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Abstract. This paper presents an analytical study of the longitudinal dynamics of a thrusting, lifting, 
orbital vehicle in a nearly circular orbit. The translational motion is composed of a nonlinear oscilla- 
tion, or phugoid, and a spiral mode which results in either decay or dilatation of the orbit depending 
on the perturbed initial conditions. The nonlinear effects on the phugoid period and damping are 
small in the altitude range considered. Elements of the orbit such as radial distance, velocity, and 
flight path angle were obtained explicitly as functions of time. The behavior of the variations of these 
elements is correctly predicted. Explicit expressions for period and damping of the angle-of-attack 
mode were derived. It is shown that a critical altitude may exist at which the phugoid mode and the 
angle-of-attack mode have nearly equal periods. Near this resonance altitude linearized solutions 
are no longer valid and a study of the nonlinear equations shows that there is a strong interaction 
between the translational and the rotational modes resulting in a switching of the two frequencies of 
oscillations. 

1. Introduction 

In a report published in 1960, Etkin (1960) extended the classical theory of aircraft 
longitudinal flight dynamics to the hypersonic speed and orbital altitude regime. 
He investigated the perturbed motion of a lifting, thrusting vehicle, initially con- 
strained to steady atmospheric flight along a great circle path, in the altitude range 
of 100000-700000 ft. By augmenting the classical low speed, low altitude equations 
of motion, to include the effects of Earth curvature and the atmospheric density and 
gravity gradients with respect to altitude, he obtained a fifth-order linear system of 
equations governing the motion of the vehicle. A numerical solution of the linearized 
equations showed that the motion contained two damped, oscillatory components 
which could be identified with the classical phugoid and short-period modes, and a 
new aperiodic spiral mode. Etkin further showed that the phugoid mode frequency 
could exceed that of the short-period mode at orbital altitudes. In a later paper, 
Etkin (1961)showed that gravity torques must be included in the equations of motion 
to correctly describe the short-period mode frequency at high altitudes. 

In the same time period, Porter (1961) published a report in which he investigated 
the phugoid oscillations and spiral mode only. However, his analysis ranged from 
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low speeds to superorbital speeds, where the vehicle is constrained to a great circle 
flight path by negative lift. In the altitude range where they are comparable, Etkin's 
and Porter's results are in good agreement. 

Also in the same time period, Rangi (1960) extended Etkin's results by including 
certain non-linear terms in the linearized equations and studying their effects on the 
perturbed vehicle motion on an analog computer. He found that the effects of the 
non-linear terms considered were negligible. 

More recently, Laitone and Chou (1965) found analytical solutions to the linearized 
equations of motion that are in good agreement with Etkin's numerical results. 

The above papers and the works of Morth and Speyer (1961) and Norman and 
Meier (1963), considered collectively, provide a comprehensive study of the longi- 
tudinal dynamics of a lifting, thrusting vehicle in the hypersonic speed and orbital 
altitude regimes. However, there remain gaps in the results previously obtained, 
specifically, an adequate analysis of non-linear effects and of the altitude region where 
the phugoid and short-period mode frequencies are nearly equal. It is the intent of 
the present study to fill these gaps and, in addition, to expand on the results previously 
obtained. 

The example vehicle used for the numerical computations is the same as the one 
used by Etkin (1961). Its aerodynamic characteristics are given in the Appendix. 
They are typical of a future manned orbital, lifting vehicle, so that we may assume 
that the vehicle is ultimately controllable. For this reason we need only consider the 
perturbed vehicle motion for a time long enough to establish it mathematically. This 
time span will be, at most, the time the vehicle takes to orbit the Earth a few revolutions. 

2. Preliminary Analysis 

A. EQUATIONS OF MOTION 

Consider the motion of a thrusting, lifting vehicle in a nearly circular orbit. Following 
Etkin (1961), we assume that the vehicle motion takes place about a nonrotating, 
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Fig. 1. Axis system and nomenclature. 
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spherical, homogeneous Earth, with a static atmosphere�9 Then, referred to a right- 
handed coordinate system, that is always tangent to the flight path as shown in 
Figure 1, the longitudinal motion of a lifting, thrusting vehicle is governed by the 
system of equations.* 

dV T oSCoV 2 
- -  = c o s  a -  - g s i n  y 
dt m 2m 

V 
= ~SCL V2 ( 

d y  T s i n  a + - g 

dt m 2m 

dq oSLCm V2 
dt 2B 

dO V 
- - =  q -C---cosy 
dt r 

d?" 
= Vsiny 

dt 

0 = y + c ~ .  

V2) cos), 

3 g (A - C) 

2 r  B 
sin20 (1) 

The first term of the pitching moment equation is the familiar aerodynamic torque 
and is a restoring torque for aerodynamically stable vehicle configurations. The second 
term is the gravity torque and is, on the contrary, destabilizing for normal aircraft-like 
configurations. A complete discussion of gravity torques is given by Beletskii (1966) 
and Roberson (1958). At a sufficiently high altitude the gravity torque can become 
larger in absolute value than the aerodynamic torque. 

The vehicle is assumed to be initially traveling along a great circle flight path of 
radius ro. The circular flight is sustained by the constant thrust T. This value of the 
thrust is assumed constant during subsequent motion of the vehicle. Furthermore, 
the thrust is small enough (Etkin, 1960) that the mass of the vehicle (during the time 
span of a few revolutions) can be assumed constant also. By setting c~=y=0 in 
Equation (1), we have along the reference orbit 

1 

T = �89 u2 
2 u 2 OoSCLoUo 

goro 2mgo 
= 0 ( 2 )  Cmo 

q ___ 
U0 

/ '0 

For flight in the hypersonic speed regime, ,the aerodynamic coefficients are inde- 
pendent of the Mach number (Laitone and Chou, 1965) but, generally, non-linear in 

* All symbols are defined in notat ion section at end of paper. 
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other dependent variables (Donovan et al., 1961). For small perturbations, we may 
assume 

Co (~)= CDo + Co.~ 
CL ( ~ ) =  C,~ o + C , ~  

C m (o~, q)  = C mo -1 t- C mcz .3 I- 
L 

2Uo 
Cm~ t (q -- qo)  

(3) 

where CDo, CLo and C,, o are the drag, lift and pitching moment coefficients along the 
reference flight path. 

