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Abstract. In this paper we derive some recurrence formulae which can be used to calculate the Fourier
expansions of the functions (r/a)* cosmv and (r/a)” sinmv in terms of the eccentric anomaly E or the
mean anomaly M. We also establish a recurrence process for computing the series expansions for
all » and m when the expansions of two basic series are known. These basic series were given in ex-
plicit form in the classical literature. The recurrence formulae are linear in the functions involved and
thus make very simple the computation of the series.

1. Introduction

It has long been recognized that digital computers are capable of formal manipulation
of literal expansions in celestial mechanics. Thus it is now easy to extend Cayley’s
(1861) tables of the expansions in elliptic motion to include higher powers in the
eccentricity. Using various computing schemes several authors have been successful
in obtaining analytical expansions of functions which arise in celestial mechanics
(Deprit and Rom, 1967; LeSchack and Sconzo, 1968 ; Barton, 1967; Jarnagin, 1965;
Broucke, 1970). It may, however, still be of interest if we can derive some exact
formulae relating these expansions. The new mathematical relations not only provide
material for teaching elliptic motion expansions but at the same time they can be
used to check the accuracy of the different algorithms already formulated.

In this paper we shall consider the developments in terms of the eccentric anomaly
E or the mean anomaly M of the functions

@™ =(r/a) cosmv and Y™™ =(r/a)"sinmy (L)

where a is the semi major-axis, r the radial distance and v the true anomaly in elliptic
motion. The functions were first considered by Hansen (1838) in his Fundamenta.
For each specific pair of values of n and m where n is a positive or negative integer
and m is a positive integer, after a series of transformations he arrived to express
@™™ and ¥™™ in terms of the expansions of (r/a)* and (r/a)”? and their derivatives
with respect to the eccentricity e.

In general we have

r n
(4> cosmp =A™ + AT ™ cosM + AT " cos2M + -+
a

\* (1.2)
<> sinmv = BY™"sin M + By "sin2M +---.
a
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The cocfficients Ay ™, AT ™, ..., BT ™, ..., called the Hansen’s coefficients, are functions
of e. The approach of LeShack and Sconzo (1968) in computing these coefficients
is through the use of the Cauchy’s numbers (Tisserand, 1894) while the key of Deprit
and Rom’s procedure is the application of Poincaré’s method of continuation in the
integration of a differential equation with ¢ =cosE as dependent variable and the
mean anomaly M as independent variable (Deprit and Rom, 1967). In this paper we
shall construct a homogeneous linear differential equation of the second order which
has the functions (1.1) as independent solutions. From the governing equation we
can derive some recurrence formulae and at the same time establish a recurrence
process which can be used to generate tables of the expansion of the functions (1.1)
in any of the three anomalies to the desired order in the eccentricity and with a
minimum number of computations involved.

2. Differential Equations

Consider the vector equation
X=A4A()X (2.1)

where A is the 2 x 2 matrix

_ fl(t) O‘(f1_fz)
0=l ) G2

where f(¢) and f,(¢) are two arbitrary functions of ¢ of the class C*, and « and B
are two arbitrary constants. It can be shown that A(z) is the most general 2 x 2 matrix
which commutes with its integral. For this paper it suffices to prove the following
theorem.

Theorem. The Equation (2.1) where A(t) is given by (2.2) can be transformed into
a homogeneous linear equation with constant coefficient.

Proof: Let

X = expG f (f1 + 12) dt) z (2.3)

X=3(fi+f)exp( )Z+exp( )Z=exp( )AZ.
Dividing out by exp( )

Z=[A-3(f,+ /) 11Z
or
Z=(f,~f,) BZ @.4)

where B is the constant matrix

a-lp 1) >
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By using the new independent variable s such that

s= [0 -pyar 2.6)

we have the required equation
dZ/ds = BZ. 2.7
Now, the equivalent second order differential equation of the system (2.1) is
fl - fZ]
X—|fi+fa+ X
[ RS
~ [flfz ~ fifs
fi— 12

where x is any of the two components of X. Since the characteristic equation of the
system (2.7) is

+°‘)8(f1_f2)2—f1f2:|x:0 (2.8)

