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Abstract. Stability conditions are established in the problem of two gravitationally interacting rigid
bodies, designated here as the full two-body problem. The stability conditions are derived using
basic principles from the N-body problem which can be carried over to the full two-body problem.
Sufficient conditions for Hill stability and instability, and for stability against impact are derived. The
analysis is applicable to binary small-body systems such as have been found recently for asteroids
and Kuiper belt objects.
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1. Introduction

In this paper, some classical results from the N-body problem are applied to the
problem of two interacting rigid bodies, each with an arbitrary gravity field. Such
a problem can serve as a model for the dynamics of a binary small-body system,
such as an asteroid or a Kuiper belt object, especially during the early stages of
its evolution following a disruptive impact or planetary flyby. The specific interest
expressed in this paper concerns the long term stability of the binary against disrup-
tion (escape) or impact. Stability against disruption for this problem is essentially
Hill stability, and we find sufficient conditions for this stability and sufficient con-
ditions for violation of this stability. Necessary conditions are more difficult, and
this is explained. In the N-body problem, stability against impact is often related to
Lagrange stability which restricts both the positions and velocities of the bodies to
be bounded. For interacting point masses, such a restriction guarantees that impact
will not occur. However, for rigid bodies with distributed mass, impacts can occur
with finite velocity; thus we introduce a definition called stability against impact
(SAI). We find sufficient conditions for SAI in the full two-body problem.

2. Basics of the N-body Problem

Assume N mutually gravitating bodies with mass, positions, and velocities [m;, r;,

vi;i =1,2,..., N], specified relative to a barycentric reference frame:
U
mii‘i:—; i:1,2,...,N, (1)
ar,-
U= Z m’ 2)

1< j<k<N |ri _rk|
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N
Zm,-ri = 0, (3)
i=1
N
D mvi =0, )
i=1

where U is the force potential of the system.

There are four non-trivial integrals of motion for these equations, the total en-
ergy of the system and the total angular momentum vector of the system, expressed
as

E=T-U, )
1 N

Tzigm,-v,wvi, (6)
N

K= Zm,-ri X Vi, (7)
i=1

where E is the total energy, 7T is the kinetic energy, and K is the total angular
momentum vector. Additionally, define the polar moment of inertia of the sys-
tem:

N
I,,:Zm,-ri-r,-. (®)
i—1

One of the basic results from the N-body problem is the Lagrange—Jacobi
identity, found by taking the second time derivative of the polar moment of inertia:

N
. d
i, = 4T+2Zri-a : )
r;
i=1
N
U
= 4E+4U +2) ri-——, (10)
r;
i=1
= 4E 42U, (11)

where the final step occurs since U is homogeneous of degree —1 for the standard
N-body problem.

Another basic result is found by applying the Cauchy inequality to the angular
momentum (Pollard, 1976). From this we find:

K*<2I,T, (12)

where K? = K - K. This is usually combined with the Lagrange—Jacobi identity
to derive the Sundmann inequality, which places constraints on the growth of an
N-body system (Pollard, 1976).
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3. Extension to the Full Two-body Problem

Starting from the N-body problem we will carry our analysis over to the ‘full
Two-Body problem’, defined as the problem of two gravitationally interacting ri-
gid bodies. This problem has been studied extensively in the literature, and is a
well-posed problem of celestial mechanics. We refer the reader to Maciejewski
(1995) for a complete development of this system. For our purposes, we wish
to re-evaluate the basic quantities of force potential, kinetic energy, total energy,
angular momentum, and polar moment of inertia for such a system. To carry out
the development, we note that the summations in the N-body problem naturally
generalize to integrals over a continuum of mass distribution, and that a series of
holonomic constraints can be applied to the N-body problem without changing
the basic definitions and values of the quantities defined above for the N-body
problem.

