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Abstract. Constraints on the final rotation rates of a Hill unstable binary in the full 2-body problem
are derived and analyzed. Application of these constraints are made to the problem of a constant
density body spun to disruption. This analysis has relevance to the evolution of asteroid spin rates.
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1. Introduction

A proposed source of slowly rotating asteroids is from the disruption of binary
bodies formed during flybys of the Earth and Venus [3, 6]. As a result of such an
interaction, it is possible for the asteroid to be spun at a rate fast enough for the
centrifugal accelerations to overcome the gravitational attraction. Thus, due to a
planetary flyby it is possible for an asteroid to be spun to disruption, in particular
to be spun into two or more distinct bodies. If these bodies do not reimpact at their
first periapsis passage, a binary (or more) asteroid has been formed. Depending
on the total energy of this binary system, it is possible (indeed it is likely) for the
resulting binary system to be Hill unstable, and thus to eventually have a mutual
escape of the two (or more) bodies [7]. When this occurs, the rotational kinetic
energy of both bodies must decrease from their initial, post disruption rate due
to conservation of energy. It is possible that this reduction in spin rate could be
significant and observable in the asteroid rotation rate population [3]. In this paper
we carry out an analysis of such a system and find constraints on the final spin rates
of a disrupted binary formed by spinning a single body beyond its disruption limit.

This paper first derives the total energy of a rotating body, for both a general
and ellipsoidal body. Next, conditions for such a body to ‘disassemble’ into a
binary are stated, along with the resulting energy constraints. Then, the problem
of specifying the mass distributions of the newly created binaries is considered,
and a reasonable approach is defined. Assuming a system with positive free energy
that is Hill unstable, constraints on the final rotation rates of the binary are found
after it has disrupted into two single bodies. These results are also specialized to the
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case of ellipsoids. Finally, a mathematical analysis of these constraints is carried
out and a few example computations are given.

This paper presents two results of special significance. First is the realization
that the ‘fission’ of a rigid body into two or more components liberates potential
energy, enabling it to interact with the kinetic energy of the system. Second is that
strict bounds on the final rotation rate of at least one component of a Hill unstable
binary asteroid can be found.

2. Total Energy of a Rotating Body

2.1. GENERAL CASE

Consider a body of mass M rotating about its largest moment of inertia. It has a
kinetic energy of:

T = 1
2Izω

2, (1)

where Iz is the maximum moment of inertia. A natural body will always tend to
this rotation state [1]. The total angular momentum of the body is simply computed
as:

K = Izω (2)

and is related to the kinetic energy by

T = 1
2Kω. (3)

To compute the total energy of the body we must also consider its self gravita-
tional potential. For an arbitrary mass distribution this is defined as:

U = −G
2

∫
B

∫
B

dm1 dm2

|ρ12| , (4)

where G is the gravitational constant, B is the mass distribution of the body, dmi
is the elemental mass of the body at a position vector ρi , and ρ12 = ρ2 − ρ1 is the
relative distance between two mass elements.

A lower bound on U can be inferred from physical principles, as the spher-
ical self-potential of the same mass must minimize all possible mass distributions.
Thus, we can assert:

U � − 3GM2

5r
, (5)

where the lower bound is the self gravitational potential of a sphere, M is the total
mass of the body, and r is its mean radius, computed from:

r =
(

3M

4πσ

)1/3

, (6)
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where σ is the body’s mean density. For a constant density tri-axial ellipsoid with
semi-major axes α, β, and γ , the mean radius is defined as the geometric mean of
the semi-major axes, r = (αβγ )1/3.

Thus, the total energy of a rotating body can be stated as:

E = 1
2Izω

2 + U . (7)

2.2. ELLIPSOIDAL CASE

If the body is a tri-axial ellipsoid with semi-major axes α�β� γ , we can provide
greater detail on the above equation. First, the maximum moment of inertia of the
body is now:

Iz = 1
5M(α

2 + β2). (8)

If the body is a constant density ellipsoid, we can carry out the integration for
the self-potential in closed form. First we start from the gravitational potential for
an interior or surface point [2]:

V (r) = −Gπσαβγ
∫ ∞

0
φ(r, u)

du

�(u)
, (9)

φ(r, u) = 1 − x2

α2 + u − y2

β2 + u − z2

γ 2 + u, (10)

�(u) =
√
(α2 + u)(β2 + u)(γ 2 + u) (11)

where r is the position vector with coordinates x, y, and z oriented along the max-
imum, intermediate and minimum semi-major axes of the ellipsoid, respectively.

