand defined as a disjunction of conjunctions of
weak inequalities

Proof. The proofis the same as that of Proposition 1, always carrying along the extra
conditionQ = 0, and replacing the polynomiald; by the infinitesimals;. O

We also remark that if a family of polynomialB is in general position with respect
to a polynomialQ, then for an infinitesimak the family Jp.,{P, P 4+ ¢, P — ¢} is
also in general position with respect@as long as we consider zeros that are bounded
overR.

3. Bounding the Betti Numbers

We make use of the following facts from algebraic topology which follows easily from
the Mayer—Vietoris sequence (see [28]). Given a semi-algebrai&wetdefiner (S) =
> Bi(S). Let § and S, be two compact semi-algebraic sets. Then, from the Mayer—
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Vietoris sequence

o= H(GUS) - HENS) — H(S) @ Hi(S)
- HEUS) - H_1(SNS) — -,

it easily follows that
&) +r(&) =r(GuUY+r& NS D

and
MU <r(S)+r()+rSnN). 2

Lemmab5. Let S be a semi-algebraic set defined by a conjgfct= 0) A (o1(P) Vv
---VoL(P)), where Q is a polynomiabndoj, 1 < j < L, are distinct sign conditions
on a family of polynomial®, such that none of the; contain an equalityTheng; (S) =
Yacj<L Bi(S) and x(S) = Y"1 x(§), where $is the set defined b§Q = 0) A
ai (P).

Proof. This follows immediately from the definition of singular homology groups. The
singular chain ofS being the direct sum of the singular chains of §s. O

3.1. Proof of Theoreni

Proof. In view of Proposition 3 and the remarks following it we can assume without
loss of generality thaS is a compact set defined lsypolynomials in general position
with respect toQ.

We next prove two lemmas that will imply the theorem.

Given a polynomialQ and a family of polynomial® = {Py, ..., Ps}, we define the
combinatorial levebf the system{Q, P) to be the least integen such that nan + 1 of
the polynomials irP have a common real zero witQ.

For example, the combinatorial level @D, P) is bounded b¥' if the dimension of
Z(Q) is k' and the polynomials ifP? are in general position with respect@@

Lemma6. Let S be a semi-algebraic setefined by Q= 0,P; > 0,..., Ps > 0,
where ZQ) is bounded and Q is nonnegative everywhémet P = {P, ..., Ps},
and let the combinatorial level of the systé@, P) be bounded by nx k and let
the degrees of the polynomials Q andbe bounded bpd and d respectivelyThen
r(S) = (3)(0w)~.

Proof. Consider the se%. defined by
ona Plzsv"'a PSZSa

wheree > 0is a positive infinitesimal. Then itis easy to prove that, for sufficiently small
e > 0,H,(S) = H.(S. Let T denote the set definedly =0, P, > ¢,..., Ps > ¢.
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Considerthesetd; =TN(PL=>8)U(Pi<¢)),Vi=TN(—e <P, <¢)and
W]_ =TnN ((Pl = 8) U (P]_ = —8)).

From inequality (1) we see thatU;) +r (V1) < r(T) +r(W;) and from Lemma 5
thatr (S) < r(Uy). It immediately follows that (S) < r (T) + r (Wy).

Moreover, let (s, d, m, k) be the maximum possible valuerafS) for any set defined
by a system with these parameters. Then we have the recurrence,

rs,dmk)<r(s—1,d mk +2r(s—1,d, m—1 k), m < k.
Using the Oleinik—Petrovsky—Thom—Milnor bound for algebraic sets, we have
r0,d,mk = (@),  r(sd 0k =)
It follows easily thatr (s, d, m, k) = (°)(O(d))*. O
Lemma7. Let S be ecompactsemi-algebraic set contained in the zero set of a poly-
nomial Q and defined by a family of polynomidts= {P, ..., Ps}. Suppose that Q
is nonnegative everywherthe combinatorial level of the systef®, P) is bounded

by m < k, and the degrees of the polynomials Q andakRe bounded byd and d
respectivelyThen r(S) = s™(O(d)).