A=uf+3 (2.9)

we immediately have, through the changes of variables (2.3} and (2.6), for the general
solution of (2.8)

If ¥*=af+4>0
w(i)=ewp (5 [ (1 + 1) )

X [C1 exp(if(f1 — f2) dt) +C, exp(—/lf(fl - f2) dt)]
Ifef+%<0

x() = exp (; [t )

x [c1 cos\/——izf(fl —f,)dt+C, sin\/——iif(fl —fz)dt].
(2.10)
If 6f+1=0

s =ew(; [ it @) [e [ G- pars el

We observe that the functions (r/a)" cosmv and (r/a)" sinmv are special cases of
the second solution in (2.10) with r=v.
Let
— VP =—(ap+i=m’

ot [Cormpa)= (0 = Lo

JOi-rya=y
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we can deduce

fi(v)=

ne sinv 1 ne sinv 1

fap)=——""——=. (2.11)

_— + =,
1+ecosv 2 1+ecosv 2
By substituting into (2.8) we have the differential equation which is satisfied by (1.1)

d*x 2nesinv dx
dv® 1 4 ecosv dv

2.2 -2
, n°e’sin®v  ne(e+ cosv)
- x=0. 2.12
+|:m +(1+ecosv)2 (1 + e cosv)? @12)

If we consider @™™ and ¥™™ as functions of the eccentric anomaly E, then by the
change of variables

. \/l—ezsinE
siny = ~———————
1—ecosE
cosE —e¢
— - 2.13
cosv 1—ecosE ( )
dE 1
(1 —ecosE)

dv \/1—e

we have the differential equation with E as the independent variable

d2
l—ecosE2 +(1—2n esmEI—ecosE—
2

+[(1—e*)(m* —n*)+n(2n - 1)(1 —ecosE)
—n(n—1)(1 —ecosE)*]x=0. (2.14)

Finally if we consider ™™ and Y™™ as functions of the mean anomaly M, then
by the transformation

M=E—esinE

dM/dE=1—ecosE (2.15)

we have the differential equation which is satisfied by @™ and Y™™, considered as
functions of M.

(1 —ecosE)* — &’ +2(1—n) P&
— e CoS —n)esinE —
dMm? dM

+ (1——e-cos—E)—2 [(1 —e*)(m?* —n®)+n(2n —1)(1 — ecosE)
—n(n—1)(1 —ecosE)*] x=0. 2.16)

In the last equation the coefficients are to be expressed in terms of M using the
Kepler’s Equation (2.15).
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The differential Equations (2.12), (2.14) and (2.16) with respectively the true
anomaly v, the eccentric anomaly E, and the mean anomaly M as independent variable
will serve as basic equations in the derivation of the recurrence formulae for the
series expansions of @™ and Y™™ in each of the three anomalies. In the following
we shall consider the expansions in £ and in M.

3. Fourier Expansions in Terms of £
Let
Xn,m____ Qn,m_’_ iqln,m:(r/a)n exp(imv). (31)

We have seen that X™™, considered as function of the eccentric anomaly E, satisfies
the differential equation

2yn,m n,m
(1 — ecosE)? a2 T (1 = 2n) esinE(1 — e cosE)
+[(1 =€) (m* —n*)+n(2n—1)(1 — ecosE)
—n(n—1)(1 —ecosE)’] X»™=0. (3.2)
From (3.1)

dx™n F\* 1 (imo) d /r o r\" ( )dv
=n|— X 1 — 1 — 1 — X 1 —_—.
dE a PUlmv) sp\a) T e ) PV g

Since
rla=1—ecosE

d /r .

—{—}=esinE.

dE <a>
Also

dv \/1 —e? \/ -t

dE  1—ecosE ¢ ‘
Therefore

n,m

esinE(1 — e cosE) =ne’sin” EX™™ + im\/1 — e’esin EX™ ™.