B. N O N - D I M E N S I O N A L  EQUATIONS OF MOTION 

To write the equations in non-dimensional forms, let 

V (t) = Uofi (t) ,  

0 (r) = Qo~(r), 

and define the quantities 

r ( t )  -- " ~" J o r ( t ) ,  
2 u  o 

q ( t )  = - -  
L 

g (r )  = go - g o  

el(t) 
(4) 

- - _ _  2 B d go t, ky = - - ,  ( )  = ( ' )  
uo rn d? 

o ~  ko = ( A  - C)  

q = 2 m g o  

, ~ 

goro y 

2 r  o 

L 
(5) 

Then Equation (1) can be written in the non-dimensional forms 

u = rlCoo c o s .  - q~a2Co (~) 
1 

f2 sin 

(1 
~ = ~lCoo sin c~ + r/~ti 2C L (c~) - ~-2 - - cos ,/ 

3ko sin20 = 2 r l 6 ~ 2 C m  (0~, O) 2/f3 

0 S 2 l q  71- S 2 /'~ = - COS T 
i 

f- = s2~ sin 

O = y + .  

(6) 

where the thrust has been replaced by its equivalent drag force from Equation (2). 
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Fig. 2. Speed ratio, s 2. 

The quantity s is the ratio of the vehicle speed along the reference flight path to 
the drag free circular orbital speed at a radius ro. As shown in Figure 2, s is nearly 
unity above about 300000 ft altitude. The quantity r/ is the ratio of the dynamic 
pressure force over the reference area to the weight of the vehicle. It decreases rapidly 
with altitude as shown in Figure 3. As the altitude increases above that shown ~ 0 ,  
hence ~/ ,0 also. These figures are plotted using Etkin's vehicle. The quantity l is 
directly proportional to the flight path radius and is of the order 8.5 x 105 for Etkin's 
vehicle (Etkin, 1961). 

If we set r /=0 and s2= 1 in Equation (6) the equations reduce to the familiar drag 
free satellite equations. Then, changes in the rigid-body motion about the vehicle's 
center of mass have no effect on the vehicle trajectory. However, the converse is in 
general not true. This suggests a method that will be used in the analysis of the 
trajectory or phugoid mode, that is, we will decouple Equation (6) by assuming that 
motion about the vehicle center of mass has little effect on the trajectory of the vehicle. 
This assumption of the so-called limited problem has been used in celestial mechanics 
to study the libration of the Moon. Based on this decoupling, we shall first calculate 
the trajectory mode, and then use the results to integrate the equations governing the 
angle-of-attack oscillations. The coupling effects will be examined in the last part of 
the paper. 
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Fig. 3. Non-dimensional dynamic pressure force, r/. 

C. S M A L L  P E R T U R B A T I O N  E Q U A T I O N S  

We select the variables z~, y, ~, 10 and c~ to represent the state of the system. If we 
allow only small departures from the reference flight path, we can express these state 
variables in terms of small perturbations 

7 - - ~ 1  

1 4 = - 1  + ~ ,  

(7) 

06 - -  OC I . 

Also, by expanding the atmospheric density ~ in a Taylor's series in P1, we have 

where 

^ ( e  ) . ~2 0 1 = 1 + cr,rx + o2r 1 + " "  

= (d r) o o'~ 
1(d20 '~  r 2 

' ~ = 2 \ ~ ) o  Oo' . . . .  

(8) 

(9) 
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Fig. 4. Atmospheric mass density gradients. 

For computational purposes the atmospheric data used were obtained from a 
polynomial representation of the 1962 U.S. standard atmosphere as presented in the 
1966 U.S. standard atmosphere supplement. The variations of the atmospheric mass 
density gradients a 1 and a2 as functions of the altitude are presented in Figure 4. 

Further, let 

m2 = (1 - s 2) ( -  o'ls 2 + 2) + s 4 

= _ 1 , :  [ ( 1  - ,~) (~  - 1 )  - 2 3  

tl 2 -- S 2 [3ko - 2rlalC,,,~,] 

CN~ = �89 ICy o + CL~,- 26C., a] 

cN, = ~ [C,,o + c,~. + 2ac.~] 
d 

~= o , ~ ,  ( ) = ( ) ' .  
dr 

(1o) 

Using the relations 7, 8, and 10 in Equation (6), we have, to the second order of 
magnitude of smallness, the small perturbation equations 

X ' =  AX  + B (X) (11) 

where 

X _~. 

m A B 

Ul 

rl 
ql 
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In theory, it is not difficult to integrate Equation (11) analytically. Let e be an 
initial perturbation of any one of the state variables. We can then assume series 

solutions of the form 

o r  

1 - -  g U l l  "at- 12 "[- "'" 

~1 = /3Yll + g2'~12 -1-""  

r l  --" gf'11 -!- g2f12  - ~ ' " "  

ql -- gql l  + g2q12 + " "  

O~ 1 - -  g0~11 -I- e20~12 + " "  

X = eXa + eZx2 + " "  

(13) 

(14) 

where the definitions of the vectors X1, X2,... are clear from Equation (13). By 
substituting into Equation (11) and equating the coefficients of like powers of e we 

have the system of matrix differential equations 

X 1 = A X  1 

X 2 -  A X  2 + B ( X 1 )  

�9 I i  o 

(15) 
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Since the matrix A is constant, we can immediately integrate the first of Equation (15) 
to get 

X 1 (T) - - - -  ea*x ~ (16) 

where 
1 

X ~ = Xl ( 0 ) = -  X (0) .  
~3 

(17) 

With this value of X1 (r), we can express B (X1) as a function of ~ only and then con- 
sider the second of Equation (15) as a linear matrix differential equation with a forcing 
term. By integrating, we have 

X2 (z) = eA*x2 (0) + j " ea(~-t)B ( t) dr. 

0 

(18) 

But, since X2 (0) = 0, we have 

x :  = j" 
0 

ea(~-~ (t) dt (19) 

and the solution to the second order of magnitude of smallness is 

X ('c) - ~ea~X ~ + ~2 ,I ea(~-0B (t) dt. 

0 

(20) 

3. The Mode Shapes 

To express the components of the 5-vector X(z) in the solution, (Equation 20), 
explicitly in terms of the non-dimensional time z, it is required to solve a quintic 
characteristic equation. In order to get explicit analytical expressions, we will decouple 
the two modes and calculate them separately. In the last part of this chapter an 
approximate factorization of the quintic equation will be given and the coupling effect 
and the nonlinear effect will be examined. 

