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Abstract. The concept of closest approach is analyzed in Hill’s problem, resulting in a par-
titioning of the position space. The different behavior between the direct and retrograde

motion is explained analytically, resulting in a simple estimate of the variation of Hill’s
periodic and quasi-circular orbits as a function of the Jacobi constant. The local behavior of
the orbits on the zero velocity surfaces and an analytical definition of local escape and capture

in Hill’s problem are also given.
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1. Introduction

Circular orbits in a two body problem can be viewed from three different
perspectives. The most obvious one is to consider circular orbits as particular
periodic solutions. On a different prospective, circular orbits can be consid-
ered as delineating the separation between periapsis and apoapsis regions.
Indeed, we know that at a fixed energy, periapsis passages of a non-circular
motion must be located inside the sphere S formed by the circular orbits
(having the given energy). Moreover, for elliptic motion (i.e., for negative
energies), apoapsis are located outside this sphere S but inside the sphere Z
formed by the zero velocity surface (which corresponds to the sphere of
radius twice that of S, as shown on Figure 1). This last remark brings us to
the third viewpoint: circular orbits as scaling of the zero velocity surface.

As we know since Poincaré, periodic orbits can be continued into the three
body type models (circular restricted three body problem and Hill’s prob-
lem). In this paper, we show that the two other points of view on circular
orbits (based on the periapsis notion) continue to exist in the three body type
models, even though the three points of view now result in three different
objects. In particular, the second viewpoint results in surfaces that partition
the position space in the same way as in the two body problem, except that
the direction of motion (direct or retrograde) does matter in this case. The
analysis yields also some estimates of the separation between these type of
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motion and the variation of Hill’s periodic orbits as a function of the Jacobi
constant. Further qualitative results are also exhibited, notably a suggested
definition for local, low energy escape and capture in Hill’s problem.

2. Hill’s Problem and Definition of Periapsis

Hill’s problem, first derived by Hill (1878) to analyze the motion of the
Moon, models the relative motion of two small masses, gravitationally
interacting with each other, and perturbed by a large, distant body. As such,
it is a different approximation of the three body problem from the circular
restricted three body problem (CR3BP) (see, for e.g., Hénon and Petit (1986)
and Villac (2003) for further discussions of this point), even though both
approximations share a common realm of application: the motion of a
massless particle around a small mass as perturbed by a large body
(see Szebehely (1967) and Hénon (1969) for a discussion of this point of
view).

2.1. HILL’S PROBLEM

Denoting l as the sum of the gravitational parameters of the two small
bodies and assuming the center of mass of these two small masses, c, to be
close to a circular motion around the perturbing body, the motion of c and

Figure 1. The role of circular orbits in Kepler’s problem.
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the relative motion of the small masses, q, decouple to the first order in l1=3.
That is, one can study, in a first approximation, the relative motion of the
two small masses independently from the motion of their center of mass.

These relative dynamics are described by Hill’s equations of motion,
which are more easily formulated in a frame following the mean center of
mass of the two small masses1, �c, and rotating with the constant, mean
angular velocity, x (see Hénon and Petit (1986) and Villac (2003) for more
details). In this frame, and after a normalization of the length and time scale2,
Hill’s equations can be written as:

€qþ 2x� _qþ x� ðx� qÞ ¼ � q

jqj3
� qþ 3ðqTaÞa ð1Þ

where a represents the unit vector from �c to the disturbing body and indicates
the direction of the negative x-axis. The z-axis is taken to be along x while
the y-axis completes the orthogonal frame (i.e. tangent to the direction of
motion of the fictitious �c), as shown in Figure 2.

This system is Hamiltonian (autonomous) and the conservation of the
Hamiltonian, expressed in position/velocity form, is known as the Jacobi
integral of motion.

J ¼ j _qj2

2
� 1

jqj �
1

2
f3ðqTaÞ2 þ jx� qj2 � jqj2g ð2Þ

As we know, the physical restriction v2 ¼ j _qj2 � 0 constrains the motion,
at a given value of J, to a limited region of phase space, the boundary of
which, known as the zero velocity surface Z, is defined by the equation:

Z ¼ q : Jþ 1

jqj þ
1

2
ð3ðqTaÞ2 þ jx� qj2 � jqj2Þ ¼ 0

� �
ð3Þ

Writing g ¼ 1
r2
f3ðqTaÞ2 þ jx� qj2 � jqj2g, where r ¼ jqj, J is expressed as:

J ¼ v2

2
� 1

r
� 1

2
gr2 ð4Þ

while Z is defined as the set of the real positive roots of a reduced cubic
equation3:

gr3 þ 2Jrþ 2 ¼ 0 ð5Þ

1That is, a fictitious point moving on a mean orbit (Keplerian circular orbit) around the
perturbing body. The mean orbit is a circular orbit having the same mean motion, x ¼

ffiffiffiffiffiffiffiffi
l0þl
a0

q
,

as c at an arbitrary epoch (here, l0 denotes the gravitational parameter of the perturbing body
and a0 is the semi-major axis of c at the chosen epoch).

