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Abstract. In this paper we derive some recurrence formulae which can be used to calculate the Fourier 
expansions of the functions (r/a) n cosmv and (r/a) n sinmv in terms of the eccentric anomaly E or the 
mean anomaly M. We also establish a recurrence process for computing the series expansions for 
aI1 n and m when the expansions of two basic series are known. These basic series were given in ex- 
plicit form in the classical literature. The recurrence formulae are linear in the functions involved and 
thus make very simple the computation of the series. 

1. Introduction 

I t  has long been recognized tha t  digi tal  compute r s  are  capable  o f  fo rmal  man ipu la t i on  

o f  l i teral  expansions  in celestial  mechanics .  Thus  i t  is now easy to extend Cayley ' s  

(1861) tables of  the expans ions  in elliptic mo t ion  to include higher  powers  in the 

eccentricity.  Using  var ious  comput ing  schemes several au thors  have been successful 

in ob ta in ing  analyt ica l  expans ions  of  funct ions which arise in celestial  mechanics  

(Depr i t  and  Rom,  1967; LeSchack and Sconzo,  1968; Barton,  1967; Jarnagin ,  1965; 

Broucke,  1970). I t  may,  however,  still be of  interest  i f  we can derive some exact  

fo rmulae  re la t ing these expansions.  The new mathemat ica l  re la t ions  not  only p rov ide  

mater ia l  for  teaching elliptic mo t ion  expansions  but  at the same t ime they can be 

used to check the accuracy of  the different a lgor i thms a l ready formula ted .  

In  this paper  we shall  consider  the deve lopments  in terms of  the eccentric anomaly  

E or  the mean  anoma ly  M of  the funct ions  

~ " "  = (r/a)" c o s m v  and  tp,,m = (r/a)" s inmv  (1.1) 

where a is the semi major-axis ,  r the radia l  dis tance and v the true anomaly  in elliptic 

mot ion .  The funct ions  were first cons idered by Hansen  (1838) in his Fundamenta. 

F o r  each specific pa i r  of  values of  n and rn where n is a posi t ive or  negative integer  

and  m is a posi t ive integer,  af ter  a series of  t rans format ions  he ar r ived to express 

~b"" and k u"'m in terms of  the expansions  of  (r /a)  2 and (r /a)  -2 and  their  derivat ives 

wi th  respect  to the eccentr ici ty e. 

In  general  we have 

( ; ) "  c o s m v = A ~ ' m + A ] ' m c o s M +  A~ "m c o s 2 M + . - -  

(1.2) 

/-\(a)" sin m v = B ] " s i n  M + B " z ' " s i n 2 M + .  o l m 
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The coefficients A"o' % . . . . . .  . . . ,  A1 , ..., B~ , called the Hansen's coefficients, are functions 
of e. The approach of LeShack and Sconzo (1968) in computing these coefficients 
is through the use of the Cauchy's numbers (Tisserand, 1894) while the key of Deprit 
and Rom's procedure is the application of Poincar6's method of continuation in the 
integration of a differential equation with 0 = c o s E  as dependent variable and the 
mean anomaly M as independent variable (Deprit and Rom, 1967). In this paper we 
shall construct a homogeneous linear differential equation of the second order which 
has the functions (1.1) as independent solutions. From the governing equation we 
can derive some recurrence formulae and at the same time establish a recurrence 
process which can be used to generate tables of the expansion of the functions (1.1) 
in any of the three anomalies to the desired order in the eccentricity and with a 
minimum number of computations involved. 

Consider the vector equation 

2 = A( t )  X 

where A is the 2 x 2 matrix 

2. Differential Equations 

(2.1) 

r A(t) (2.2) 
( A  - f2 )  f2  ( t )  l 

where f l ( t  ) and f2( t  ) are two arbitrary functions of t of the class C 1, and ~ and fl 
are two arbitrary constants. It can be shown that A (t) is the most general 2 x 2 matrix 
which commutes with its integral. For this paper it suffices to prove the following 
theorem. 

Theorem. The Equation (2.1) where A( t )  is given by (2.2) can be transformed into 
a homogeneous linear equation with constant coefficient. 

Proof: Let 

X=exp(  f (fl + fz)dt)Z (2.3) 

2 = � 8 9  ) Z + e x p (  ) Z = e x p (  ) A Z .  