The self-potential is then computed as:

U = 1
2

∫
r∈B
V (r)σ dr, (12)

where B = {r|0 �φ(r, 0)� 1}. Direct integration yields:

U = −3

8
GM2

∫ ∞

0

du

�(u)

[
1 − 1

5

{
α2

α2 + u + β2

β2 + u + γ 2

γ 2 + u
}]
, (13)

where M = 4πσαβγ/3. This expression can be simplified by a certain identity
[2]: ∫ ∞

0

[
1 −

{
α2

α2 + u + β2

β2 + u + γ 2

γ 2 + u
}]

du

�(u)
= 0. (14)

This allows the result to be simplified to:

U = − 3
10GM

2I, (15)
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where

I =
∫ ∞

0

du

�(u)
. (16)

The integral I has some interesting properties. First, due to the identity asserted
above, it is homogenous of degree −1 in its arguments, that is, αIα + βIβ +
γ Iγ = −I , where Iα = ∂I/∂α. Second, a sharp bound on its value can be
delimited, I � 2/(αβγ )1/3, which corresponds again to the fact that a spherical
body minimizes the self gravitational potential.

Thus, if the body is a constant density, rotating ellipsoid the total energy is

E = 1
10M(α

2 + β2)ω2 − 3
10GM2I. (17)

It is interesting to note that minimizing E over the variables α, β, and γ, while
maintaining αβγ and Izω constant, directly yields the conditions for Jacobi and
Maclaurin ellipsoids. This should be expected, however, as these special shapes
are known to be minimum energy configurations for rotating ellipsoids of inviscid
fluid [2].

3. Disassembly of the Body

One sufficient condition for the physical disruption of a body with no tensile
strength is that the body spin fast enough for material on its surface to experi-
ence greater centrifugal than gravitational accelerations. In the following we will
outline these necessary conditions and introduce an idealized model to track the
total energy and angular momentum before and after the body has ‘disassembled’.
Again, we first compute the general conditions and then give details for an
ellipsoid.

To define the condition for disassembly for the general case, first define the
set:

φ =
{

r ∈ B
∣∣∣∣ω2|ẑ × (ẑ × r)|�

∣∣∣∣∂V (r)∂r

∣∣∣∣
}
, (18)

where V (r) = −G
∫
B dm/|r + ρ| is the gravitational potential at a location r

measured from the body center of mass and ρ is the position vector to the mass
element dm. For disassembly to occur we need the set φ to not be empty. More
sophisticated statements of instability conditions can be found by using principles
of inviscid flow [2], however we take a more conservative approach and assume
that the body does not experience any shifts in its shape until this limit is reached.
For a general mass distribution there are no clear results concerning the regions
over which internal particles will feel a net outwards acceleration. While centri-
fugal accelerations will vary linearly with distance from the spin axis, the gravi-
tational acceleration will have a more complex variation as a function of its mass
distribution. This is a topic for future study.
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For a tri-axial ellipsoid the disassembly condition can be reduced to:

ω2 � 3

2
GM

∫ ∞

0

du

(α2 + u)�(u), (19)

= −3

2

GMIα
α

. (20)

When this rotation rate is reached for an ellipsoid the entire interior of the body ex-
periences positive acceleration along the long axis, a situation which leads directly
to disruption, unless the body has non-negligible tensile strength.

The actual computation of the resulting motion is difficult and non-trivial, and
cannot be understood completely in simple terms. Usual approaches are to simu-
late the system numerically with an assemblage of point masses [5]. Despite this
complexity, we can develop a simple yet practical model for the system energy and
angular momentum following disruption.