A. SPIRAL AND P H U G O I D  MODES 

The phugoid, or long period, oscillation occurs at nearly constant angle-of-attack. 
Hence, setting c~-~0 in Equation (20) and neglecting the moment equation, we have 
for the phugoid mode 

T 

= + j" 
0 

eA~(~-t)B1 ( t) dt (21) 
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where 

Fa~-I 

r l _  

1 
, A1 - - - -  

(.2) 

1 
Bx (z)= B a ( ) ( t ) = -  

(.2) 

- -  2r/CDo -- 1 - -  rlCDoO 1 
2 - - ( . 2 )  2 

2 0 
S 2 

0 S 2 0 

,,2 
- J T C o o  (u~  + 2~rlullfll  + ~ 

+ 2 7 1 1 f l X  

2fl .2 
- -  b121 -1 t- { ( 1  - -  8 2) V21 $2 E l l  

1 
$2 ((_2) 2 - -  2 + 4S 2) f i l l a11  

$2U11~11 

If we consider only the linear term, the system has the characteristic equation 

where 

2r/CDo 2r/CDo ( ~ )  2 
2 3 n t 2 2 + 2 = 0 

(.2) (.2) 

r = ~ [ -  (1 + ~ )  ~ + 2]  = - ~o ~ - o , s  ~ + 2 .  

(22) 

(23) 

(24) 

In general, the characteristic equation has a pair of complex conjugate roots corre- 
sponding to the phugoid oscillations and a real root corresponding to the spiral mode. 
The last term of the characteristic equation induces the spiral mode and is a small 

quantity. Let 

= a (25) 
O3 

where a is a quantity to be determined. By substituting into Equation (23) we have 

a = 1 -  r/CDo a 2 1 + a . (26) 

Using Lagrange's expansion (Bellman, 1964) we have for the value of a 

((5)2)((5) x 1 + 2  5 + 6  + . - - .  

Then by factorizing the cubic equation, Equation (23), we have for the 

22 Or - 1 + a 2 + a - 1 = 0 .  
CO 

(27) 

phugoid mode 

(28) 
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This gives 

Real (2phugoid) = - 

Im (2ph~goid) 

rICDo(~ 1 +  ( ~ ) 2 ) a  

= [1--(qCD~ 2 ( 1 +  (~)z  a ) ( 1 - - 3  (~)2 a)]1/2 (29) 

With the roots calculated we have for the spiral mode in real time 

0.69 m 2 2 Do 
t d o u b l e  ~--- 1 + a OoSCDoUo 

For the phugoid mode the damping is given by 

1.38 m 1 
thalf - -  X �9 (31) 

1+ a 

In real time, the phugoid period is 

P= 22u-- ~ I1-(qCn~ 2 ( 1 +  (~)2  a ) ( 1 - 3  (~)2  a) 1-  a/2. (32) 

In the last equation, by taking the bracket equal to unity we have a result that is 
identical to Laitone and Chou's Equation (1.5) (1965). At very high altitudes, co tends 
to unity and Q tends to zero. The phugoid period asymptotically tends to the circular 
orbital period. In reality, after a perturbation has been applied in a vacuum, the 
vehicle will go into a slightly elliptical orbit. Thus, P should tend to this elliptic orbital 
period. This correct orbital period appears only when we consider non-linear terms. 

In general, the quantity (2r/Cno/O~) 2 (~/co) 2 in the expansion of a, Equation (27), 
is small and setting a = 1 gives a very good approximation. This expansion gives the 
roots of the characteristic equation explicitly to the desired degree of accuracy. 
In our derivation, the damping term for the phugoid is 

I_ OouoSCDo + 
exp 2m (1 (~)2 a)  t] (33) 

where a is explicitly given by the series expansion, Equation (27). Using a -  1 we have 
Laitone and Chou's Equation (3.9) for phugoid damping. Hence, besides the additional 
spiral mode obtained, the above results improve the already accurate formulas of 
Laitone and Chou (1965) through the use of the correctional factor a. 

The quantities (~/O.)) 2, (D 2 and a are plotted in Figures 5 and 6 as functions of the 
altitude. The value of a differs from unity by a maximum of about 4.5 ~ near 300000 ft 
altitude. This is the altitude where the density gradient a 1 is also a maximum as shown 
in Figure 4. 
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Fig. 7. Phugoid frequency correction factor. 

In Equation (32), co is the undamped natural frequency of the linear uncoupled 
phugoid motion. Hence the inverse of the bracket represents the drag correction 
factor to this natural frequency. The drag correction factor is plotted in Figure 7 
and has a maximum contribution of about 1.4 9/o at an altitude of 300000 ft. 

Now let 

2phugoid "-/~1 at- i031 (34) 
'~'spiral = '~2" 

With the roots calculated, we have, to the first order, for the elements of the flight path 

e z~ [ C  2 c o s  o91"r + C3 sin o91"r] 1 + eC~ + ee z*~ 

eco), 2 
2 S 

goo ea** 
C,e ~=" + ~ [(m,C3 -1 t- ~1C2)coso)1% 

z ~ = l + - -  

(0~1C 2 - 21C3) sin 0)1~] 
8 

2S 2 [(09 2 -- 2) + o0222] C,e ~ 
(35) 

-4 
2S 2 

e;q" { [ [ ( co  2 -- 2) + o)2 (22 -- (.o2)] C 2 + 2c02c0x2,C3] cos01"c 

+ [[(co 2 - 2) + co 2 (22 - o02)] C3 - 2c-02c.0~2, C2] sin co~-c} 

where the Ci are constants of integration. 
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From these expressions we have the following interesting remarks: 
(1) In each of the variations of elements such as radial distance, flight path angle, 

and velocity, there are two components. One component is oscillatory with diminishing 
amplitude and it tends to circularize the flight path. The other component is aperiodic 
and divergent. This component is due to the offset effect between the thrust and the 
drag and induces a secular variation of the elements of the orbit. 

(2) For the example vehicle, co 1 > 1 above about 140000 ft and o91 ~1 as r0 ~oo , 
thus the effect of drag is to shorten the phugoid period. 

(3) In the expression for i, since 22 >0, the divergent mode tends to decrease the 
radial distance if the initial perturbations are such that eC1 <0. On the contrary if 
eC1 >0  the radial distance will increase with time. Furthermore, under the constant 
thrust application, with decreasing drag the vehicle will move outward following a 
spiral. 