Dividing out by exp( ) 

2 =  [ A - � 8 9  +Za)  I ] Z  
o r  

2 = (f~ - fa) BZ (2.4) 

where B is the constant matrix 

B = . (2.5) 
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By using the new independent variable s such that 

s = f (f l  - f2) dt (2.6) 

we have the required equation 

dZ/ds = BZ. (2.7) 

Now, the equivalent second order differential equation of the system (2.1) is 

5d-- f ,  + 12 + f ~ -  f2_] 

f~ f2 + c~fl(f~ -- fa) a -- f~fz x = 0 (2.8) 

where x is any of the two components of X. Since the characteristic equation of the 
system (2.7) is 

2 2 = eft + �88 (2.9) 

we immediately have, through the changes of variables (2.3) and (2.6), for the general 
solution of (2.8) 

If ~2 =o~fl+�88 

(if ) x(t)=exp 3 ( f l + f a )  at 

x [ C t e x p ( ) t f ( f l - f 2 ) d t ) + C 2 e x p ( - } . f ( f l - f 2 ) d t ) ]  

If cq~+�88 

x ( t ) = e x p ( ~ f ( f t + f z ) d t )  

x [C1 c o s x / - ~  / f ( f t -  fz)dt+C2 s i n x / ~  f ( f l -  f2) at] . 

(2.10) 

If c~fl+�88 

x(t)--exp(12 f (f, + f 2 ) d r ) [ C ~  f(fx- f2 )d t  + C2].  

We observe that the functions (r/a)" cosrnv and (r/a)" sinrnv are special cases of 
the second solution in (2.10) with t =  v. 

Let 
_ 4 2  = _ ( ~ / ~  + � 8 8  = m 2 

(~f  ) (a) n (1 -- e2)n 
exp ( l + f 2 ) d v  = = ( l + e c o s v ) "  

f ( f l  - / 2 )  dv = v 
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we can deduce 

ne sin v 1 ne sin v 1 
q- ~ ,  f 2 ( v )  - -  . (2.11) 

f l ( v ) = l + e c o s v  l + e c o s v  2 

By substituting into (2.8) we have the differential equation which is satisfied by (1.1) 

dZx  2ne sinv dx 

dv 2 1 + e cosy  dv 

n2e2sin2 v n e ( e + c o s v ) l  
+ m z + ( l + e c o s v ) Z  ( l + e c o s v ) z j x = O .  (2.12) 

I f  we consider ~b"" and T " ' '  as functions o f  the eccentric anomaly  E, then by the 

change of  variables 

x / ]  - e 2 sin E 
s i n  v 

1 - e cos E 

cos E - e 
cosy  -- (2.13) 

1 - e cos E 

dE 1 
m ( 1  - e c o s E )  

we have the differential equation with E as the independent variable 

d Z x  
(1 - e cosE)  2 d ~  + (1 - 2n) e s inE(1  - e cosE)  

+ [(1 - e2)(m z - n 2) + n(2n - 1)(1 - e c o s E )  

- , , ( n  - 1) (1  - e o o s e y ]  x = 0 .  (2.14) 

Finally if we consider ~b"" and T " "  as functions o f  the mean anomaly  M, then 
by the t ransformat ion 

M = E - e sin E 

d M / d E  = 1 - e c o s E  (2.15) 

we have the differential equation which is satisfied by ~ " "  and T " " ,  considered as 
functions o f  M. 

2 d z x  dx 
( 1 - e c o s E )  ~ 2 + 2 ( 1 - n )  e s i n E d M  

1 
+ .(1 -- e cosE)  2 [(1 -- e 2) (m 2 - -  n 2) "-{- /'/(2/'/ - -  1) (1 -- e cosE)  

-- n (n  - 1)(1 - -  e c o s E )  2] x = 0. (2.16) 

In  the last equation the coefficients are to be expressed in terms of  M using the 
Kepler 's  Equat ion (2.15). 
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The  different ial  E q u a t i o n s  (2.12), (2.14) a n d  (2.16) wi th  respect ively the t rue  

a n o m a l y  v, the  eccentr ic  a n o m a l y  E,  a n d  the  m e a n  a n o m a l y  M as i n d e p e n d e n t  va r i ab le  

will serve as bas ic  e q u a t i o n s  in  the  de r iva t i on  o f  the  r ecu r rence  f o r m u l a e  for  the  

series e x p a n s i o n s  of  ~b', " a n d  ~u,, m in  each  o f  the three  anomal i e s .  I n  the  fo l lowing  

we shall  cons ide r  the expans ions  in  E a n d  in  M.  