3.1. DEFINITION OF THE TWO BODIES

In the following we assume that the N particles are divided into two groups,
denoted as B; and f,, the particles in each group rigidly connected amongst them-
selves. These groups can be defined using two collections of integers, denoted as
I} and I, for body 1 and body 2, with the number of points in each set being N;
and N,, respectively. Of course, we have that N = N; + N,. Then the bodies are
defined as B8; = {r;; i € I;}, I = 1, 2. Each body will have its own center of mass,
computed as:

Ziell miri
Ziell m; ’

Then the set of relative vectors p;, are defined:

R, = 1=1,2. (13)

(14)

- ri_Rlv iEIlv
pi =

I; —Rz, i e 12,

as well as the difference of the center of mass vectors r = R, — Ry, and the
difference of the relative vectors p;; = p; — p;. The latter are defined without
ambiguity, given the sets /; and I,. With this notation, the vector difference r;; =
r; — r; can equal one of four possibilities, depending on which set the i and j
indices lie in:

r+,5,~j, iEIl,jEIQ,
rj = -r+p;, ie€h jel, (15)
B i jelorijelb.
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3.2. REDUCTION OF THE FORCE POTENTIAL

Using these definitions, the potential can be rewritten as:

N
U - g mmJ 6
ij— |ru‘
_9 _maim; m;m;
2 1611 S |I’ + 'Ol]| ieh,jel |—l‘ + 'Bij
n Z mim N Z mim ’ a7
iel,jel ‘,O,]| ieh,jeh |'O‘J

where we assume that double summations over i and j exclude i = j. The first
two summations can be reduced to the same general form, yielding:

v=g| Y 7|m"mj +

icl,jeh r+ i
1 mm; 1 M

"2 ol T2 =T |- (18)
2i€11,2j611 |pij| 2,-61;612 |pij|

Now note that each mass m; is uniquely identified with a particular body, f; or
B>. Thus each summation can be generalized to an integral over one of the bodies,
defining the mass elements as a function of position: m; = dm;(p;), p; € Bi,
where I = 1, 2 depending on which set i belongs to. The vectors p are integration
variables over the mass distributions, leading to

dm(py)dm,(p
U — g/ / 1(,013 2502) +
,31 g Ir+p—p1l

|:/ / dm; (p)dm (p) ffdmz(P)dmz(p)] (19)
B1 Y B |lO| B d B |/0| .

For representational purposes, we must introduce the relative orientation between
the two rigid bodies. First define the transformation dyad of each body, A;, which
takes a vector from an inertial frame into a body-fixed frame, and its inverse, AIT,
which takes a vector from the body-fixed frame into an inertial frame. These trans-
formation dyads can be used to define the inertial orientation of each body. In the
force potential we perform the integrations in the frames fixed to the bodies 8; and
B> and require each relative vector to be specified in the inertial frame, and thus can
replace each p; with AT . 5; without loss of generality. Then the mutual potential
between the two bodles (deﬁned to be Ujy) is:

dml(pl)dmz(pz)
gt [T+ — Al 5|

U, =6 (20)



STABILITY IN THE FULL TWO-BODY PROBLEM 159

With these definitions in hand we can rewrite the potential as:
U =Un(r, A, Ay) + Uy + Un. (21)

Since we have a set of rigid holonomic constraints fixing the relative distance and
orientation of each body internal to itself, we note that the self potentials U;; and
U, are each constant. We will sometimes suppress the dependance of Uy, on A4
and A in the following.

Before proceeding, we discuss three results involving the mutual force potential
Uy,: upper and lower bounds on U}, as a function of r = |r|, monotonicity of Ui,
as a function of r, and a limitation on the magnitude of U;, as compared to its
gradient. For all the discussions we note that each of the vectors p; and g, in
the integral for U;, will be bounded when evaluated over their respective bodies,
yielding:

|51|<pM1’ (22)
7ol < oun. 23)
|AD| < pus (24)

where py, is the largest radius of body / as measured from its center of mass,
PmM = Pm,; + Pu;» and AIB = 152 - /61 (SCC Figure 1)

3.2.1. Upper and lower bounds on Ui,
First we note that the force potential can be bounded as a simple function of radius:

Uu(r) = max Up(r,A, Ay) 2 Up(r, AL Ay), (25)
1,432

Pu=Pum1+Puz

Figure 1. Maximum radius bounds.
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where the maximization of Uy, occurs over all possible orientations between the
bodies for a fixed vector r. In a similar fashion we can define a lower bound
U, (r) = ming, o, Ui2(r, A1, Ay) < Uja(r, Ay, Ay). Note that U,, and Uy, are only
a function of the distance between the two centers of mass.