Proof. LetShe defined by the conjun¢® = 0) A (o1 Vv - - - Ao ) where they; are sign
conditions on the familyP. Lete; > €2 > --- > &5 > 0 be infinitesimals. Consider
the setsTy, Uy, Vi, W], W, defined as follows:

T = SN((P1 > 1) U (P < —e1)),
U; = SN (P =e¢y),
Vi = SN (P = —&1),
W, = SN (—e1 < Py <¢1),
and
W, = SN (P, =0).

Now S= T, UW], and itis clear thaT; " W] = U; U V; andU; NV, = 0.
Using inequality (2) twice, along with the fact tha@d) = 0, we have

r(S) <r(Ty) +r(Wp) +rUy) +r (Vo).

Moreover, using the same arguments as in Lemmas 2 and 4, it can be shown that
H.(W)) = H.(W;). We omit the proof as the arguments are completely analogous.
Thus, we have

r(S <r(Ty) +r(Wp) +r Uy +r (Vo).

Note that,, Vi1, W; are defined by the syster®+(P1—1)2, P), (Q+(P1+£1)?, P),
(Q+ P2, P\{P1})) (note thatQ is nonnegative everywhere), respectively. Moreover, each
of the above system has a combinatorial level at most 1.
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We next considell; which is defined by a set of sign conditions without the atom
P; = 0, and eliminate the ator®, = 0. We do this by replacindg®» < 0, P, > 0 by
P, < —&5, P, > &5, respectively. In this way we obtain the inequality

r(Ty) =r(T2) +r(W2) +r(Uz) +r(V2),

whereU,, V,, W, are sets defined by systems with a combinatorial level at moestl.

The remaining sef,, has the same homology as the union of the sets defined by
those sign conditions appearing in the definitiorspivhich contain neitheP; = 0 nor
P, =0.

We continue this process till we have eliminated= 0, and we get the inequality

[(S) <r(T)+ Y Ui)+r (M) +r(W)).

1<i<s

The setdJ;, Vi, W are defined by systems of at maspolynomials having a combi-
natorial level at mosin — 1. Moreover, the remaining term(Ts) is the bound on the
Betti numbers of a semi-algebraic set defined by a union of sign conditions of the form
Q=0Rs0O0forl<i <s withs € {<, >}.

Again, by Lemma 5, the Betti numbers of this set are the sum of the the Betti numbers
of the nonempty sets defined by each individual sign condition. Now consider the set
defined byQ = 0, P? > 0, ..., P2 > 0. From the above remark it is clear thiafls) <
r (T). Moreover, applying the bound proved in Lemma 6 we haie) = ()(O(d))*.

Letr (s, d, k, m) denote the sum of the Betti numbers of a semi-algebraic set defined
by a system(Q, P) with |P| = s, a combinatorial level of the system boundedrby
and the degrees of the polynomi@land those ir° bounded byd. Then we have the
recurrence

rs,d, k,m = (Ii)(O(d))" +3sr(s,d, k,m—1), m <k,

r(s,d, k, 0) = (O(d)) .

This recurrence solves to(s, d,k,m) = s™(O(d))*,m < k, which proves the

lemma. O

The theorem now follows since the combinatorial level of a systénP) with the
family P in general position with respect @ is bounded bk'. O

4. A Fewnomial Bound

In this section we prove a bound on the sum of the Betti numbers of a closed semi-
algebraic set, in which the algebraic part of the complexity depends only on the number
of monomials appearing in the polynomials and is independent of the degree. This result
is a consequence of the fewnomial bounds due to Khovansky [20] and the technique
used to prove Theorem 1.
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The following proposition is crucial for the proving the bound and is used as well
in our algorithms to compute the Euler characteristic. &k a compact, basic, semi-
algebraic set defined by, > O, ..., Ps > 0. The next proposition proves th&tas the
same homology groups as a certain set which is bounded by a smooth hypersurface.