3. Fourier Expansions in Terms of  E 

Let  
X"" " = ~"" m + igj, ,  ,, _- ( r /a )"  exp(imv).  (3.1) 

W e  have seen tha t  X " " ,  cons ide red  as f u n c t i o n  of  the  eccentr ic  a n o m a l y  E,  satisfies 

the  di f ferent ia l  e q u a t i o n  

d 2 X  n, rn dX"" m 

( 1 - e c o s E )  2 dE 2 + ( 1 -  2n) e s i n E ( 1 - e c o s E )  dE  

+ [(1 - e 2 ) ( m  2 - n 2) + n(Zn - 1)(1  - e c o s E )  

- n ( n -  1)(1  - e c o s E )  2] X "'m = 0.  (3.2) 

F r o m  (3.1) 

dX"''dE - n ( r )  " - t  

Since 

Also  

There fore  

e x p ( i m v ) d ( r ) + i m ( ; ) " e x p ( i m v ) ~ E  �9 

r /a= t - e c o s E  

- -  = e s in  E .  
dE  

: e2 --(r)* 
- 1 7 e c ~ s E -  ~ /1  - e 2 a " 

dXII, rn 

e s in E (1 - e cos E) ~ - ne 2 s in  2 EX"' " + i m  x/T - e 2e sin EX n' " 

U s i n g  the re la t ions  (r) (r/ 
e 2 s in 2 E ---- e 2 -- e 2 cos 2 E = -- (1 - e 2) + 2 - 

x / 1 - e 2 s i n E = ( r )  sinv 

i s i n v  = exp( iv )  - cosy  = exp( iv )  + 
e 
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we have 
dX"'  " 

e s inE(1  - e c o s E )  dE - m e X " + ~ " + l  - nXn+2"ra 

+ ( m  + 2 n ) X  " + l " = - ( m  + n)(1 - e Z ) X  "'m. 

By substituting into Equat ion (3.2) we have the recurrence formula  

d z X  ., m 
m(Zn  - 1)eX"-1 ,  m+l __ + nZX ., m _ (m + n ) (2n  -- 1 )X"-1 ,  ,, 

d E  2 

+ (m + n ) ( m  + ,  - 1)(1 - e 2) X "-e 'm (3.3) 

where X can be �9 or T. This formula  can be used to go f rom cosmv (or sinmv) to 
c o s ( m +  1)v (or s i n ( m +  1)v). Changing m into - m  and noticing that  X" ' - , ,= j~ , , , n  

where j~,m is the complex conjugate of  ) C "  we have 

d2j?,, 
m ( 1 - 2 n )  eX  " - ' ,m-~  _ + n 2 X " , ~ + ( n - m ) ( 1 - Z n ) *  " -1 , "  

d E  2 

+ ( n - m ) ( n - m - 1 ) ( 1 - e Z ) X  "-z 'm (3.4) 

where )? can be �9 or 7/. This formula  can be used to go f rom c o s ( r e + l ) v  

(or s i n ( m +  1) v) to cosmv (or sinmv). 
Combining the Equat ions (3.3) and (3.4) we easily obtain 

e[X" '  m+~ + X , , , , -  a] = 2(1 -- e 2) X "-a'm - 2 X  "'m (3.5) 

where X can be �9 or 7 j. This last relation can be derived directly f rom the polar  
equat ion of  elliptic orbit. 

The process for constructing tables of  the expansions of  ~"'  " and 7 j"' " is as follows. 

A. EXPANSIONS OF (r /a)"  c o s m v  

First step 

Let m = 0  in (3.3) and we have 

62 (7 (7  (7  -1 (7  .2 ~ 2  + n2 - n ( 2 n -  1) + n(n  - 1)(1 - e 2) = 0. 

(3.6) 

First it should be noted that  Equat ion (3.6) requires that  the sum of  the constant  
terms equal to zero, otherwise the quadratures would introduce secular terms in E. 