2The length and time scales are defined to be l ¼ ð l
jxj2Þ

1=3 and s ¼ 1
jxj respectively, so that in

these units, jxj ¼ 1 and jaj ¼ 1.
3See, for e.g., Conkwright (1957) for basic informations about reduced cubic equations.
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The quantity g ¼ ð3x2 � z2Þ=r2 can be expressed in terms of spherical
coordinates and depends only on the longitude, /, and the latitude, k:

gð/; kÞ ¼ 3 cos2 / cos2 k� sin2 k ð6Þ

The equations gð/; kÞ ¼ g < 0 (resp. gð/; kÞ ¼ g > 0) represent some
cones with apex at the origin, axis as the z-axis (resp. x-axis) and normal
section as ellipses in the ðx; yÞ-plane (resp. ðy; zÞ-plane). The equality
gð/; kÞ ¼ 0 parameterizes the planes z ¼ �

ffiffiffi
3

p
x.

Note that the above objects (Z and J) are invariant with respect to the
transformations / ! p� / and k ! p� k, reflecting the symmetries that
leave (1) invariant (time reversal reflections about the ðx; yÞ and ðy; zÞ-planes,
reflection about the ðx; yÞ-plane and compositions). It is thus sufficient to
look at these objects only in the first quadrant of the positive space (x > 0,
y > 0, z > 0). Now, as J varies, the topology of Z does not change except at
the critical value of the Jacobi constant, Jc ¼ � 3

2 3
1=3. At this value of J, the

Hill problem admits two equilibrium solutions (libration points), denoted L1

and L2, and located on the x-axis at xL1
¼ �rc and xL2

¼ rc, respectively,
where rc ¼ ð13Þ

1=3. For J < Jc, Z has three disconnected components (imply-
ing a bounded regime of motion near the central body), while for J > Jc, Z
has now only one connected component forming two openings near the
libration points and escape from the primary is now possible (see the
boundary of the region of forbidden motion, i.e. shaded region in Figure 3).
It can be checked in this case that the radial lines are tangent to the openings
in Z (near the libration points) when r ¼ 3

2jJj (see Villac, 2003).

Figure 2. Geometry of Hill’s problem.
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Figure 3. Limiting curves between periapsis and apoapsis in the planar Hill problem (solid
line: wðrÞ ¼ 0; dash-dot line: fðrÞ ¼ 0).
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2.2. DEFINITION OF PERIAPSIS

Now, define periapses as the points of closest approach from the central
body. Thus, at these points, the magnitude of the radius vector achieves a
minimum and the periapsis condition can be formulated as4 _r ¼ 0 and €r > 0.

Expressed in terms of the position vector and its derivatives, this definition
is equivalent to:

qT _q ¼ 0 and q 6¼ 0
v2 þ qT€q > 0

�
ð7Þ

where €q represents the acceleration of the particle in the rotating frame as
expressed in (1).

Thus we can see that periapsis is defined by a geometrical condition (q
orthogonal to _q) plus a condition on the speed of the particle. In fact, the
geometrical condition (apsis condition) projects onto the whole Hill region
(region of allowable motion delimited by Z), while the restriction imposed by
the periapsis condition is more restrictive, as we will see in the next section.
Note that when v2 þ q � €q < 0, the magnitude of the radius vector achieves a
maximum. At such points, the particle is said to be at apoapsis.

Even though the definition of _q and €q are different in the rotating and the
inertial frames (having the same origin), it can be easily checked that the
notion of periapsis (or apoapsis) is independent of the frame. That is:

ðqT _qÞI ¼ ðqT _qÞR
ðv2 þ qT€qÞI ¼ ðv2 þ qT€qÞR

�
ð8Þ

where the subscripts I and R refer, respectively, to an inertial and a rotating
frame centered at �c.

The notion of periapsis (or apoapsis) does depend, however, on the force
field considered. For example, the notion as defined in the Hill problem and
the Kepler problem are not equivalent.