If r > py we can derive an explicit upper bound on Uy;:

GM, M,
Up(r,A, Ay) < . (26)
r— pPm
To establish this we must show:
dM,dM. dMdM.
f f aMdM, _ / / dM,dM; 27)
B1 Y B2 |r+A,o| Bidp ¥~ Pm
A sufficient condition for this is
r—pu<Ir+Apl, (28)

which can easily be shown to be true given r > py, and Equation (24).

3.2.2. Monotonicity of Uy,
Next we develop conditions under which the potential U, is monotonically de-
creasing for an increasing radius, r. Specifically, given two vectors r and d which
are parallel, that is, r - d = rd, we will show that a sufficient condition for
U, A, A) <Up(d, A, Ay ifd < risthatr +d > 2py.

A sufficient condition for U»(r, Ay, Ay) < Ujx(d, Ay, Ay) is

Ir+ Ap| > 1|d+ Ap| (29)
over all admissible values of Ap. Squaring both sides and reducing yields

rPP—d*+20r —d)t-Ap >0 (30)
since r and d are parallel. Now divide by (r — d) > 0 to find:

r+d> —2r-Ap. 3D

But —F - Ap < py in general, producing a sufficient condition for monotonicity to
hold: r +d > 2py.

3.2.3. Relation between magnitude and gradient of U,

In the classical N-body problem, use is made of Euler’s theorem of homoge-
nous functions, where we find that U + ZlN: L @U/0r;) - r; = 0. This is used
to simplify the Lagrange—Jacobi identity and establish other important results. For
the full two-body problem, as stated here, this result no longer holds due to the
holonomic constraints placed on the mass distributions. We can establish a variant
of this result, however, that is useful in computing a sufficient condition for a binary
system to escape.



STABILITY IN THE FULL TWO-BODY PROBLEM 161

The condition we find is that 2Uj; + &2 - r > 0if r > 2py.

To establish this result we must show that:

2 Ap) -
ffdmldmz[ _ ,0231 >0, (32)
B Y B2 I+ Apl Ir 4+ Ap|

A sufficient condition is that the integrand be positive, or:

2(r+ Ap) - (r+ Ap) — (r+ Ap) -r>0. (33)
Factoring out (r + Ap) results in:

(r+ Ap) - (r+2Ap)>0. (34)
We see that this will be satisfied if r > 2p,,, giving a sufficient condition.
3.3. TOTAL ENERGY

Next we consider the form of the total energy of our general two-body system. To
develop this we first note the following results:

> _mip; =0, (35)

iel

M=) m, (36)
iel

I, =— Zmiﬁi * Pis (37
iel

where I; is the inertia dyad of body / and p is the cross product dyad defined such
that ® x p = & - p = @ - p. Additionally, we assume that M|R; + MR, = 0,
which yields explicit formulae for the location of the positions and velocities of the
mass centers in terms of their relative distance:

—-M
Ri=———r, (38)
M, + M,
M
Ry=———r, (39)
M, + M,

and their immediate generalization to velocity by replacing R; with V; and r
with v. Finally, we note that the velocity of a particle in the /th body is equal
tov; = V; + @y X p;, where @; is the rotational velocity of body 1. Applying these
definitions to the N-body kinetic energy in Equation (6) results in

1. - 1. -
- " y. —w; - I - —r - - . 40
2M1+M2V V—I—2w1 1 a)1+2w2 2 Wy (40)
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The total energy of the N-body problem is £ = T — U, thus for our system the
total energy becomes:

E=T—Up—U; — U 41)

Since the self potentials are constant and arise nowhere else in our set of N-body
conditions, we redefine the total energy as E plus the self-potentials:

E 1 MM, .
= ——— =~ v.v
. 2M + M,
1. I B .
+ 71 1o + 7@2 L -w—Upp(r, A, Ay). 42)

This quantity is conserved under evolution of the system.