Proposition 4. Let Q=[] ¢ + (1 —)P) — 51X +. ..+ X2 + 1), where

¢ is a new variableand2d’ is any even number greater th{m s deg P).Let S be

the set defined b§Q > 0) A1<i<s (L — ¢)P + ¢ > 0). Then for all sufficiently small

¢ > 0, Hi(S) = H.(S). Moreover S is bounded by connected components of a smooth
hypersurface ZQ), which has a finite number of critical points for the projection map
onto the X coordinate and these critical points are nondegenerate and have distinct X
coordinates

Proof. LetS = (Q > 0) A1 = ((1 )P + ¢ > 0). SinceSis compact there exists
aconstanRsuchthak € S= x1 +- +x,fd +1< R ForO< ¢ < 1/R, any point
X = (Xg, ..., Xy satisfyingP1(x) > 0, ..., Ps(x) > 0 will also satisfyQ > 0. This
follows directly from the definition of and the fact thax? + ...+ x2 +1<R.

Thus, for every connected componéhbf Sthere exists a connected compon€nt
of Q > 0 such thatC c C’. Moreover, the signs of the polynomiajs+ (1 — ¢) PR,

1 <i < s, cannot change ovet’ because if one of them became z&owould be
negative at that point. However, sin€ containsC, and¢ is sufficiently small, it is
clearthat + (1-¢)R > 0,1<i <s, overC’. Thus, for¢ small enoughSc S..

Moreover,S= (., S, andSand§ are compact. Thus using Hardt’s triviality and
Theorem 4, we have that, for small enouglk 0, H.(S) = H.(S).

We next show that the s& is bounded by connected components of the smooth
hypersurface defined b9 = 0.

First observe that the s€& > 0 is bounded. This follows from the fact that’2~ sd
and thus the second term @@ dominates the first d%| becomes large.

Secondly, the polynomials + (1 — ¢) P, are all strictly positive ove&.. Hence,S
must be bounded by the hypersurféa&@).

It remains to show that the hypersurfazéQ) is smooth and has a finite number
of critical points for the projection map onto th§ coordinate, and that these critical
points are nondegenerate with distiiGt coordinate.

Let Q =[]t + 1 -DR) - SO L X2 ).

Now, Z(Q¢) is smooth if the following system of equation has no solutions over
complex projective space:

= 3Q: Q¢
:—:---:—:O’
Q 3 %o 3 Xk

whereQ; is the homogenization a;.

The sefl of complext’s for which this system has no solutions in complex projective
space is Zariski constructible, open, and contairs 1. Hence, it containg for all
sufficiently small reat > 0, and thusZ(Q) is smooth.
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Also note that, for alt # 0, the ideal generated by

Q¢ a Q¢

is zero-dimensional. This follows from a simple Grobner basis argument which can be
found in [3]. Moreover, fort = 1, all distinct projective solutions over the algebraic
closure of the zero-dimensional homogenized system

- 0Q IQ
Q'[ = —— = e = —— =
X2 9 Xk
have distinctX; coordinates. Moreover, all these critical points are nondegenerate (the
Hessian matrix is nonzero at these points).
Again, the set of’s for which the above conditions are met is Zariski constructible,
open, and contairs= 1, and hence containsfor all sufficiently small; > O. O

We also need the following proposition.

Proposition 5. Let Q be the same polynomial as in the previous proposition and let
Q1 = X2, — Q, where %, is a new variable

LetS c R<*!be the setdefined §9; = 0) A1<i<s(1—¢)P +¢ > 0), letS c R
be the set defined B = 0) A1<i<s (1 — ¢)P +¢ > 0), and let $ ¢ RX be the set
defined by(Q > 0) A1<i<s (1 — ¢) P 4+ ¢ = 0). Then for all sufficiently smalk > 0,
x(S) = 2x(S) — x ().

Moreoverthe connected components @fa®e the connected components of a smooth
hypersurface ZQ;), which has a finite number of critical points for the projection map
onto the X coordinate and these critical points are nondegenerate and have distinct X
coordinates

Proof.  Firstly, note thaZ (Q;) consists topologically of two copies of the set defined by
Q > 0 glued alongZ(Q). Moreover,S;, S, S; are all compact and unions of connected
components of the sets definedQy = 0, Q = 0, Q > 0, respectively. A straightfor-
ward application of the Mayer-Vietoris sequence gi¥€S;) = 2x (S3) — x ().