For the Kepler problem in a rotating frame, we have

€q ¼ �2x� _q� x� ðx� qÞ � q

jqj3
;

so that periapsis is achieved when q and _q are orthogonal and

v2 >
1

r
� 2xTðq� _qÞ � jx� qj2:

The acceleration in the Hill problem differs from that of the Kepler
problem in a rotating frame by the term �qþ 3ðaTqÞa. That is the periapsis
condition is given by:

4Strictly speaking, one can also have €r ¼ 0 at periapsis but we will restrict ourselves to the

definition given.

B. F. VILLAC AND D. J. SCHEERES170



v2 >
1

r
� 2xTðq� _qÞ � jx� qj2 þ jqj2 � 3ðaTqÞ2 ð9Þ

Thus, for jqj2 � 3ðaTqÞ2 > 0, a particle can be at periapsis in the Hill problem
while being at apoapsis in the Kepler problem. For jqj2 � 3ðaTqÞ2 < 0, the
situation is opposite, that is, a particle can be at apoapsis in the Hill problem
while being at periapsis in the Kepler problem. These cases can in fact occur
only for small eccentricities, i.e., nearly circular orbits.

Finally, one can notice that the notion of periapsis and apoapsis agree in
both problems when jqj2 � 3ðaTqÞ2 ¼ 0, which corresponds to a cone in
position space with apex at the origin, axis given by the x-axis and with
normal section corresponding to circles in the (y; z) coordinates. The first
situation ðjqj2 � 3ðaTqÞ2 > 0Þ occurs ‘outside’ the cone while the other case
ðjqj2 � 3ðaTqÞ2 < 0Þ occurs ‘inside’ the cone (i.e., the region containing the
axis).

In the remainder, our focus will be on the case of the Hill problem and
periapsis will thus be defined by (9).

3. Partitioning of Position Space

An interesting fact in the Hill problem (this also holds for the restricted three
body problem) is that the periapsis condition (resp. apoapsis condition) re-
duces to a condition independent of the velocity in the planar case. Indeed,
one can use the Jacobi constant (4) to express the speed of the particle in
terms of its position and energy. This will appear clearly in Section 3.2.

First, we re-express the condition involving the acceleration in the defi-
nition of an apsis by using the equations of motion (1):

qT€q ¼ 2xTðq� _qÞ þ jx� qj2 � 1

r
� r2 þ 3ðqTaÞ2 ð10Þ

or, using the previously defined quantity g:

qT€q ¼ 2xTðq� _qÞ þ gr2 � 1

r
ð11Þ

Then, at any apsis in the planar case, one can readily check that
xTðq� _qÞ ¼ �rv (the plus sign being associated with direct motion and the
minus sign with retrograde motion), so that the periapsis condition
v2 þ qT€q > 0 can be re-expressed5 in the direct case, as:

2r2vþ fðrÞ > 0 ð12Þ
where the function fðrÞ is given by:

fðrÞ ¼ 2gð/; kÞr3 þ 2Jrþ 1: ð13Þ
5By multiplying this condition by r and using the Jacobi constant as given in Equation (4).
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The other apsis conditions are derived in a similar manner, the results
being presented in Table I. Note that the cases of direct apoapsis and ret-
rograde periapsis are only possible if fðrÞ < 0 and fðrÞ > 0, respectively. Thus,
in the region where fðrÞ > 0 (close to the center of the frame), a particle
cannot be at direct apoapsis, while in the regions where fðrÞ < 0, a particle
cannot be at a retrograde periapsis (for a fixed value of J).

In the spatial problem, xTðq� _qÞ ¼ rv cos h where h represents the
inclination as defined in the rotating frame. The above results apply to this
case by replacing the direct and retrograde cases with h below or above 90�.
The limits between regions with only periapsis or apoapsis possible are
independent of h (we have indeed �1 � cos h � 1) and are thus given by the
conditions presented in Table I. Therefore, the discussion below applies to
the spatial problem.

3.1. SCALING OF THE ZERO VELOCITY SURFACE

The equation fðrÞ ¼ 0 is a cubic in r, very similar to the one defining the zero
velocity surface, and can be solved explicitly. In fact, this equation is the
equation defining Z, modulo a scaling of the radius and the Jacobi constant.
More precisely, letting r ¼ 4�1=3�r and J ¼ 1

2 4
1=3J, Equation (13) transforms

into (5). Thus, all the results applying to the case of the zero velocity surface
apply here, modulo the above scaling.