(4) From the expression for the flight path angle we see that it varies in the same 
direction as the radial distance. 

(5) On the contrary, the velocity varies as the radial distance if and only if 

2 
092 > (36) 

1+222. 

If the inequality is satisfied the velocity will increase as the vehicle is spiraling out and 
decrease if the vehicle is spiraling in. The inverse is true if the inequality reverses. 
To calculate the altitude where the velocity inversion occurs, since 2 2 is small, we can 
use the equation 

co z = 2. (37) 

From Figure 5, we see that co 2 is large at low altitudes and tends asymptotically to 1 
when the altitude increases indefinitely. When o92= 2 the velocity inversion occurs. 
More explicitly, using the definitions in Equations (5) and (10) we have 

(W/S)s gsroOo 
N 
m 

CLo 2 
(2 + ~rl) (38) 

where subscript, s, denotes the condition at sea level. The left-hand side of the formula 
above is a characteristic of the vehicle and the right-hand side is solely dependent 
on the characteristics of the atmosphere. Figure 8 is a plot of Equation (38) as a 
function of altitude and the graph can be used to determine the altitude where the 
velocity inversion occurs for any given vehicle. For the example vehicle, we have 
(W/S)s/CLo=600 lb/ft 2. Thus, the critical altitude for velocity inversion is 321 000 ft. 

(6) To the first order, the phugoid period tends to the circular orbital period when 
the altitude of flight increases indefinitely. In reality, the phugoid period tends to the 
perturbed elliptical period. To find this correct orbital behavior we use a new time 
variable, [, such that 

[ =  z(1 + hie + h2 g2 +.. .)-1 



N O N L I N E A R  L O N G I T U D I N A L  D Y N A M I C S  O F  A N  O R B I T A L  L I F T I N G  V E H I C L E  AA 1 

105 \ i ' I I I I 

104 

F.- 103 u_ 

CO 
_..! 

,o,_ 

m 

10 - 

i 

ETKIN'8 
VEHICLE 

1 I I I I IN 
EO0 300 400 500 

ALTITUDE (FT X lO-3J 

Fig. 8. Speed perturbation inversion altitude. 

where h~, ha are constants to be determined. By substituting into Equation (21), 
neglecting drag terms, and requiring a periodic solution for )~, we can easily find that 

(mE _ 2)2 _ 2 (1 - s 2) (00 2 - 2) + 4s 2 (fl - 2) 
- h i  = s2co 4 . (39) 

Hence, to the first order, an asymptotic expression for the phugoid period is 

2nUo 
P = (1 + ehl -t-...). (40) 

r 

The time constants and the period of the spiral and phugoid mode motions, 
obtained numerically from the fifth-order characteristic equation of the coupled linear 
system (First Equation (15)) are plotted as the solid curves in Figures 9-11. The values 
of these parameters predicted by Equations (30-32) are also plotted in the figures. 
The analytical solutions appear as dashed-line curves where they differ enough from 
the numerical solutions to resolve them. For reference, the time to complete one 
revolution of the Earth along the reference flight path is also plotted in the figures. 

The two solutions for the spiral mode time constant (Figure 9) are in agreement 
to at least four significant figures in the altitude range 100-510000 ft. Near an altitude 
of 250000 ft the spiral mode gives important contributions to the vehicle motion, 
while above 400000 ft the effects are negligible. 
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The analytic solution for the phugoid time constant (Figure 10) is less accurate, 
agreeing with the numerical solution to only three significant figures in the altitude range 
of 100-450000 ft. Above 450000 ft altitude the two solutions diverge significantly and 
coupling effects must be considered to correctly predict the perturbed vehicle motion. 

The two solutions for the phugoid period (Figure 11) agree to at least five significant 
figures in the altitude range of 100-490000 ft. 

B. P I T C H I N G  M O D E  

The equations of motion governing the pitching mode motion are given by the last 
two components of Equations (15). Since the uncoupled spiral and phugoid mode 
motions have been determined, we can write these equations as a matrix differential 
equation with a forcing function�9 Thus 

where 
2 ;  = A # ? ,  + c ( & )  

1 
X 1 = A 2 - -  

11 0.) 

1 
c ( 2 , )  = - 

09 (2 - S 2 )  /11 1 "l- 

i 

- n ( c N ~ -  c ,~ )  

S 2 

- 3ko711 
o# - (2 + r 

S 2 

n 2  

S 2 

- n ( c ~  + c ~ , ) _  

A 

r l l  

(41) 

(42) 
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The matrix C a 
substituting the appropriate linear phugoid solution. Then, by integrating 
we have 

where 

can be expressed as function of the non-dimensional time z by 
Equation (41) 

"C 

~A2zQ 0 f f ~ l  - -  e. z,x 1 + e A 2 ( * - t ) c  (t) dt 

0 

= ( 0 ) .  

(43) 

(44) 

The unforced system has the characteristic equation 

(:) >l 22 -4 2 + 1 + (C~,,- C2: = 0 
(.O 

(45) 

which, in turn, has the complex conjugate roots 

n q uz '~pitch--" l'lCN1-- +_ i -- 1 -- . (46) 
60 O) 

With these roots it is now possible to determine the exponential matrix e a:~ and hence 
to solve for the pitching mode motion from Equation (43). We first restrict the dis- 
cussion to an investigation of the pitching mode characteristic roots, Equation (46). 

For the example vehicle, the quantity n 2 (see Equations (10)) is positive below and 
negative above an altitude of about 513000 ft. The constant CN1 is positive. Hence, 
for perturbations in a pitching variable, the vehicle will oscillate with diminishing 
amplitude about the vehicle's center of mass below an altitude of 513000 ft. Above 
this altitude the gravity torque is larger than the aerodynamic torque and the pitching 
mode diverges. Thus, the altitude where n2=0 represents a limit below which the 
vehicle attitude is aerodynamically stabilized. 