3.4. TOTAL ANGULAR MOMENTUM

Now consider the total angular momentum of the system. Equation (7) for K can
be expressed as:

K =) m®R +75)x (Vi+a1 X 5) + 43)
iel
+) miRy+5i) x (Va4 @ X fr). (44)
ielp

Using the center of mass definitions and inertia dyad definitions this reduces to:
K:MIRIXV1+M2R2XV2+II-C_(31+IQ'CT)2. (45)
Using Equations (38) and (39) leads to

M\ M,

MR xVi+MRy, x V= —Fr
1R 1 2o 2 M+ M,

XV (46)

reducing the angular momentum to its simplest form:

K= MM +1 -+ L@ (47)
= ————— T I XV - s ).
M1+M2 1 1 2 2

This is also conserved under evolution of the system.
3.5. POLAR MOMENT OF INERTIA

The final reduction we make is for the polar moment of inertia. The general ex-
pression becomes

I =Y m®+p5) Ri+p5)+ Y m®Re+p5) R+ pi), (48)

iel iely
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which reduces to:
Ip=M1R1'R1+M2R2'R2+Zmi/5i',5i+zmi,5i'/5i- (49)
iel iely

Now, the final two summations can be re-expressed in terms of the inertia dyads
of the bodies using the well-known identity (MacMillan, 1960): Y. m;p; - p; =
%Tr[l] where Tr[I] denotes the trace of the inertia dyad I, leading to:

D mibi - fi+ ) mipi - pi = 5Tl + L], (50)
iel ielp
Restating Equation (49) in terms of r yields the final form of /,. It is important to
note that 7, is only a function of the radius magnitude.
M\ M,
———r-T
M, + M,
Even though the trace of the inertia dyads is constant, we do not redefine the polar
moment of inertia so that we can still apply it to Cauchy’s inequality.

I,(r) = %Tr[ll + L]+ S

3.6. THE CAUCHY INEQUALITY

The Cauchy inequality still applies to our system since it concerns K, /,,, and T,
each of which is directly related to the N-body results with no change. Thus, in the
full two-body problem the Cauchy inequality can be explicitly stated as:

K*<21,(nT, (52)
T =E;p+Upr AL Ay). (53)

Later we will use this inequality to establish sufficient conditions for stability
against impact. Before doing this, we use the inequality to define the minimum
energy of the system.

For a given value of angular momentum, there exists a minimum system energy.
From Cauchy’s inequality we have:

KZ
Epp>
2[,,(1’)

For a given value of r we can define the maximum force potential, Uy, (r), allowing
us to write

—Upp(r, A, A). (54)

KZ
20,0 —Up(r,A1,A) > E,(r), (55)
2
E,(r)= 20,0 —Upm(r), (56)

and the right-hand side of Equation (55) is only a function of the distance between
the centers of mass. Thus this can be minimized over all values of radius r > py, to
find:
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E» = min E,(r). (57)
rZpM
Note that we cannot use our explicit bound on Ui, given in Equation (26), since it
has an unnatural singularity at r = p,,. The existence of this minimum energy for
a given value of K? is important and will be used later.

3.7. EQUATIONS OF MOTION

For completeness, we also give the equations of motion for the coupled system.
The resultant equations of motion for such a system are well-defined and involve
the combined translational and rotational motion of the two bodies (Maciejewski,
1995).

MM, .. dUn

M+ M, or 58)
H, =H, x &, + M;, (59)
o =1" - Hy, (60)
A=A, xay, (61)

I1=1,2,

where H; is the angular momentum, I; is the inertia dyad, w; is the rotational
velocity vector in the body-fixed frame, and A; is the transformation matrix for the
bodies I = 1, 2, respectively. The torques M; are derivable from the mutual force
potential Uj,.

4. Hill Stability

We say that our two-body system is Hill stable if () < C for all time, where C is
a positive, finite, constant value. It is Hill unstable if lim,_, o, 7 (¥) — o00. We can
develop two sufficient conditions, one for Hill stability and one for Hill instability.