Using the relations

2
r
e*sin’E = e — e’ cos’ E = — (1 — ¢%) +2<I> _ <‘>
a a
J1— sinE = (f> sinv
a

1 (1=e/ry
isinv:exp(iv)—cosv:exp(iv)%-\—( ¢ )(_r)
[4 a
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we have
n, m

esinE(1 — ecosE) T meX"T L _pxnram

+(m+2n) X" —(m 4+ n)(1 - ) X"
By substituting into Equation (3.2) we have the recurrence formula
dZXn, m
dE?
+(m+n)y(m+n-1)0-A)X">™  (3.3)

m(2n — 1) eX""LmH = +n?X»" —(m+n)(2n—1) X" "

where X can be @ or ¥. This formula can be used to go from cosmuv (or sinmv) to
cos(m—+1) v (or sin(m+1) v). Changing m into —m and noticing that X" ~"=X""
where X™™ is the complex conjugate of X™™ we have

2yn,m

m(l —2n)eX" V"1 =

T n’X»" +(n—m)(1 —2n) X" "

+(n—-—m)(n—m—-D)(1-HX">" (34
where X can be & or Y. This formula can be used to go from cos(m+1)v

(or sin(m+1) v) to cosmv (or sinmv).
Combining the Equations (3.3) and (3.4) we easily obtain

e[Xn,m+1 + Xn,m—l] — 2(1 _ eZ) Xn—l,m . 2Xn,m (35)

where X can be @ or ¥. This last relation can be derived directly from the polar
equation of elliptic orbit.
The process for constructing tables of the expansions of ™™ and ¥™ ™ is as follows.

A. EXPANSIONS OF (r/a)" cosmv

First step
Let m=0 in (3.3) and we have

(—1%22 <Z> + n? (2) —n(n—1) C)H +n(n—1)(1— &) <£>H —0.
(3.6)

First it should be noted that Equation (3.6) requires that the sum of the constant
terms equal to zero, otherwise the quadratures would introduce secular terms in E.
This recurrence formula can be used to calculate the series for (r/a)” for all values
of n when those for n=—1, and n= —2 have been obtained.
Let
(rla)' =Y AlcospE, p=0,1,2.... 3.7

Then we have the recurrence formula for the coefficients A

(n? = p?) AN~ n(2n — 1) A5  +n(n—1)(1 — &) 47" = 0. (3.8)
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When # is negative the series is infinite. When n > 0 the series terminates at the teru.
cosnE. In this case the last coefficient cannot be calculated by formula (3.8) but by
setting £=0 in Equation (3.7) it can readily be seen that

-1

Ar=(1—ey— Y Ao. C
p=0

The starting series for n=—1 and n= —2 can be easily calculated by the class..
methods. We have (Brown and Shook, 1933)

<1> = (1 4 2B cosE + 2B cos2E +-+*) EAL

a \/1 —é
where § is given by
B=(1—J1-2)e (.11)

and in general

g o <2e>" . pG)”“ + % (p +3) <§>p+4 + %(p +4)(p +5) <§>p+

pt+8
+f'(p+5)(p+6)(17+7)<§> +-ee (3.12)
Also

(I>_2 =(1 -3 (1 -e*)32 i 28°(1 + p\/l — &) cos pE.

a
3.
Second Step

Calculate all (r/a)” cosv by taking m=0 in the recurrence formula (3.5). Explicitly
we have
n 1— 2 n—1 1 n
<r> cosv = ( ¢ )<r> - <r> . (3.14)
a e a e\a

Use (3.5) again with m=1 to calculate all (r/a)" cos2v

r\" 2(1 =¥ /r\"? 2/r\" r\"
—) cos2p= ——2| - cosv——|—) cosv—{—]. (3.15)
a e a e\a a

The process continues by successive applications of (3.5) to calculate (r/a)" cosm

Since the recurrence formulae are linear in the functions involved, the calculation
process is extremely simple. But while this process is very simple, it suffers from two
unavoidable defects:

The Hansen’s coefficients behave like the Bessel’s coefficients. Each time we apply
formula (3.5) the order in e of the coefficients is decreased by 1 unit. Therefore to
compute tables up to cosmv to the order of e we need to compute the basic series

Third Step
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o1 (rfa)™", and (r/a)”? to the order of e?*™. Since these series are given in explicit
forms the defect does not create any real handicap.