For tractability, assume the body splits into two disjoint pieces, with the mass
ratio between them being a free parameter. Angular momentum is conserved across
such a split, and we ideally assume that energy is conserved. If the body is formally
taken and split into two rigid bodies, conserving energy and angular momentum,
we find that the relationship between kinetic energy and angular momentum in
Equation (3) continues to hold across the event. This occurs as all the elements
within the body maintain the same rotation rate immediately before and after break-
up. The kinetic energy is now split into three parts, however, the rotational kinetic
energy of each body and the kinetic energy of translational motion between the two
bodies:

Tr0 = Tr1 + Tr2 + T12, (21)

where Tri = 1/2Iziω
2
i represents the kinetic energy of rotation and T12 = 1/2M1

M2/(M1 + M2)V
2 represents the kinetic energy of mutual translational motion,

where V is the relative speed between the mass centers.
The potential energy is also partitioned across the split, leading to

U0 = U1 + U2 + U12, (22)

where Ui is the self potential of the ith body, defined in Equation (4), U12 is the
mutual potential between the two mass distributions:

U12 = −G
∫
B1

∫
B2

dm1 dm2

|r + ρ12| (23)

and r is again the distance between the two mass centers and Bi is the mass
distribution of the ith body.

Balancing the energy before and after disruption we have the basic result:

Tr0 + U0 = Tr1 + Tr2 + T12 + U1 + U2 + U12. (24)

In the subsequent evolution of the body, the mutual potential U12 can be con-
sidered to be ‘liberated’ energy as it is potential energy that previously was
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contained in the self-potential of the original body, but is now free to be exchanged
with the kinetic energy of the system [7]. Of dynamical interest is the kinetic plus
mutual potential energy, Ẽ, which is conserved in the subsequent dynamical evolu-
tion of the system under the full 2-body problem constraints. This ‘free’ energy Ẽ
is defined as:

Ẽ = Tr1 + Tr2 + T12 + U12, (25)

= Tr0 + U0 − U1 − U2. (26)

Whether or not a binary can mutually disrupt is then controlled by the free energy
of the system, Ẽ, which must be positive for there to be sufficient energy for the
bodies to escape each other.

4. Specifying the Disassembled Bodies

It is fundamentally difficult to compute the free energy of a disassembled sys-
tem using either Equation (25) or (26). Without a general predictive theory for
disruption in the full 2-body problem, we must create parameterized models of
these new bodies. Even if we know the initial system in detail, we do not have a
generally applicable analytic theory for computing the mutual potentials or self-
potentials of a body split arbitrarily into two pieces. This situation also makes it
difficult to develop useful models for the moments of inertia of the system after
disassembly. The process is inherently difficult and ambiguous, and trying to give
detailed specifications of the bodies would involve many free parameters and still
require mathematical assumptions. To circumvent these problems we will instead
develop bounds on the different quantities of interest and introduce the simplest of
parameters to describe the binary system.

If the initial system has a mass M, then the binary system is split into two
masses M1 and M2 such that M1 +M2 = M. The mass distribution can then be
defined by a single parameter:

µ = M1

M
(27)

and subsequently

M2

M
= 1 − µ. (28)

Assuming the same mean density for these bodies, σ , we associate with each body
a mean radius defined by Equation (6). If we compare the mean radii of the two
new bodies with the original body, we find the relationship:

r1

r
= µ1/3, (29)

r2

r
= (1 − µ)1/3. (30)
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With the parameter µ we can develop constraints on the self-potentials of the
bodies and on the rotational kinetic energy of the binary. First, from the basic
inequality stated in Equation (5) we have:

U1 + U2 � − 3GM2
1

5r1
− 3GM2

2

5r2
, (31)

= −3GM2

5r
[µ5/3 + (1 − µ)5/3]. (32)

Thus, the sum of the self-potentials can be bounded by the total mass, mean radius
(or density), and the mass parameter µ. This also allows us to develop a bound on
the mutual potential:

U12 = U0 − U1 − U2, (33)

� U0 + 3GM2

5r
[µ5/3 + (1 − µ)5/3]. (34)

With the assumption that the disrupted bodies are initially rotating about their
maximum moments of inertia, we can also recall the following bound, valid for a
general, constant density body:

Iz� 2
5Mr

2. (35)

This result allows us to develop a lower bound on the rotational kinetic energy of
our binary system:

Tr1 + Tr2 = 1
2Iz1ω

2
1 + 1

2Iz2ω
2
2, (36)

� 1
5M1r

2
1ω

2
1 + 1

5M2r
2
2ω

2
2, (37)

= 1
5Mr

2[µ5/3ω2
1 + (1 − µ)5/3ω2

2]. (38)

Thus, with these observations, we can avoid the problem of specifying a detailed
mass distribution after disassembly, at the cost of retaining less precision in our
results.