This recurrence formula  can be used to calculate the series for (r/a)" for all values 
o f  n when those for n = - 1, and n = - 2 have been obtained. 

Let 

(r/a)" = 2 A"p cospE,  p = 0, 1, 2 . . . .  (3.7) 

n Then we have the recurrence formula  for the coefficients Ap 

( n Z - p Z ) A " p - n ( 2 n - 1 ) A " p - l  + n ( n - 1 ) ( 1 - e Z ) A p - Z = O .  (3.8) 
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When n is negative the series is infinite. When n ~> 0 the series terminates at the ter . .  
cosnE. In this case the last coefficient cannot be calculated by formula (3.8) but by 
setting E =  0 in Equation (3.7) it can readily be seen that 

n--1 
A ~ = ( 1 - e ) " -  • A;.  (" p=O 

The starting series for n = -  1 and n = - 2  can be easily calculated by the clas~.~ 
methods. We have (Brown and Shook, 1933) 

- x / ~  (1 + 2 / /cosE + 2,8 2 cos2E + ...) (3.1o" 

where / / i s  given by 

/ / =  (1 - x/1 - eZ)/e (3.11) 

and in general 

Also 

//v= + p ~ )  + ~.v (p + 3) + . (p  + 4 ) ( p  + 5) 

/ e \ p  +8 D 
+ 4!~'(P + 5)(p + 6)(p + 7)|i]\/ +.... (3.12) 

( r )  - 2 = ( 1 - e 2 )  -3/2 + ( 1 - - e 2 ) - 3 / Z p = l  ~ 2tiP(1 + P ~ / 1 - - e  2) cOspE. 

(3. 

Third Step 

Use (3.5) again with m = 1 to calculate all (r/a)" cos2v 
(a)n (~) (~)n (~)n 

cos2v 2 ( 1 - e  2) . -1  2 
- cosy - - cosy - . (3.15) e e 

The process continues by successive applications of (3.5) to calculate (r/a)" cosm~ 
Since the recurrence formulae are linear in the functions involved, the calculation 

process is extremely simple. But while this process is very simple, it suffers from two 
unavoidable defects: 

The Hansen's coefficients behave like the Bessel's coefficients. Each time we apply 
formula (3.5) the order in e of the coefficients is decreased by 1 unit. Therefore to 
compute tables up to cosmv to the order of e p we need to compute the basic series 

(3.14) 
e e \ a /  

Second Step 

Calculate all (r/a)" cosy by taking m = 0  in the recurrence formula (3.5). Explicitly 
we have 
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o r  ( r /a) -~ ,  and (r /a)  -2 to the order of  e p+m. Since these series are given in explicit 

forms the defect does not  create any real handicap.  
When  n is a negative integer, to compute  ( r /a)"  cos (m + 1) v, it involves the expansion 

of  (r /a)  "-~ cosmv.  Therefore  to compute  tables down to ( r /a )"cosmv ,  n being a 
:~: :3ative integer, in the first step ment ioned above we should compute  down to the 

::  ~sion of (r /a)  "-m. This defect again does not  create any serious p rob lem since 
. .~ne recurrence fo rmula  (3.8) we can easily calculate (r/a)" for any negative n. 

B. EXPANSIONS OF (r/a)" sinmv 

W.,e first compute  all (r/a)" sin v by the relat ion 

(r; (5 s inv - x/1 - e2 d . (3.16) 
ne dE 

When n = 0 we can calculate the expansion of  sin v by 

-- ( 1 -  e2)3/2e- (~ ) -2  ( 1 ,  e2)l/2e (~) -1  (3.17) 

or directly by 

s inv = (1 - f12) ~ ~p-~ s i n p E .  (3.18) 
p=l 

".Text we can successively apply the recurrence formula  (3.5) to calculate all 
:i/~-t)" sin2v, and so on. 

I t  is clear that  one advantage of this process is that  it requires only quadra ture  o f  
Fourier  series, which is the same as addit ion of  coefficients, and is free of  multipli-  
cat ion of  Fourier  series. Hence the process is part icularly welcome in mechanical  
computa t ion .  