The proof of the second part of the proposition is entirely similar to the proof of the
corresponding properties f@(Q) given earlier. O

We first state the theorem for an algebraic set. This theorem appears in [20], but
without a precise bound.

Theorem 5. Let Z(Q) c R¥be areal algebraic seaind let m be the number of distinct

morlognials that appear in QFhen the sum of the Betti numbers af@ is bounded by
20(k m ).

Proof. ReplaceZ(Q) by the seV defined byQ; = (¢ +(1—¢)Q?) —¢2(X# ...+
XX +1) >0, +@1-¢)Q? > 0where & > degQ), and¢ > 0 and sufficiently



On Bounding the Betti Numbers 13

small. Then as in the proof of Proposition 4 we can showhistbounded by a smooth
hypersurface and has a finite number of nondegenerate critical points for the projection
map onto theX; coordinates. MoreoveY, has the same homology groups&a®). The
number of critical points bounds the sum of the Betti numbeig ahd hence oZ (Q).
Moreover, the number of critical points is bounded by the number of real solutions of
the systemQ; = 0Q1/0X, = --- = 9Q1/9Xkx = 0. The total number of nonzero
monomials appearing in this system is boundedivg + 2k = O(kn?).

We can now apply Khovansky’s bound on the number of real solutions of a system
of k polynomials ink variables [20] to obtain the bound stated in the theorem. O

We can now state and prove the theorem in the general case.

Theorem 6. Let Sc RX be the intersection of a closed semi-algebraic set defined by a
guantifier-free Boolean formula without negations involving afajfily= {Py, . .., Ps},
of s polynomialswhose atoms are of the formd®, o € {>, <, =}, with the zero set
Z(Q), of a polynomial Q Let the geometric dimension of Q) be K, and let the total
number of monomials occurring in the polynomial§iru {Q} be bounded by nThen
the sum of the Betti numbers of S is bounded48P&" ™.

Secondlyif S is defined by G= 0, P, > 0, ..., Ps > 0, we have a slightly tighter
bound of($)20®™.

Proof. The proof is the same as that of Theorem 1 except that in the case of algebraic
sets we use the bound in Theorem 5 rather than the Thom-Milnor boudddk. O

Note that this bound is again separated into a combinatorial psrt ahd an algebraic
part which depends only an andk. Also note that the Thom—Milnor method does not
give this bound even for the basic semi-algebraic sets. The reason is that in their method
one replaces a basic semi-algebraic set by a set defined by a single polynomial which is
a perturbed version of their product. However, the number of monomials in the product
of s polynomials is exponentially large 8) and thus the separation of the combinatorial
and the algebraic parts is no longer possible.

The above techniques have been extended recently to prove similar bounds on the Betti
numbers of semi-Pffafian sets, with separation of combinatorial and algebraic parts [32].

5. Computing the Euler Characteristic

By Proposition 3 we can assume, without loss of generality, that the given semi-algebraic
setis compact. If the given set is not compact, then we make the perturbations described
in Section 2 and compute the Euler characteristic of the perturbed set. The Euler char-
acteristic of this new set is equal to the Euler characteristic of the original set. The new
system will have at mostsA+ 1 polynomials with degrees at mostd.2Moreover, we

now have to compute in a larger rirgjé, ¢, 2]. However, since we have introduced
only three infinitesimals, the asymptotic complexity of the algorithm is not affected.
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5.1. Algorithmic Preliminaries

In our algorithm we utilize several other algorithms from real algebraic geometry as
subroutines. In this section we recall some of the algorithms that we use as subroutines,
with appropriate pointers to the literature.

We use a subroutine from [3] that constructs univariate representations of the zeros
of a zero-dimensional variety. This subroutine takes as inpubéi&r basis of a zero-
dimensional ideall,, of polynomials irk variables and outputs a set consistinglof 2)-
tuples of univariate polynomialsf, go, ..., gk) such that the complex zeros bfare
among the points obtained by evaluating the rational functign&o, . . . , 9k/go) at the
roots of the univariate polynomidl, for all the tupleq(f, go, . .., gk) in the output. We
say that the real points corresponding to the tugley, . . ., gk) areassociatedo the
tuple, and the tuple itself is@nivariate representationf these points. Moreover, if the
degrees of the polynomials in the input are bounded lifie degrees of the polynomials
in the output as well as the complexity of this subroutine is boundeay.