We are interested in the case where the system has a positive free energy, Ẽ, and
is Hill unstable, as it will then eventually disrupt [7]. When this happens we have
U12 → 0 and T12 → 1/2Mµ(1 −µ)V 2∞. Solving for the kinetic energy of rotation
we find:

Tr1 + Tr2 = Ẽ − 1
2Mµ(1 − µ)V 2∞. (39)

From this result it is clear that, as a function of V∞, the system can be given a very
low rotational kinetic energy and hence a very slow rotation after disruption. From
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the constraint Ẽ� Tr1 + Tr2 � 0, the free parameter V∞ that defines the escaping
orbit must satisfy:

0 �V 2
∞ � 2

Mµ(1 − µ)Ẽ. (40)

5. Constraints on Rotation Rates

Finally, let us consider our target problem. Assume that the initial body has been
spun to disassembly, that the free energy is positive, and that the system is Hill
unstable. Then we know that the binary will eventually disrupt and create two
uncoupled single bodies, each with their own rotation rate. Our immediate interest
is in the kinetic energy of the rotating bodies, thus we recall Equation (39). The
inequalities computed previously can be applied to find an upper bound to the free
energy (Eq. (32)) and a lower bound on the kinetic energy of rotation (Eq. (38)).
Applying these bounds and simplifying we find our main result:

µ5/3ω2
1 + (1 − µ)5/3ω2

2 �F(µ, V∞), (41)

where

F(µ, V∞) = 5

Mr2
[Tr0 + U0] + 3GM

r3
[µ5/3 + (1 − µ)5/3] −

− 5

2r2
µ(1 − µ)V 2

∞. (42)

The right-hand side of the inequality, while somewhat complex, can be evalu-
ated with only two free parameters not specified initially: V∞ and µ. To enforce
greater conservatism, we can always take V∞ = 0, although this is probably too
strict as the escape speed will usually be non-zero. At the other extreme, it is always
feasible for V∞ to force the right-hand side to approach zero, if the disruption
should occur at a higher energy. We note that to be valid, we require the free energy
to be positive, or that:

5

Mr2
[Tr0 + U0] + 3GM

r3
[µ5/3 + (1 − µ)5/3] � 0. (43)

First, note that each of the bodies has the same maximum constraint on its rota-
tion rate. Applying results from the Appendix we note that F(µ, V∞)�F(0, V∞)
= F(1, V∞) and, moreover, is independent of V∞ at this upper limit. We note that
the cases of µ = 0, 1 correspond to a in infinitesimal particle splitting from the
body, and is a limiting case. Thus we find, for both bodies, a maximum rotation
rate:

ωmax = √
F(0, 0), (44)

where for convenience V∞ has been set to zero. We note that this limiting spin rate
is greater than the original rate ω of the disrupted system. This implies that one of
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the bodies may be spun to even faster rates in the ensuing interactions between the
binary components.

Second, we note that there is no restriction on either one or both of the spin
rates becoming arbitrarily small. Indeed, since this is an inequality, it will never be
violated if ω1 = ω2 = 0. Furthermore, if µ �= 0, 1, the constraint on the ωi can be
made small by taking V∞ to its maximum value.

Finally, define the median rotation rate, ωm:

ωm =
√

F(µ, V∞)
µ5/3 + (1 − µ)5/3 . (45)

Given this definition, we can show that the final spin rates ω1 and ω2 cannot be
greater than ωm at the same time. By definition we have

µ5/3ω2
1 + (1 − µ)5/3ω2

2 � [µ5/3 + (1 − µ)5/3]ω2
m. (46)

If ω1 �ωm, then the following sequence is true:

(1 − µ)5/3ω2
2 = [µ5/3 + (1 − µ)5/3]ω2

m − µ5/3ω2
1, (47)

� (1 − µ)5/3ω2
m, (48)

leading directly to the result

ω2 �ωm. (49)

The converse holds as well.
Thus, the final rotation rates of our system must conform to one of these three

cases:

0 �ω1 �ωm�ω2 �ωmax, (50)

0 �ω2 �ωm�ω1 �ωmax, (51)

0 �ω1, ω2 �ωm. (52)

Most importantly, we note that one of the rotation rates will always lie in the
interval [0, ωm]. Whether this is relevant or not is an issue, however, as it may be
possible for ωm > ωmax. Should this occur, then ωm does not supply any relevant
constraint. We will see, later, that values of ωm�ωmax are always possible for all
values of µ �= 0, 1, although some may require non-zero values of V∞ to force
ωm�ωmax.