The pitching mode oscillations will diminish to half amplitude in the time 

1.38 m 
tha l f  = (47) 

QoSUoCN~ 

and have a period of 

2nUo 
e = . ( 4 8 )  

gon 

The quantity (qCN,/n) z has been omitted from Equation (48) because it's effect is 

negligible at all altitudes. 
Equations (47) and (48) are compared graphically, as was done with the spiral and 

phugoid modes, with the time constant and period obtained numerically from the 
fifth-order characteristic equation in Figures 10 and 11. Again, the solid curves 
represent the numerical solutions and the dashed-line curves represent the analytical 
solutions where they differ enough from the numerical solutions to resolve them. 
The two values for the time constant (Figure 10) are in agreement to 3 significant 
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figures in the altitude range of 100--350000 ft. Above 350000 ft the two solutions 
diverge and, as was the case with the phugoid time constant, coupling effects must 
be considered. We see that the pitching mode is heavily damped in the lower altitude 
range while it is negligibly damped in the higher altitude range. Again, as was the case 
with the phugoid mode, the two solutions for the pitching mode period (Figure 11) 
are in agreement to 5 significant figures in the altitude range of 100--490000 ft. 

The expression for the pitching mode damping constant -(rlCN,/o~) is the same, 
except for notational differences, as Laitone and Chou (1965) Equation (4.8), but 
our expression for the frequency (n/~), which contains the ratio ko, is valid for more 
general body shapes. 

C. R E S O N A N C E  A L T I T U D E  

In Figure 11 we see that, as the altitude increases, the uncoupled pitching mode 
period approaches that of the phugoid mode and exceeds it, slightly above 490000 ft. 
When the two periods are equal, since the forcing term in Equation (41) has the same 
frequency as the natural pitching frequency, resonant oscillations will build up if the 
uncontrolled vehicle remains at the same altitude. The altitude where the two periods 
are equal, called the resonance altitude, is found by solving the equation o9= n. 

Substituting the definitions from Equation (10) and, for simplicity, setting s2= 1, 
we separate the equation into vehicle and atmospheric characteristics as was done for 
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the speed perturbation inversion altitude. Thus, we have 

2k 2 (3k o - 1) (W/S)s 
= Oor~gs LCm~ 

(49) 

where subscript s again denotes sea level conditions. Plotting the right hand side of 
this equation as a function of altitude we can find the resonance altitude for any given 
vehicle configuration. From Figure 12 we find that for the example vehicle the altitude 
is 492 300 ft. 

D. COUPLING EFFECTS 

The linear analytical solutions for the uncoupled oscillatory mode characteristics, 
Equations (29) and (46), show that the damping constants remain negative at all 
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altitudes and that the frequencies 'cross-over' each other at the resonance altitude. 
However, a close examination of the numerical solutions of the fifth-order coupled 
characteristic equation near the resonance altitude reveals these behaviors to be in 
error and reveals, instead, the phenomena shown in Figures 13 and 14. 

We see that instead of a 'crossing' of the mode frequencies, there is, in fact, a 
'switching' of the mode frequencies at the resonance altitude. The modes must 'switch' 
since we have shown previously that the phugoid mode frequency must tend 
asymptotically to the reference orbit frequency as the atmospheric density tends to 
zero. 

In Figure 14 we see that near the resonance altitude the phugoid mode damping 
constant becomes positive and the mode becomes unstable, while the pitching mode 
damping constant remains negative. Above the resonance altitude the 'switched' 
pitching mode damping constant is positive while that of the 'switched' phugoid is 
negative. Since the pitching mode damping constant is unstable above the resonance 
altitude, this altitude is the limit below which the vehicle's attitude can be aero- 
dynamically stabilized and not the altitude where n 2 - - 0  predicted by the uncoupled 
mode characteristics. 

The fifth-order coupled characteristic equation 

12I - AI  - 0 (50) 

where I is the unit matrix and A is defined by Equation (12), can be factored empirically 
to take into account some of the effects described above. By performing simple column 
and row operations on Equation (50) we factorize the equation into the form 

where 
(,? + al,ZZ + a2 2 + a3 ) (/],2 _1_ b12 + b2)  -ff (Cl,~, n t- c2)  --  0 

217CD o 17 
a l =  - K ~  

co 2o0 
(CN1 -a t- CNz)  

a 2 -- 1 + 0 (172) 

a3 = + 0172_( ) 
09 

2 rI C N1 17 
b I -" + K - -  

co 2co 
(CN1 + CN2) 

b 2 -- + 0 ( 1 7 2 )  

r - - 0 ( / 1 2 )  

2 Is (1 + s + 3koS - 
K =  

09 2 [1 - (n/co) 2] 

(51) 

(52) 

and the quantity 0 (172) consists of terms of order of magnitude ~2 and smaller. 
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Neglecting the quantities 0(71 2) and factorizing the cubic and quadratic factors in 
Equation (51), as was done in the previous sections, we find that the spiral mode 
and the imaginary parts of the oscillatory mode roots are approximately unchanged 
while the damping constants take the forms 

Real_ _ ( 2 p h u g o i d )  "-- - -  ~CD~ 1 + a - 
gO 

K 4o)~---- (Cu, + Cu,_)] (53) 

R e a l  ( / ] ' p i t c h )  - -  - -  [ ~CN'-f.D F K 40) q--- (CN, + CN~)] (54) 

where the quantity a is given by the series expansion (27). 
With the coupling effect taken into consideration, the time constants derived from 

Equations (53) and (54) are now in agreement with the numerically derived time 
constants to about 5 significant figures in the altitude range of 100-490000 ft, and 
are indistinguishable from the values along the solid curves in Figure 10. Near the 
resonance altitude, Equations (53) and (54) are plotted in Figure 14 and appear as 
the dashed-line curves where they are resolvable from the numerical solutions. Thus, 
to within a few hundred feet below and above the resonance altitude, the uncoupled 
mode frequencies, 09 and n, the coupled damping constants, Equations (53) and (54), 
and the spiral mode root, Equation (25), correctly and accurately predict the behavior 
of the linearized equations of motion, the first of Equations (15), at all altitudes above 
100000 ft. 

It must be emphasized, however, that since the spiral motion will take the vehicle 
through the exact resonance altitude, we would expect that perturbations in the 
phugoid variables would not lead to a pure resonance oscillation in the pitching 
mode variables, but would lead, instead, to the classical 'beating' phenomena, where 
the amplitudes of oscillation remain finite. A detailed examination of the pitching 
motion near the resonance altitude will be given in Chapter 4. 

E.  N O N L I N E A R  S O L U T I O N  

In the preceding sections we have only retained the linear term in the general solution, 
Equation (20). Uncoupled and coupled linear analytical solutions have been given and 
it has been shown that they are in excellent agreement with the numerically computed 
linear solution, namely Etkin's solution (Etkin, 1961). The next question to be 
answered is: how accurate is the linear solution, compared with the exact nonlinear 
solution? 