We also make use of an algorithm, called the sample points subroutine [3], that
computes a finite set of points which intersects every connected component of every
nonempty sign condition (referred to aslls henceforth) of a family of polynomials
P, of sizes and degrees bounded loly The subroutine also outputs the sign vector
of the polynomials ofP at each output point. The complexity of this subroutine is
(OF)sdO® = (s/k)*sd®.

Lastly, we make use of a multivariate sign determination subroutine [3]. The input
is a systenil' of polynomial equations ik variables, with a finite number of zeros,
along with a Gobner basis for the ideal generated by the polynomialk,iand a set
of s polynomialsP = {P4, ..., Ps}. The output is the list of nonempty sign conditions
o1, ...,o0y Of P at the real zeros of the systefnand the numbers, ..., cy, where
G is the number of real zeros @f at which the sign vector dP is o;. Moreover, if the
polynomials in the input have degrees bounded pthe complexity of this subroutine
isdO®,

We also use this subroutine in the special case of computing the index of a symmetric
square matrix of sizex k, with polynomial entries, atthe real zeros of a zero-dimensional
system. Again, if the degrees of the polynomials in the input are boundet] the
complexity of the subroutine is bounded kd)°® (see [26]).

5.2. The Algorithm for a Semi-Algebraic Set Defined by One Sign Condition

In this section we describe an algorithm for computing the Euler characteristic of a
semi-algebraic set defined by one single sign condition on a family of polynomials.
Using Lemma 4 we can assume, without loss of generality, that the semi-algebi@ic set
is defined byP; >0, ..., Ps > 0.

From Propositions 5 and 4 it follows thatS) = (x(S) + x(£))/2. We actually
computey (S) andy ($) by computing the indices of the critical points of the projections
map to theX; coordinate.

The details are as follows:
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5.2.1. Description of the Algorithm Given a basic semi-algebraic setdefined by
P.>0,...,Ps >0, wheredegP,) < dforl<i <s, the algorithm computeg(S).
We first introduce a positive infinitesimalnd construct the following two polynomials:

Q= H C+@A=0P) =53 4. 4 X2 41,

1<i<s

Ql = Xl%’i/l - Qs
where X1 is a new variable.
For the following two zero-dimensional syster= 0Q/d X, = --- = 0Q/9d Xk =
O0andQ; = 0Qy/0X, = --- = 3Q1/9 X1 = 0, we first check, using the univariate

representation subroutine and for every real zeaf these systems, whether the poly-
nomials¢ + (1 —¢)P, ..., ¢ + (1 — ¢)Ps are all nonnegative at the poipt We retain
only those real solutions for which this is satisfied.

For each real zero (critical poinpretained so far for the first system, we compute the
index of the critical point, which is the index of the Hessian ma@3Q/d X; 9X)ij, 2 <
i, j <k, evaluated ap. For 0 < i < k let¢ denote the number of critical points of
indexi.

Similarly, for each real zero (critical poinf) retained so far for the second system,
we compute the index of the critical point, which is the index of the Hessian matrix
(32Q1/dX; 9Xj)ij,2 <i,j <k+1, evaluated ap. For 0< i < k+ 1 letc; denote
the number of critical points of index

We outputy (S) = (Zosisk(_l)l G + 205i5k+1(_1)| di)/2.

5.2.2. Proof of Correctness The proof correctness follows immediately from Propo-
sitions 4 and 5 and the standard facts of Morse theory [22].

5.2.3. Complexity of the Algorithm The polynomial€Q andQ; have degrees bounded

by O(sd). The cost of computing the indices of the Hessian matrices in the last step
dominates the cost. We use the sign determination subroutine in the special case of
computing the index of a symmetric square matrix of dize k, with polynomial
entries, at the real zeros of a zero-dimensional system. If the degrees of the polynomials
in the input are bounded by, the complexity is bounded bk D)°® (see [26]). Thus

the total complexity of this algorithm is bounded tsd)C®.