4.1. SUFFICIENT CONDITION FOR HILL STABILITY

A sufficient condition for Hill stability is £, < 0.
The proof of this is simple. If £, < O and the system is Hill unstable, then
r — 00. But we can directly show from Equation (26) that:

r—>00

This leads to E; = T < 0, which cannot be true since 7 is the sum of positive
definite quadratic forms.
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The necessary conditions for Hill stability are more difficult, and must involve
estimates of the strength of interaction between translational and rotational motion.
As a case in point, the ‘full’ problem of two interacting spheres can be given an
arbitrary value of energy by increasing the sphere’s rotation rate. In this instance
the total energy is independent of the system stability, as there will be no exchange
of energy and angular momentum between rotational and translational motion. If,
however, one of the bodies is given a non-spherical mass distribution, it is possible
for coupling between the translation and rotation to occur (Scheeres, 2001) and the
stability of the system becomes a relevant question.

4.2. SUFFICIENT CONDITION FOR HILL INSTABILITY

A sufficient condition can be developed for Hill instability. If:

2

1< . -

Elz—iga)i-li-wi>e>0, (63)
r-v>0, (64)
r>2pum, (65)

then r — oo. We will discuss the necessary magnitude of ¢ in a moment.
To prove this we first develop an analogue of the Lagrange—Jacobi identity. The
first and second time derivatives of I, are:

MM,

l,=2—r-v, 66
b Ml—l-MzrV (66)

., MM, ) MM,

=2————Vv-V+2——r-F, 67
P M+ M, M + M, ©7)
Equation (67) can be rewritten using Equations (42) and (58) as:

aUi»
or

2
I,=4Ep,—2) & L& +4Up+2—= r. (68)

i=1

As discussed previously, the potential Uy, is no longer homogeneous, meaning that
we cannot apply the standard reduction to the final two terms of the expression.
However, in Section 3.2.3 we established that 2U |, + "Sj—r‘z -r>0ifr > 2py.
Note that I, > 0 by definition. Next, if inequality (64) is satisfied then I » > 0.
Finally, if inequalities (63) and (65) are satisfied then f,, > (. If ¢ is large enough,
this will always be true, leading to I, — oo which immediately implies r — oo.
The number ¢ must be chosen to bound the amount of energy the rotating body
can extract from the translational motion of the system. To establish such a bound
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requires that more details of the system be specified. We will only consider a very
simple system, consisting of the interaction between a sphere and a body with a
C»; gravity coefficient. Assume that the bodies are initially travelling away from
each other along a rectilinear orbit with sufficient energy to escape (barring any
additional interaction). This scenario provides a reasonable pre-condition for our
case of Hill instability discussed above. In (Scheeres et al., 2000) this situation was
considered and an equation for the change in rotational angular momentum of the
body with the gravity coefficient was developed (assuming motion in the equatorial
plane):

H, = w sin[2(A — )], (69)
where M, is the mass of the body with the gravity coefficient, M; is the mass of
the sphere, C»; is the gravity coefficient (with dimensions of km?), r is the radius
between the centers of mass, X is the longitude of the sphere, and 6 is the rotational
phase of the body with gravity coefficient. We assume that all motion is in the
plane. Then applying the first step of Picard’s method of successive approximation
yields:

AH, = 6GM.M,Cx, / Mdr, (70)

=0 r’

where we assume that 6 = 2.7, where €2, is the initial rotation rate of the body.
The largest value of A H, occurs if the rectilinear motion is parabolic:

PP =)+ 3t/2u. (71)

Substituting for € and r as functions of time, the resulting integral can be expressed
as:

GM. + M) MM, .
AH, = 232 = oM Cy{ sin(2)) +
/4 .
—|—2an|: <S,-(2a§2z) - 5) Sin 200 + a2,) +
+C;(2aR,) cos 2(A + onZ):| } (72)
2r3
_ % 73
o o (73)
Si(x) = f O i, (74)
0 X

c _ /OO cos(x)
i(x) =— dx, (75)
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where u = G(M. + My) and S; and C; are the sine and cosine integrals, re-
spectively. All of the above results can be generalized to fully three-dimensional,
non-rectilinear orbits (Scheeres, 2001). For the sake of argument we will make
one final simplification and assume that the rotation rate €2, is slow, reducing the
expression to:

|GM, + My) M:-M; .
AH, ~ 22 e M.t M. Ca sin(2A), (76)

where we note that AH, = [,AQ,.
Now ¢ must be chosen to be large enough so that the change in rotational energy
over the entire escape trajectory is bounded:

Ep —3L(Q 4+ AQ.)* >0, (77)

where €2, is the initial rotation rate of our system when our sufficient condition is
applied and A2, denotes the maximum possible increase in rotation rate due to
interaction between the bodies, a result we derived above. Ignoring higher orders
of AQ,, we find that

[G(M. + M) M.M;
~ 242 CrQ2 78
& f rg M.+ M, 2284, (78)

should ensure escape, leading to the more specific sufficiency condition:

Mc + MS MC MS
rg Mc + MS

2
1 > -
E — 5 i_El wi L -w; >2 CZZQz- (79)

We note that this is a conservative result for the system of an interacting sphere
and a body with Cy, gravity coefficient as the maximum addition of energy to
a rotating body would be found by such an analysis (i.e. slowly rotating body,
rectilinear parabolic orbit, in the equatorial plane).

5. Stability Against Impact

A binary will be stable against impact (SAI) if |r(¢)| > py for all time. A sufficient
condition for SAI can be derived. Assume a system with a current separation r,
energy E, and angular momentum K. A sufficient condition for the system to be
SAl is that a number d € (py, r) can be found such that:

KZ

Ipd) < 20E+Uy(d)

(80)
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To prove this, rewrite Cauchy’s inequality as:

KZ

— < I,. 81
2E+Up) 7 &1

Now if two vectors r and d are parallel, then U (r, Aj, Ay) < Upp(d, Ay, Ay) if
r > dand r +d > 2py, as established in Section 3.2.2. Then, by definition,
U, A, Ay) < Up(d, A, Ay) <Upy(d) and for r > d > py; we have:

K? K?
< .
2(E+Uu(d) 2(E+Up(r, AL Ay))

(82)

If the proper value of d can be found to satisfy Equation (80), we immediately
know that the system cannot evolve to the mutual distance d without violating the
Cauchy inequality, thus:

1,(d) < I,(r), (83)
which reduces to:
d < |r(t)| (84)

guaranteeing SAIL

This proof does not tell us what value of d will supply SAI but given a set of
constants, initial conditions, and potential for the system, it is an easy process to
search for this value. If such a value of d cannot be found, mutual impact cannot
be ruled out.

We can develop a condition for when such a number d will exist for a given
value of angular momentum, however. If

KZ

E, < o) Un(om) = En(pm), (85)

then there exists a d such that the SAI sufficiency condition is satisfied if r > py
and the system energy E € [E}, E,,(pu)]. If these conditions are met, then there
exists ad € (py, r) such that

2

E =
21,(d)

—Un(d), (86)

which corresponds to the sufficient condition in Equation (80).

Observing Equation (80), we note that small values of angular momentum or
large values of energy may cause the inequality to be violated. While we have a
lower bound on energy for a given angular momentum, there is no upper bound on
energy for a given angular momentum, thus a decrease in angular momentum will
never violate a given energy value. From these realizations we can derive a limit
on K? and E which, if violated, means that the sufficient SAI condition cannot



STABILITY IN THE FULL TWO-BODY PROBLEM 169

occur. To derive this we consider Equation (80) again and note that for the numbers
oy <d<r,

I, (pm) < I,(d), (87)
K? K?
< .
AE+Uu(d) 2E+ Un(r))
Thus, should the inequality:

K2
I,(om) 2 m (89)

ever be satisfied, we know immediately that a d that satisfies the sufficient SAI
condition cannot be found. This inequality is immediately computable for a given
set of initial conditions and models.

(88)

6. Conclusions

This paper derives some basic stability results in the problem of two gravitation-
ally interacting rigid bodies. To find these stability results we use classical results
from the N-body problem and, by the application of holonomic constraints on the
masses, reduce them to the problem of two interacting rigid bodies. This results
in sufficiency conditions for Hill stability, Hill instability, and stability against
impact. The conditions found here are directly applicable to the problem of asteroid
binaries, and can be used to better understand the final outcomes of motion in such
systems.
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