When n is a negative integer, to compute ( r /a)" cos(m+ 1) v, it involves the expansion
of (r/a)""! cosmv. Therefore to compute tables down to (r/a) cosmv, n being a
'+ zative integer, in the first step mentioned above we should compute down to the

yosion of (rfay*™™. This defect again does not create any serious problem since
. ihe recurrence formula (3.8) we can easily calculate (r/a)® for any negative n.

B. EXPANSIONS OF (r/a)" sinmv

We, first compute all (#/a)” sinv by the relation

n —__—E n
<f> siny = Ji-ed <r> . (3.16)
a ne dE\a

When n=0 we can calculate the expansion of sinv by

d o -1
cTE(SinU):\/l - 92<I) Y

1— 23\3/2 2 i— 2N\1/2 -1
_ (=) ( ) (=€) (1) 3.17)
e a e a
or directly by

sinv = (1 — %) i B*~ ' sin pE. (3.18)

p=1
“iext we can successively apply the recurrence formula (3.5) to calculate all
24)" sin2v, and so on.

It is clear that one advantage of this process is that it requires only quadrature of
Fourier series, which is the same as addition of coefficients, and is free of multipli-
cation of Fourier series. Hence the process is particularly welcome in mechanical
computation.

4. Fourier Expansions in Terms of M

First we notice that these developments can be deduced from those in terms of £ by
using the classical series expansions

oo

sin pM
sinmE =m Z e [Jp-m(Pe) + Jpim(pe)]

p=1

e}

cosmE=A0+mZ
p=1

Ag=1 if m=0
=—1e if m=1

=0 if m>1

cos pM

m(pe) +m(pe)] (41)

where J,(pe) is the Bessel’s coefficient of order k and argument pe.
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If direct computation is desired, we can start with the differential Equation (2.16)
and, by using the same type of derivation as in the preceding section, we obtain the
recurrence formula

i m dZXn,m 2 m
2m(n — 1) eX* 37t = e +r(n-D) X%
—(2n* + 2mn — 3n —2m) X"~ "
+(m4+n)(m+n=2)(1 )X~ %" (4.2)

where X can be @ or ?.
By taking n=1 we have

d2 r cos my ¥ —2 cosmy r —3 cosmv
e <a> + (Z) +(m?* = 1)(1-¢€%) (5) =0. (43

sin my sin mv sin mv

By further taking m=1 we have the classical formula

d2 ¥ cos v r —2 cosv
- — =0. 4.4
sz <a>sin v * (a> sinv ( )
Putting m=0 in (4.2) we have Hansen’s recurrence formula (Deprit and Rom, 1967;
Hansen, 1838; Brown and Shook, 1933)

dd—A; (2) +n(n—1) <£>H —n(2n—-3) (;)3

+n(n—2)(1—é?) (g)ﬂ = 0. (4.5)

We also have as before
e[Xn,m+1 +Xn,m—1]=2(1_e2)Xn—1,m__2Xn,m (46)

where X can be @ or V.
The process for computing tables of the expansions of ¢™™ and Y™™ is as follows.

A. EXPANSIONS OF (r/a)" cosmv

First Step

The recurrence formula (4.5) is used to calculate the series for (r/a)" for all values of
n when those for certain values have been obtained.
Let

(rla)' = i A}, cos pM . 4.7

Then we have the recurrence formula for the coefficients 4

PA=nn—-DA 2 —n(2n=3) A +n(n—-2)(1—) 457,
(4.8)
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In particular the constant term is given by

(m+D(n+2)A5—(n+2)(2n+ 1) 45"
+a(n+2)(1 - Ay ?=0. 4.9
Examination of the formulae reveals that the expansions for all values of n can be

evaluated in terms of the expansions for n=1, 2, —2 and —4. But the expansions for
n=1, and n= —4 can be evaluated in terms of the expansions for n=2, —2 and —3

through the relations
r ed /r\*
=1 =)+ - (=
<a> (1=¢) 2de <a>

-4 -3 -2
¥ F ed [r
1—e%)|— ={- +-—(-) .
(1=e) (a) (a) 2de (a)
Hence we only need to compute the two basic starting series (r/a)?® and (r/a)™? by
the classical methods. These are given explicitly in the classical literature. We have

(4.10)

o)

r\? 3, 4
-] = i +§e — — J,(pe) cos pM . (4.11)
4

p=1

Series expansion of (r/a)”? is more involved. Probably the simplest way is to use the
series (3.13) and the transformation (4.1) with the knowledge that the constant term
in the expansion is (1 —e?)” */2. Another simple way to have the series expansion of
(r/a)™? is to use the relation

r 1 dv

() s

(4.12)

The expansion of v in terms of M has been calculated by Schubert as far as e2°
(Schubert, 1822).