5.3. The Case of a General Semi-Algebraic Set

5.3.1. Description of the Algorithm Using the algorithm in [3] list all nonempty sign
conditionsoy, ..., om Of the familyP, such that the se§ defined byy; is contained in
Sforl<j<m

For eachj, 1 < j < m, do the following. Without loss of generality assume that
is of the formP, = --- =R =0, R;1 > 0,..., Ps > 0. LetU; be the set defined by
Ppb=---=R=0,R;1>0,...,Ps>0,andletV; = U; N Z(J],_j < P)-
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Using the algorithm described in Section 5.2 for computing the Euler characteristic
of basic semi-algebraic sets, computgJ;) andx (V;).

Outputx (S) = X1<jm(X (Up) = X (V).

5.3.2. Proof of Correctness First note that the s&is compact.

Let X be the set of nonempty sign conditions on the family of polynonfrals{ Q},
whose realizations are contained3rAlso, letS; be the set of points satisfying the sign
conditiono. Thus,

s=Js.

oeX

For any setA, following [31], we defines/(A) to be the rank of théth homology
groupH; (A, 3A), whereA is the closure ofA in the topology ofR¢ andd A = A — A.
Similarly we definey’(A) = Zo<i<k(—1)iﬂi’(A). If Ais compact, the/(A) = i (A)
andy’(A) = x(A).

We first prove a preliminary lemma. Recall that a semi-algebraic setis-closedf
it is the difference of two closed semi-algebraic sets.

Lemma 8. Let X be a semi-algebraic set if®hich is bounded and semiclosé&dr
some polynomial

f e R[Xq, ..., Xd.
let A= XN (f >0 and B= X — A. Theny'(X) = x'(A) + x'(B).

Proof. The proof is the same as the proof of Lemma 5 in [31] and is reproduced here.
From the exact sequence

coo = Hi(AU3X, dX) = Hi(X,9X) = H(X, AUIX) = ---,

we havey (X, 9X) = x(X, AU3dX) + x (AU dX, 3X). Moreover,B (X, AU3IX) =
B{(B) andp; (AUIX, dX) = Bi (A (see [31] for a proof). It follows easily that (X) =
x'(A) + x'(B). O

Next, we prove
Lemma9. x(S=>,.5x'(&).

Proof. Note that sinceS is compact,x'(S) = x(S). Also note that for ali, and for

all sign conditionsP,010, . .., P,o;0, on the family of polynomial$Pi, ..., P}, the set

SN (Po10)N---N (P, 0i0) is semiclosed. This follows from the fact tHais closed. Now
considerthesetA=SN (P, >0),B=SN (P.=0),C=SnN (P, <0).NowS=
AUBUC. Applying Lemma 8 twice we get that (X) = x'(A)+ x’(B) + x’(C). Also,

A, B, C are themselves semiclosed. We can continue the argument with the polynomial
P, and the setX N (P, > 0), XN (P, =0), XN (P, < 0) for X = A, B, C, and so on.

A simple induction completes the argument. |
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It is easy to show, following the notation introduced in the algorithm, gie§) =
Bi(U;, V), and thusx’(§) = x(U;j, V)). The proof of this appears on p. 621 of [31]
and is omitted here.

It follows from the exact sequence

-~ = Hi(Vj) = HUj) - HUj, V) = Hi_1(Vj) - -,

thatx (Uj, V;) = x (Uj) — x(V}). This in conjunction with Lemma 9 shows thatS) =
lejsm(x (Uj) — x(V})), and this proves the correctness of the algorithm.

5.3.3. Complexity Analysis The cost of computing all the nonempty sign conditions
of the family P is s“+*d°%. Moreover, there can be onl§)(O(d))* such nonempty
sign conditions. For each such sign condition include®&,inve call the algorithm for
computing the Euler characteristics of basic semi-algebraic sets twice. The sum of the
degrees of the polynomials involved in each such calDisd). Thus each call costs
(ksd)©®_ Hence, the total complexity of the algorithm is bounded ogd)©®.

The bound in the bit model follows easily once we note that bit sizes of the intermediate
values are bounded Hy(skd)®®.
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