4. Fourier Expansions in Terms of M 

First  we notice that  these developments  can be deduced f rom those in terms of  E by 
using the classical series expansions 

O~3 
~ s i n  p M  

sin mE = m P [Jp- m (pe) + Jp + m (pe)] 

p = l  
oo 

~ c o s  p M  
cos mE = Ao + m - -  [Jp_, , (pe)  - Jp+m(pe)] (4.1) 

P p=l 
Ao = 1 if  m = 0 

= - � 8 9  i f  m =  1 
= 0  if  m > l  

where J,(pe)  is the Bessel's coefficient of  order k and a rgument  pe. 
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I f  direct computa t ion  is desired, we can start  with the differential Equat ion  (2.16) 
and,  by using the same type of  derivat ion as in the preceding section, we obtain the 
recurrence formula  

d 2 X  . ,  m 

2 r e ( n -  1 ) e X  " - a ' ' + *  - - -  + n ( n -  1 ) X  " - z ' "  
d M  2 

- (2n z + 2ran - 3n - 2m) X " -a ' "  

+ (rn + n ) ( m  + n - 2) (1 - e z) X "-4' " 

where X can be 4~ or ku. 
By taking n = 1 we have 

(4.2) 

( /  ..... (r 7 ..... ..... d 2 r 
+ + ( m  a - 1 ) ( 1 - e  2) = 0 .  (4.3) 

a M  2 \ a /  sin my s in  my s in  ray 

By further  taking m = 1 we have the classical fo rmula  

l /  ( :7  .... 
d 2 r cos v 

+ = 0.  (4.4) 
drag \ a / s l n  v sin v 

Putt ing m = 0  in (4.2) we have Hansen ' s  recurrence formula  (Depri t  and Rom,  1967; 
Hansen,  1838; Brown and Shook,  1933) 

d a ( r f  , / r \  " -2  / r \  "-3 
~ a  + n ( n -  1 ) ~ a )  - - n ( 2 n - - 3 ) ~ a )  

+ n(n - 2) (1 - e 2) = 0. (4.5) 

We also have as before 

e [ X  "'m+l + X " ' m - l ]  = 2(1 - e z) X " - l " m -  2X" '"  (4.6) 

where X can be �9 or ~P. 
The process for comput ing  tables of  the expansions of  ~" '=  and T " "  is as follows. 

A.  E X P A N S I O N S  O F  (r/a)" c o s m v  

First Step 

The recurrence formula  (4.5) is used to calculate the series for (r/a)" for  all values of  
n when those for  certain values have been obtained.  

Let  

(r /a)"= ~ A~ cos p M .  (4.7) 
p = 0  

n 
Then we have the recurrence formula  for  the coefficients Ap 

p2A~ n(n 1)A~ -z  n(Zn 3 ) A ~ - a + n ( n  2)(1 2 , - , - 4  . . . . . .  e )Ap  . 

(4.8) 
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In particular the constant term is given by 

(n + 1)(n + 2) Ag - (n + 2) (2n + 1) A; -1 

+ n(n + 2)(1 -- e2) A~ -2 = 0. (4.9) 

Examination of the formulae reveals that the expansions for all values of n can be 
evaluated in terms of the expansions for n = 1, 2, - 2 and - 4. But the expansions for 
n =  1, and n =  - 4  can be evaluated in terms of the expansions for n=2 ,  - 2  and - 3  
through the relations 

( r )  e d ( r ~  2 
= (1 - e 2) + } d e \ a /  

( 1 - e e ) ( a ) - 4 = ( r )  -3 e d + }, ~e ( r ) _ 2 .  (4.10) 

Hence we only need to compute the two basic starting series (r/a) z and (r/a) -2 by 
the classical methods. These are given explicitly in the classical literature. We have 

( r )  2 3e2 ~ ; 2 J p (  = 1 + ~ - pe) cospM.  

p=l 

(4.11) 

Series expansion of (r/a)-2 is more involved. Probably the simplest way is to use the 
series (3.13) and the transformation (4.1) with the knowledge that the constant term 
in the expansion is ( 1 -  e 2) 1/2. Another simple way to have the series expansion of 
(r/a) -2 is to use the relation 

* 

- , / 1  - e 2 d M "  ( 4 . 1 2 )  

The expansion of v in terms of M has been calculated by Schubert as far as e z~ 
(Schubert, 1822). 