An even stricter and more relevant constraint on ωm would be to show that
ωm�ω, the initial rotation rate of the ellipsoid. The inequalities we have avaliable
for use are, in general, too weak to establish this possibility. However, we are able
to show that this stricter constraint occurs for some example computations.
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6. Normalized Form for an Ellipsoid

If we assume that the initial body is a constant density ellipsoid of dimensions
α�β � γ , we can further simplify and normalize the result, as then we know
specific formulae for the kinetic and self-potential energies and for the disassembly
limit. First, the function F(µ, V∞) becomes:

F(µ, V∞) = α2 + β2

2r2
ω2 − 2πGσrI + 4πGσ [µ5/3 + (1 − µ)5/3] −

− 5

2r2
µ(1 − µ)V 2

∞. (53)

Since the initial rotation rate must, by definition, be greater than the rotation rate
defined in Equation (20), it is reasonable to normalize the function and the inequal-
ity by dividing by the quantity:

ω2
d = 3

2

GM|Iα |
α

. (54)

Similarly, we normalize the semi-major axes by the mean radius r, leading to
αβγ = 1. Applying these definitions the normalized form of F is:

F(µ, V∞) = 1

2
(α2 + β2)

(
ω

ωd

)2

− αI
|Iα| + 2α

|Iα| [µ5/3 + (1 − µ)5/3] −

− 10α

3|Iα|µ(1 − µ)Ṽ 2
∞, (55)

Ṽ∞ = V∞
Vesc(r)

, (56)

where Vesc(r) = √
2GM/r , and is the ideal Keplerian escape speed from the

surface of a sphere of equivalent volume and density as the original ellipsoid. It
should also be recalled that the term Iα < 0, which is why we specify it with an
absolute value sign.

We can derive some relevant inequalities from the fact that α�β � γ and
αβγ = 1 along with the identity in Equation (14). They may be of use in de-
veloping constraints for specific situations.

β2 + γ 2 � 2 � α2 + β2, (57)

α2 + β2 � αI
|Iα| . (58)

The last inequality is significant, as it implies that the initial energy of the system is
negative, E < 0, for rotation rates up to

√
2ωd . Whether the initial system energy

is negative or positive has certain implications on our constraints, as are detailed in
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the following. We also note that, in terms of our normalized system, I � 2. This,
along with the above inequalities, leads to:

1

α
|Iα|� 1. (59)

7. Functional Dependence of ωωωmmm

The crucial quantity from the above discussions is the median rotation rate, ωm. We
now study some of its properties. Before we proceed, let us define the functions:

f (µ) = µ5/3 + (1 − µ)5/3, (60)

g(µ) = µ(1 − µ). (61)

These functions are both symmetric about 1/2, thus we need only consider the
interval µ ∈ [0, 1/2]. It is simple to show that f has maxima at µ = 0, 1 and a
minimum at µ = 1/2, while g has minima atµ = 0, 1 and a maximum at µ = 1/2.
Both are monotonic between these limits. Thus:

f

(
1

2

)
= 2−2/3 � f (µ)� 1 = f (0), (62)

g(0) = 0 � g(µ)� 1

4
= g

(
1

2

)
. (63)

The function F can be stated, in general form, as:

F(µ, V∞) = A+ Bf (µ)− Cg(µ)V 2
∞. (64)

We note that A is proportional to the initial system energy, E, and can be positive
or negative, but that B, C > 0. Functionally, we will investigate the properties of

ω2
m = A+ Bf (µ)− Cg(µ)V 2∞

f (µ)
. (65)

In terms of the escape velocity parameter, V∞, the system constraints are simple
to find:

0 �ω2
m� A+ Bf (µ)

f (µ)
, (66)

where the upper bound on ω2
m is monotonic in V∞ by inspection.

For the variation of ωm as a function of µ let us first consider the case when
V∞ = 0. As f (µ) is monotonic in µ over the interval [0, 1/2], we can compute the
gradient of ω2

m(µ, 0) with respect to µ to find:

∂ω2
m(µ, 0)

∂µ
= − A

f 2

∂f

∂µ
. (67)

But ∂f/∂µ < 0 over the interval being considered, and hence the change in
ωm(µ, 0) with µ has the sign of A, which can either be positive or negative.
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If the disassembly rotation rate is not too fast, that is, if E < 0, then A < 0 and
ωm is minimized by taking µ = 1/2 and maximized by taking µ = 0. This directly
implies that ωm(µ, V∞)�ωmax. Thus, as the mass fraction of the binary increases
to 1/2, the upper limit on the final rotation rate of at least one of the bodies becomes
stricter.