The next higher order component of the vector state is ~ 2 X  z. If B ( t ) = - B ( X 1 ) ,  then 

X2 = f eA(~-t)B(t)dt (55) 
Qa 

0 

and, A and B are given by Equation (12) and X1 represents the linear solution found 
in the preceding sections. Hence the computation of X z (~) is straightforward. Here 
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we need only to have an idea of the order of magnitude of the second order term. 
By the form of the vector B(X1), we can see that if the perturbation is small, the 
contribution of e2X z is negligible. This has been shown in a numerical study by 
Rangi (1960). But in the expansion, Equation (8), of the mass density of the atmo- 
sphere, 0" 2 is of the order 105 (see Figure 4). Hence, if e>0(10  -4) we should include 
the second order gradient effect of the air mass density, 0-2 which appears explicitly 
in B(XI).  For the phugoid motion, Equation (21), terms which need to be retained 
in the phugoid component of the vector B are 

rlCDo ,,2 
0 - 2 r l  1 

O) 

2fl ~2 
S2(0 r l  1 

0 

(56) 

Hence, the nonlinear numerical analysis of Rangi (1960) is not valid for large 
perturbations, since the author has neglected all second and higher order terms of 
the air mass density. For large perturbations, as were considered by Rangi (1960), 
the prime contributing nonlinear factor in the phugoid and spiral trajectory is the 
variation of the mass density of the atmosphere, q?he perturbed trajectories for these 
cases are highly eccentric orbits and it is not correct to assume a linear variation for 
the air mass density. 

The value of a2 considered above is somewhat too large because of an inverse 
polynomial representation of the atmospheric mass density. This resulted from a curve 
fitting analysis which can give a wrong value for a truncated series at a certain altitude. 
In trajectory analysis a better approximation is usually found using an exponential 
atmosphere or, when an analytical solution of the trajectory is sought over a long 
interval of time, a simplified inverse polynomial atmosphere can be used. However, 
these model atmospheres are not suitable for a dynamic stability analysis in which a 
series expansion of the air mass density is required. In this paper we just want to call 
attention to the effect of the second and higher order atmospheric gradients. For an 
accurate second order analysis the coefficients 0-1 and 0-2 in the 'parabolic repre- 
sentation' of ~, Equation (8), should be averaged for each limited altitude range 
considered. The effect of atmospheric mass density gradients can be dramatically 
illustrated by a numerical analysis. 

Figures 15 and 16 respectively represent the variations of radial distance and flight 
path angle as time varies. They are reproductions of computer generated plots with 
different atmospheric mass density laws. The set is generated at an altitude of 300000 ft 
where the density gradients are the largest and with an initial nondimensional speed 
decrease of 10-3 (e=Afi= - 10-3). This corresponds to a perturbation of about 
25 ft/sec. 

The uncoupled, exact, nonlinear trajectory equations, the equations in fi, 7 and 
from Equations (6) with c~=0, were integrated numerically, using the exact density 
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law, that is the 44th degree inverse polynomial representation of the 62 Standard 
Atmosphere. The solutions are plotted in solid lines in Figures 15 and 16 as the curves I. 
A second set of curves, the curves II, were obtained by numerical integration of the 
nonlinear equations, but this time using a linear law for the mass density. The dotted 
lines, the curves III, represent the linear analytical solutions of the uncoupled motion 
in the present study with terms up to the order r/8 included in the value for a. For 
comparison the numerical solutions using Etkin's linearized coupled equations, Etkin, 
(1961) are also plotted. It is clear from the plots that our uncoupled, linear analytical 
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solutions and Etkin's linear coupled numerical solutions are nearly identical with the 
uncoupled exact solution with linear density. However, they do not compare well after 
�88 of a revolution with the exact solution using the exact atmospheric mass density 
law. The former results can be improved by including higher order density gradients. 
The improvement is obtained by using the second order solution, Equation (21). 
These results are plotted in dotted lines as the curve IV. The discrepancies are much 
less at higher altitudes where atmospheric drag is small and at lower altitudes where 
the period is short and practical perturbations are small. The time scale taken for 
the plots is about 2 linear periods. 

Referring to Figure 16 the flight path angle time history shows that the exact 
integration curve displays less spiral mode and less damping than the linear solution 
and further shows that the exact phugoid oscillations have smaller period. In fact the 
first cycle takes 1.95 x 103 sec versus the linear phugoid period of 2.51 x 103 sec. The 
second and third cycles take even less time and show that the exact motion will 
complete 3 cycles for the two linear periods. 

A complete numerical analysis shows that below 100000 ft or above 400000 ft linear 
solutions are accurate. In between there is a definite requirement for the inclusion 
of higher order atmospheric mass density gradients. 

4. Motion Near Resonance 

The analysis in Chapter 3 shows that special care must be taken for the integration 
of the equations of motion near the resonance altitude. Fortunately, for a typical 
lifting vehicle as the one considered in this study, the resonance occurs at a high 
altitude where the drag is very small, and as far as the trajectory of the vehicle is 
concerned, it is practically a Keplerian orbit. On the contrary, near the resonance 
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altitude the pitching motion is more complex, due to its nonlinearity. Figures 17 and 
18 present the variations of radial distance and angle-of-attack as functions of time, 
The plots result from a numerical integration of the full set of nonlinear equations. 
Equations (6), at an altitude of 492 000 ft, which is near the resonance altitude for the 
example vehicle with an initial nondimensional speed decrease of 10-3 (A~= - 10-3). 
The solid lines are obtained with the exact density law and the dotted lines present 
the time histories of the elements when a linear density law is used for the integration. 
As shown in Figure 17 the trajectory is nearly a Keplerian orbit with negligible effect 
due to the drag. Also it can be seen in Figure 18 the variations of angle-of-attack 
show the resonance effect with a slightly higher period. Also higher order atmosphere 
density gradients give more damping to the amplitude of oscillations. With these 
observations near the resonance altitude we need only consider the pitching mode 
variables while the trajectory variables r, V and 7 are assumed known functions of 
the time. These are evaluated along the Keplerian orbit. Explicitly, if E is the eccentric 
anomaly which defines the position along the orbit, we have 

r = a (1 - e cos E) 

e sin E 
tan 7 = 

+,,/1 - e 2 

where, a denotes the semimajor axis of the orbit, e the eccentricity, and It the gravi- 
tational constant. The time t is measured from the time of passage through perigee 



NONLINEAR LONGITUDINAL DYNAMICS OF AN ORBITAL LIFTING VEHICLE 453 

and is related to the eccentric anomaly by means of the last equation, Kepler's 
equation. Although the trajectory variables are transcendental functions in time, 
if we restrict the analysis to nearly circular orbits these variables can be expressed 
as simple trigonometric functions through series expansions with respect to the 
eccentricity e. The eccentricity is of the same order of magnitude as the non- 
dimensional perturbation in trajectory variables. 