In particular, the surface fðrÞ ¼ 0 determines a bounded region close to the
primary where fðrÞ > 0 and no direct apoapsis is possible. Also, far from the
primary, we again have fðrÞ > 0 and no direct apoapsis is possible. This
means that at a point where q and _q are orthogonal and xTðq� _qÞ > 0, a
particle will locally move away from the primary.

In fact, these regions connect when the surface opens at the value J ¼ Jc.
In non-scaled units, this corresponds to a value of Jacobi constant equal to
J ¼ � 3

2 ð32Þ
1=3. At this value of J, all trajectories with y ¼ 0 and _x ¼ 0 will

move away from the primary when _y > 0 on the positive x-axis and _y < 0 on
the negative x-axis. For many trajectories, this will mean escape.

Similarly, outside the region fðrÞ > 0, the motion is constrained so that no
retrograde periapsis is possible. It can be easily proven that such regions
always exist for J < 0. In fact, all points on Z correspond to such a situation

TABLE I

Constraints on periapsis and apoapsis in the planar Hill’s problem

Direct case Retrograde case

Preiapsis 2r2vþ fðrÞ > 0 fðrÞ � 2r2v > 0
Apoapsis 2r2vþ fðrÞ < 0 fðrÞ � 2r2v < 0
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when r < � 3
2J� Recall that this value of r corresponds to the tangency of Z

with the radial lines when J � Jc and lies in the region of forbidden motion
for J < Jc. Thus, for J < Jc, all points on Z in the inner region correspond to
apoapsis, while all points of Z in the outer region correspond to periapsis.
When J � Jc, the situation holds equally well,6 if the inner region is deter-
mined by r < � 3

2J� In fact, this result shows that the outer components of
fðrÞ ¼ 0 meet Z at r ¼ � 3

2J and thus crosses the x-axis at rc when J ¼ Jc.
Finally, we should note that when J < Jc, the inner component of fðrÞ ¼ 0

lies about midway between the origin and Z and exactly midway on the y-
axis, i.e., at r ¼ � 1

2J
; similarly as in the two body problem.

Figure 3 illustrates these situations in the first quadrant of the ðx; yÞ-plane
(the other quadrants being obtained by symmetries).

3.2. SEPARATION BETWEEN PERIAPSIS AND APOAPSIS REGIONS

Even though the above discussion gives some constraints on the periapsis and
apoapsis regions, the results can be strengthened by looking at the signs (and
hence the roots) of the functions fðrÞ � 2r2v and fðrÞ þ 2r2v, where v is ex-
pressed in terms of position and the Jacobi constant. These functions involve
square roots and the zeros cannot be solved explicitly. These zeros can,
however, be easily computed numerically. In fact, these zeros are the roots of
the sixth degree polynomial wðrÞ ¼ ðfðrÞ � 2r2vÞðfðrÞ þ 2r2vÞ:

wðrÞ ¼ 4ðg� 1Þr3ðgr3 þ 2Jrþ 1Þ � 4r3 þ ð2Jrþ 1Þ2 ð14Þ
The roots of wðrÞ can be sorted according to the sign of fðrÞ so as to make

them correspond to the zeros of the above functions. Therefore, with the help
of Table I, one obtains the following diagram for the partitioning of a radial
line in the Hill region (assuming the roots exist) between periapsis and
apoapsis regions:

where aþ, a�, pþ and p� denote, respectively, direct and retrograde apoapsis
and periapsis, and the numbers (1)–(4) represent the roots of wðrÞ.

Thus, close to the primary, only periapses are possible and, close to the
surface fðrÞ ¼ 0, only retrograde apoapses and direct periapses are possible.

6These facts can be proven directly from the reduced cubic equations: on Z, v ¼ 0 and
periapses (apoapses) are defined as fðrÞ > 0 ðfðrÞ < 0Þ. Also we have the relation

gr3 þ 2Jrþ 2 ¼ 0, so that fðrÞ ¼ Jrþ 3
2. The result follows.
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More generally, looking at Figure 3 where the roots of wðrÞ have been plotted
(thick solid lines), one can obtain an idea of what these regions look like.