If the initial rotation rate is fast enough, that is, if E > 0, then A > 0 and the
above results switch. Then, ωm is maximized by taking µ = 1/2 and minimized
with µ = 0. In this case, if V∞ = 0 then ωmax �ωm(µ, 0), and thus the bound
ωm is not physically relevant. The question becomes, does a realizable value of V∞
exist that will at least force ωm�ωmax?

To answer this, consider the case when V∞ > 0. The partial derivative becomes
modified to

∂ω2
m(µ, V∞)
∂µ

= |∂f/∂µ|
f 2

[A− CV 2
∞µ(1 − µ)] − CV 2∞

f
(1 − 2µ). (68)

For the interval µ ∈ [0, 1/2] we see that V∞ always decreases the partial derivative.
For the case when E < 0, this does not change anything, and any increase in V∞
will reduce the value of ωm even further. For the case of E > 0, we can show that
there always exists a viable value of V∞ which forces ωm < ωmax.

Recall from Equation (40) that V∞ for a Hill unstable binary pair is constrained
as:

V 2
∞ � 2

Mg(µ)
[E − U1 − U2]. (69)

We note that the value V 2∗ = 2E/(Mg(µ)) will always define an allowed value of
V∞ for E > 0, and thus we can always find an admissable value of V∞ �V∗, for
which ω2

m = F(µ, V∞)/f (µ)�F(µ, V∗)/f (µ). But it can easily be shown that
F(µ, V∗)/f (µ)�F(0, 0) = ω2

max. Thus, we know that, at least, there exist values
of V∞ such that ωm�ωmax.

8. Example Computations

It is difficult to go beyond this point analytically, as the inequalities available to
us are too weak to enable us to prove the existence of intervals where ωm�ω,
although such intervals exist. Thus, in the following we present some examples
that show the actual ranges of values taken on by ωm for some cases of interest. For
the two cases presented we compute results for the case where the free energy of the
system, Ẽ, is positive while the total energy E is negative, and for the case where
the initial rotation rate is fast enough so that the total energy of the system, E,
equals zero. For each of these cases we compute limits that provide the boundaries
over which the bound ωm is relevant.
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CASE 1. Consider an ellipsoid with semi-major axes α = 3/2, β = 1, γ =
2/3. For the free energy of the resulting system to be positive, the initial rotation
rate must be ω/ωd � 1.038. Consider the case when ω/ωd = 1.04, then ωm(µ =
1/2, V∞ = 0)/ωd = 0.107 and ωm(µ = 0.18, V∞ = 0)/ωd = 1.04, the original
rotation rate. For the total energy of the initial system to be positive, the initial
rotation rate must be ω/ωd � 1.774. For the median rotation rate to be less than or
equal to the initial spin rate for this case a Ṽ∞ � 0.788 is required.

CASE 2. Consider an ellipsoid with semi-major axes α = 3/2, β = γ = √
2/3.

For the free energy of the resulting system to be positive, the initial rotation rate
must be ω/ωd � 1.104. Consider the case when ω/ωd = 1.11, then ωm(µ =
1/2, V∞ = 0)/ωd = 0.179 and ωm(µ = 0.18, V∞ = 0)/ωd = 1.11, the original
rotation rate. For the total energy of the initial system to be positive, the initial
rotation rate must be ω/ωd � 1.869. For the median rotation rate to be less than or
equal to the initial spin rate for this case a Ṽ∞ � 0.713 is required.

These two cases are somewhat limited, but indicate that non-trivial values of the
bound ωm do occur for realistic values of spin rates.

9. Discussion

Constraints on the final rotation rates of a Hill unstable binary asteroid formed
by being spun to disruption are analyzed. These mathematical constraints will be
used to guide a future analysis of statistical distributions of NEO spin rates. It is
significant to note that the constraints found on rotation rate are scalar, and hence
could lead to the linear spin rate distributions found by Harris [3]. Results reported
in [8] indicate that a sizable fraction of asteroids may suffer tidal disruption, raising
the possibility that this mechanism could be responsible. The next step in this
analysis will be to test this hypothesis using a classical Monte Carlo simulation,
as reported in [8].
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