The pitching mode is governed by the system 

dq eV2SLCm (o~, q) 

dt 2B 

dO V 
= q  + - - c o s y  

dt r 

0 = y + a .  

3g ( r ) (A - C) 

2r B 
sin20 

(58) 

From the last two equations we have 

dq d2y d2~ V dr V dy 1 dV 
= t s i n  ~ c o s  y ~ .  ( 5 9 )  

dt d t  2 ~ d t  2 1- r -2c~ dt r dt r dt 

By substituting into the first equation and using Equations (1) to evaluate dr/dt ,  
d V/dt, and dy/dt we have an equation in c~. 

d 2 a  T cos oc d~ 
§ 

dt 2 mV dt 
QSV dCL (~) 

2m dt 

3g (A - C) 

2r B 
cos 2y sin 2~ 

3g (A - C) T oS 
sin 2y cos 2e q 

2r B m 2m 
- -  [CL (~) COS ~ + Co (~) sin ~3 

T g (2 sin sin a + cos cos a) sin 2~ 
m V 2 Y Y - 2V 2 

oS) 
QSVEL 

2B 

co  v - 
escD( ) 

2m 
g cosy 

Cm (o~, q) -]- 
3g SCL V do 

sin 2y + - 
2r 2m dt 

2 g 
V2 sin 2y = 0.  

(60) 

To get an analytical solution to the equation the following assumptions will be made: 
(1) The lift coefficient varies linearly with the angle-of-attack while the drag 

coefficient remains nearly constant. 
(2) The pitching moment coefficient is given approximately by 

L d~ 
- - .  (61) = Cm~, dt  C~ Cm. sine COSe q 2Uo 

The approximation applies to a slender vehicle with a conical surface of attack, 
and the stability derivatives Cm. and Cmq can be obtained from wind tunnel measure- 
ments or by using simple Newtonian impact theory for moderate angle-of-attack. 
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(3) The vehicle is moving along a slightly perturbed 
reference circular orbit. Then 

Keplerian ellipse about the 

r = 
ro (1 - e2) 

1 + e cos'c 
(62) 

where e is small. To the order of magnitude of e we have 

r = ro  ( 1  - e c o s  z ) ,  

V = (goro)  1/z (1 + e cos'c), 

V 2 --" g oro (1 + 2e cos'c) 

g = go (1 + 2e cos'c) 

O9 (D 
sin y = - e sin z, cos ~ = - (1 - 2e cos "c) (63) 

S S 

0 = Oo (1 - eo'~ cos'c), 
goO 

" c =  t .  
NO 

(4) To the order e and near the resonance altitude, we neglect quantities of order q2.  

With these assumptions, and using "c as a new independent variable, we have the 
quasilinear equation for the angle-of-attack. 

,, + rl (C .o  + CL~, - 26C.,~) a' 
O9 

S 2 

+ ~-~ [(3ko - 2rll6C,,, .)  - e (3ko - 2016a l  Cm.)  cos v] sin ~ cos 

) [ 09 2 sin'c cos 2a = - o ~  1 + ~1 -s a l  CLo sin'c. (64) 

A. N O N L I N E A R  P I T C H I N G  F R E Q U E N C Y  

As has been observed in Figure 18 the pitching motion computed numerically has a 
period slightly higher than the one predicted by the small perturbations equation. 
This is due to the effect of the initial perturbed angle-of-attack. The nonlinear 
frequency can be obtained from Equation (64) by neglecting the negligible damping 
and considering the oscillations along a circular orbit. Then we have 

a" + ( n )  2 
sin c~ cos c~ = 0. (65) 

Equation (65) can be integrated easily using the theory of elliptic integrals or the 
Lindstedt method for obtaining periodic solutions to nonlinear equations. The period 
of oscillation for large angle-of-attack obtained, in real time, is 

2nUo 
1 2 ~ ~o* + ' " )  ( 6 6 )  P = ( 1  + ~ 0  + 1 9 2  

go n 

where C~o is the initial perturbed angle-of-attack. 
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B.  E C C E N T R I C I T Y  O S C I L L A T I O N S  

If the orbit is elliptical, the result for amplitude oscillations of the angle-of-attack is 
qualitatively different since some coefficients of the nonlinear equation are periodic 
quantities. The most significant effect is the forced oscillation due to the nonvanishing 
eccentricity of the orbit. This effect will give rise to a possibility of a resonance which 
may cause instability in the motion. To display the effect of the eccentricity oscillations, 
let us consider the case of small angle-of-attack. Equation (64) can be linearized to give 

where 

~" -~ + ~ eb cos z e = - ec sin z (67) 
CO 

b ___ 

C --" 

S 2 

0)2 (3ko - 2r/lbo'lCm.) 

) 03 2 1 + 3ko + --s a l C L ~  " 

(68) 

We notice that, along a circular orbit, e - 0 ,  and the equation reduces to a homogeneous 
linear equation with constant coefficients. To the order r/i ts characteristic roots are 
given by 

qCN1 n 
2 = • i -  (69) 

09 O9 

which is identical to the solution, Equation (46), to the order ~/. In this formulation 
we see that the linear pitching mode found in the preceding chapter is in fact the small 
oscillation of the vehicle along a circular orbit, and resonance effects cannot be 
observed. If the eccentricity of the orbit is taken into consideration, the equation 
governing the angle-of-attack, even in the linearized form, Equation (67), is a non- 
homogeneous equation with periodic coefficients and an approximate method has to 
be used to get its analytical solution. 

We first consider the linear homogeneous equation. 