Second Step

Once the expansions of (r /a)* for all values of n have been obtained we can successively
use the recurrence formula (4.6) with m=0, 1,... to calculate the expansions of
(r/a)" cosv, (r/a)* cos2v,... as described in the preceding section.

B. EXPANSIONS OF (r/a)" sinmv

We first compute all (#/a)* sinv by the relation

\" . 1—e* d /r\""! 413
— smy=———-—[ — . .
a) T (it DedM\a “-13)
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When n= —1 we can use the relation
d — -2 — 2 -3
— smu-—\/1 ¢ —3\/—-1 (I
dM a e a
(1 _ ez)s/z A4
42— <-> (4.14)
e a

to calculate (r/a)~ ! sinv.
Next we can use the recurrence formula (4.6) to calculate all (r /a)" sin2v, and so on.
As discussed before to compute tables for the expansions of ¢"™ and ¥™™ up to
the value m and from a negative —n(n>0) to a positive n up to the order of e? we
should compute the basic series for (r/a)? and (r/a)~? to the order of e?™™, and first
calculate the series from (r/a)™" "™ to (r/a)"*".

5. Conclusion

In this paper we have derived recurrence formulae to calculate the series expansions of
(r/a)* cosmv and (r/a)” sinmv in terms of the eccentric anomaly E or the mean
anomaly M. We also have established a recurrence process which can be used to
compute the series expansions for all # and m when the expansions of two basic
series are known. The expansions in terms of the true anomaly v are similar to those
in terms of the eccentric anomaly E. By observing that

(2)"_(1 e cosE _ =y (5.1)

(1 + ecosv)'

for the expansions in v we only need to change ninto —n, e into —e, a into a(l — e?),
and E into v in Equation (3.6) and next change the sign of all the exponents to have

(1 - ez)(_i(_il; (2)" +n*(1—é) (£>" —n(2n + 1) <;>n+1
+n(n+1) (;)m = 0. (5.2)

In applying the recurrence formulae, each time we go to a next higher multiple
anomaly the order in e in the Hansen’s coefficients is decreased by 1. This is caused
by a property of the Hansen’s coefficients, called the D’Alembert characteristic by
E. W. Brown (1933); namely, the lowest order in e in the coefficient of cos pM (or
sin pM) in the expansion of (r/a)" cosmv (or (r/a)" sinmv) is | p—m|. This property
is also true for the expansions in E and in ».

In his tables Cayley also gave the series expansion of log(r/a) in terms of M.
Explicitly we have (Brouwer and Clemence, 1961)

log(£>=—log(1 +8) -2 Z gCOSPE G3)

p=
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and

aC

10g<£>=—10g(1+ﬁ2)+eﬁ—2 Z ESZ

=1 s=1

x BP[Js- p(se) — Joi ,(se)] cossM . (5.4

In our process we can have those expansions by integrating term by term the following
relations

d r e .
CTEIOgE = msmu (55)

with the constant term in the integration being log(1 +\/1 —e?)/2 and

d r e M\t
—log—=—+—{— sin 5.6
am &g \/1_e2<a> v (56)

with the constant term being log(1 +\/1 —eb)2+1 —\/1 —e2.

The formulae we have derived are general and they may serve to add new dimension
to the teaching of series expansions in elliptic motion. The differential equations in
Section 2 can be considered as general equations of motion of the two-body problem.
For example, if we put =1, m=0, x=1—¢e cos E=1—e¢p in Equation (2.16) we have

Do +(0—e)(l—e) =0, (5.7

where D denotes the differentiation with respect to M. Using binomial series expansion
we have the differential equation considered by Deprit and Rom (1967), and Moulton
(1920)

(D*+1)o=1% >Zl(p+1)[10—(p+2)92]e"_le”- (5.8)
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