Second Step 

Once the expansions of(r/a)" for all values o fn  have been obtained we can successively 
use the recurrence formula (4.6) with m = 0 ,  I .... to calculate the expansions of  
(r/a)" cos v, (r/a)" cos2v,.. ,  as described in the preceding section. 

B. EXPANSIONS OF (r/a)" sinmv 

We first compute all (r/a)" sin v by the relation 

x f l - e =  d (r '~ "+* 
(4.13) 
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When n=  - 1  we can use the relation 

d ( r )  -1 sin v = x / 1 -  e2 ( r )  -2 -- 3 X/lee2- ( r )  -3 

dM e 

+ 2(1 - e2)3/2 ( ~ )  -4 
- ( 4 . 1 4 )  
e 

to calculate (r/a)-1 sin v. 
Next we can use the recurrence formula (4.6) to calculate all (r/a)" sin2v, and so on. 
As discussed before to compute tables for the expansions of 45 "''~ and ~,,m up to 

the value m and from a negative - n ( n > 0 )  to a positive n up to the order of e ~ we 
should compute the basic series for (r/a) z and (r/a) -2 to the order of e p+m, and first 
calculate the series from (r/a)-"-" to (r/a) "+ 1. 

5. C o n c l u s i o n  

In this paper we have derived recurrence formulae to calculate the series expansions of 
(r/a)"cosmv and (r/a)"sinmv in terms of the eccentric anomaly E or the mean 
anomaly M. We also have established a recurrence process which can be used to 
compute the series expansions for all n and m when the expansions of two basic 
series are known. The expansions in terms of the true anomaly v are similar to those 
in terms of the eccentric anomaly E. By observing that 

( r ) "  (1 - e2)" 
= ( 1  - e c o s E ) " - ( 1  + e c o s v f  (5.1) 

for the expansions in v we only need to change n into - n ,  e into - e ,  a into a(1 -e2) ,  
and E into v in Equation (3.6) and next change the sign of all the exponents to have 

d e ( r ) "  ( a ) "  ( a )  "+1 
(1 - e2)  ~Wv 2 + n 2 ( 1  - e 2) - n(2n + t )  

+ n(n + 1) = O. (5.2) 

In applying the recurrence formulae, each time we go to a next higher multiple 
anomaly the order in e in the Hansen's coefficients is decreased by 1. This is caused 
by a property of the Hansen's coefficients, called the D'Alembert characteristic by 
E. W. Brown (1933); namely, the lowest order in e in the coefficient of c o s p M  (or 
sin pM) in the expansion of (r/a) n cosmv (or (r/a)" sinmv)is [p-m[. This property 
is also true for the expansions in E and in v. 

In his tables Cayley also gave the series expansion of log(r/a) in terms of M. 
Explicitly we have (Brouwer and Clemence, 1961) 

log = - log(1 + flz) _ 2 P cospE (5.3) 

p = l  
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and 

l ~ 1 7 6  ~ s  

s = l  s = l  

x ~ ' [ J s - , ( s e )  - J~+,(se)] c o s s M .  (5.4) 

In our process we can have those expansions by integrating term by term the following 

relations 

d r e 
dE l ~  = x/1 _ e z sinv (5.5) 

with the constant  term in the integration being log(1 + x / 1 -  e2)/2 and 

d log r _  e sinv (5.6) 
- -  , / 1 -  dM a 

with the constant  term being log(1 + x/1 - e2)/2+ 1 - ~ / 1  - e  2. 
The formulae we have derived are general and they may serve to add new dimension 

to the teaching of  series expansions in elliptic motion.  The differential equations in 
Section 2 can be considered as general equations of  mot ion  of  the two-body problem. 
For  example, if we put  n = 1, rn = 0, x = 1 - e cos E =  1 - eQ in Equat ion (2.16) we have 

D2Q + (Q - e) (1 - eo) -3 = 0, (5.7) 

where D denotes the differentiation with respect to M. Using binomial series expansion 
we have the differential equation considered by Depri t  and R o m  (1967), and Moul ton  

(1920) 
(D 2 + 1)0 = - t  2 ~ , , ( p +  1) [p  - (p + 2) 0 2 ] o p - I e p .  (5.8) 

p > l  
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