~" + CNle' + eb cos z c~ - 0. (70) 
CO 

To display the damping we use the Liouville transformation 

r/CN1 ) 
~z = exp -c w ('r). (71) 

O9 

Then we have the new equation in w 

w" + eb cos z w = 0 (72) 

where a small constant of the order 72 has been neglected in the coefficient of w. 
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The equation is a Mathieu equation and its solution can be obtained with classical 
methods. The homogeneous solution for c~ is a damped Mathieu solution, with 
negligible damping at high altitude. To this general solution we must add a particular 
solution of the non-homogeneous equation, Equation (67). For the example vehicle 
c < 0 at all altitudes but it should be mentioned that for an arbitrary shaped satellite, 
aerodynamic and gravity forced oscillations may mutually cancel to the first order 
when we have 

1 + 3ko + t/OJo'ICLo = 0. (73) 

To construct a particular solution we may 
and consider the equation 

neglect the small dissipative damping force 

(n; ) 
or" + eb cos z c~ = - ec sin z. (74) 

Following Beletskii (1965) we assume a particular solution of the form 

er = - ec sin "cqb (z). (75) 

By substituting into Equation (74) we have an equation for r 

where 

dZdP 3x ddP ( n2 ) 
(1 - x z)  d x  2 d--x + -~2 1 - ebx  r = 1 (76) 

X = COS T .  (77) 

A particular solution of Equation (76) 
parameter  e. Let 

is sought as a series in terms of the small 

r (x )=  4,o + + + ' " .  (78) 

Then by 
magnitude we have 

(1 - x 2) 4o - 3Xr + ~o ~ 

t ( / / 2  
(1 - x 2) 4'; - 3xr + ~-~ 

substituting into Equation (76) and equating terms of the 

1 ) r  1 

1) 41 = b x r  

same order of 

(79) 

where the prime here denotes differentiation with respect to x 
be readily integrated to give 

0 --- 

0) 2 

/ /2  ~ 0)2 

1- -"  
boo 4 cos z 

(/,/2 - -  (,02) (/,/2 __ 4092)' 

= cos z. The system can 

(so) 
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and a particular solution of Equation (74) is 

e,092C e2o) 4bc 
~e - -  - -  ( / 1 2  __  092) sin "t -- 2 (n 2 -- r 2) (n 2 -- 4r 2) sin 2z. (81) 

Again we can see that t /2=o9 2 corresponds to a resonance and at this altitude 
Equation (81) is meaningless because the linearization is not justified. Excluding the 
resonance altitude the correct solution for the angle-of-attack oscillations is the sum 
of the damped Mathieu solution, Equation (70) and the particular forced oscillation, 
Equation (81). 

5. Conclusion 

In this paper we have presented an analytical study of the longitudinal dynamics of 
a thrusting, lifting, orbital vehicle in a nearly circular orbit. Explicit expressions for 
the elements of the orbit were derived and the behaviors of the variations of these 
elements were correctly predicted. It was shown that, for large perturbations, the 
second order gradient effect of the air mass density must be included for an accurate 
analysis. Explicit expressions for the period and damping of the angle-of-attack mode 
were derived. A factorization of Etkin's stability quintic (Etkin, 1961) has been given 
and the values of the explicit roots obtained agree with the numerically computed 
roots up to five significant figures at all altitudes above 100000 ft, to within a few 
hundred feet below and above the resonance altitude. The resonance altitude where 
the two oscillatory modes have the same frequency can be obtained by solving a very 
simple equation. Resonance effect was displayed by a study of the forced eccentricity 
oscillations. It was shown that the small angle-of-attack oscillations of the vehicle 
along an orbit of small eccentricity are governed by a damped Mathieu equation with 
a periodic forcing term. 
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Notation 

A , B , C  
a , b , c , d  
a 

CD 
Q 
Cm 

cm., c.,a 
cN, 

= principal moments of inertia 
= numerical coefficients, Equation (52), Equation (68) 
= correctional factor, Equation (27), semi major axis, Equation (57) 
= drag coefficient 
- lift coefficient 
= pitching moment coefficient 
= stability derivatives 
= coefficient, Equation (10) 
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C N  2 

g 

hi 
ky 

ko 
K 

L 

l 

m 

n 

P 

q 

4 
r 

s 

S 

t 

T 

bi o 

W 

W 

V 

X 

X 

6 

0 

2 

P 

(7 

T 

r 

O9 

O91 

= coefficient, Equat ion  (10) 

= acceleration due to gravity 

= correctional  coefficient, Equat ion  (39) 

= radius of  gyrat ion in pitch 

= (A - C ) / B  

= coupling coefficient, Equa t ion  (52) 

= mean chord,  characteristic length 

= 2rolL 
= mass of  vehicle 

= angle-of-at tack frequency 

= period 

= angular  velocity in pitch relative to the Ear th  

= (L/Zuo)q 
= radial distance f rom center of  Ear th  

= r/r  o 

= x / u ~ o r o ,  speed ratio 

- reference area 

- t ime 

= (go/Uo)t 

V /  bl 0 

= thrust  

= reference circular speed 

= t ransformat ion  variable, Equat ion  (71) 

- vehicle weight 

- speed along the orbit  

- vector state, Equa t ion  (12) 

-- COS 17 

-- angle-of-at tack 

- density coefficient, Equa t ion  (10) 

= flight pa th  angle 
= (L /2k , )  2 

= small per turbat ion,  eccentricity of  orbit  

= o~oSu~/2mgo 
= angle of  pitch 

= characteristic value 

= gravitat ional  constant  

= density coefficient Equa t ion  (24) 

- air mass density 
- non-dimensional  density gradients,  Equa t ion  (9) 

= (o gol o)t 
- central range angle (Figure 1), function, Equa t ion  (75) 

= phugoid  frequency 

- phugoid  frequency with drag correction. 
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Subscript 
()o = reference flight path 

= perturbed quantity 

Appendix: Vehicle Characteristics 

The characteristics of the vehicle geometry and the aerodynamic stability derivatives 
used in all numerical calculations are those used by Etkin (1961) and Rangi (1960) 
and are typical for a slender body, a cone or wedge of 3 ~ semiangle. The values were 
derived from the simple Newtonian impact theory for moderate angles of attack. 
They are shown in Tables I and II. 

TABLE I 

Geometric and inertial parameters 

k u = 6  ft 

ko = --0.94 

L = 5 0  ft 

W/S = 30 psf (sea level) 

TABLE II 

Aerodynamic stability derivatives 

CL0 - - 0 . 0 5  

Cr., = aCr./a~ = 0.329 

Cz>0 = 0 . 0 1 3 3  

Cz>, = OCD/O~ = O.15 

Cm'~ = aCm/a((L/2uo)q)  = - -  0 . 0 2 8  

Cmo~ = a C m / a O ~  : - -  0.0548 
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