Further properties of the roots of wðrÞ can be obtained by looking at w as
a function of J. Indeed, wðrÞ is a quadratic form in J, so that even though the
roots of wðrÞ cannot be solved a priori by radicals, one can solve for J as a
function of r.

wðJÞ ¼ 4r2J2 þ 4rð1þ 2ðg� 1Þr3ÞJþ ½1þ 4ðg� 2Þr3 þ 4gðg� 1Þr6�
ð15Þ

The reduced discriminant of wðJÞ ¼ 0 is D0 ¼ 16r5½1� ðg� 1Þr3�, so that, in
particular, D0 > 0 as soon as g � 1 (regions containing the z-axis) or
r < ðg� 1Þ�1=3 when g > 1 (openings regions). Thus, for g > 1, wðrÞ > 0 for
r > ðg� 1Þ�1=3 and only periapses are possible. The value of r ¼ ðg� 1Þ�1=3

is actually reached for J ¼ � 3
2 ðg� 1Þ

1
3. In the particular case of the x-axis,

the corresponding values of r and J are, respectively, r ¼ 2�1=3 ’ 0:793 and
J ¼ � 3

2 2
1=3 ’ �1:889.

From (15), one can also see that for each value of r, there corresponds two
values of J (Jþ and J�) for which wðJÞ ¼ 0. This fact allows us to show that
the points at which the roots (2) and (3) in the previous diagram collapse as J
varies (if they exist) also correspond to the points at which the roots (1) and
(4) must collapse and the corresponding values of J are J� and Jþ, respec-
tively. Notably, wðrÞ > 0 for any value of r on a radial line defined by g > 1,

when J > � 3
4 ½4ðg� 1Þ�1=3 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3
4

1

½4ðg�1Þ�1=3
q

. The last root on this radial line will

occur when J equals this critical value, at a radius of ½4ðg� 1Þ�1=3. In the

particular case of the x-axis, these critical values of collapse and disappear-

ance of roots are r ¼ 0:5 and J ¼ � 3
2 � 1

2

ffiffi
3
2

q
’ �2:1124 and J ¼ � 3

2þ
1
2

ffiffi
3
2

q
’ �0:8876, respectively. This is in concordance with the middle right

plot shown in Figure 3.

4. Applications

In this section two applications of the previous results to the dynamics in the
Hill problem are presented: a proposed definition for the libration point
regions and the asymptotic variations of quasi-circular orbits.

4.1. LOCAL ESCAPE AND CAPTURE AT LOW ENERGIES

We have seen in Section 3.1 that the formulation of periapsis allowed us to
directly obtain the local behavior on the zero velocity surface. Points on Z
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for which r < � 3
2J (recall that J < 0 here) correspond to apoapses (that is

trajectories locally fall towards the origin), while the points with r > � 3
2J

correspond to periapsis (trajectories locally get farther from the origin). For
J � Jc, the sphere r ¼ � 3

2J is contained in the region of forbidden motion and
thus separate the inner and outer Hill’s regions. When J > Jc, we know from
the linearized dynamics around the libration points (see Gómez et al., 2001
for example) that periodic and quasi-periodic orbits that stay in the vicinity
of the libration points exist (center manifold). These trajectories belong
neither to the inner Hill’s region nor to the exterior region and a third region,
the ‘neck’ region, naturally appears as a feature of the dynamics. In the
linearize theory, these neck regions are defined as the regions bounded by Z
and two planes surrounding the center manifold (see Gómez et al., 2001 for
example), but the separation between the inner, neck and outer regions re-
main rather arbitrary.

For J < �2:1124, the previous results allow us to give a natural definition
of the neck regions in the non-linear setting and a bound to the minimum
distance from the primary that a non-transit trajectory7 coming from infinity
can reach.

Indeed, looking at the middle left plot of Figure 3, we can see that the
third and fourth roots of wðrÞ delineate a closed region near the libration
points that closes on Z at r ¼ � 3

2J� In this region, only direct periapsis and
retrograde apoapsis are possible. We thus define this close region as the neck
region. The inner region is then the region containing the origin and bounded
by Z and this neck region, while the outer region is the complementary of
these two regions.

This definition naturally extends the definition for J � Jc, as well as the
change of behavior of the trajectories meeting Z at r ¼ � 3

2J. This definition
allows us also to define local escape and capture as the trajectories that cross
the outer and inner boundary of the neck region, respectively.

Indeed, a trajectory crossing the outer boundary of the neck region to-
wards the exterior region locally moves away form the origin and, thus, it
must pass by an apoapsis before returning towards the neck region. How-
ever, in the exterior region surrounding the neck region, only periapses are
possible, thus making a quick return impossible (retrograde apoapsis regions
in the exterior Hill’s region exist but are farther than r ¼ 2 at the energies
considered. Direct apoapsis regions do not exists). Therefore, these trajec-
tories are defined as locally escaping.

Similarly, trajectories crossing the inner boundary of the neck region to-
wards the origin must pass through periapsis before begin able to come back

7Non-transit trajectories come from the inner or outer regions, enter the neck region and

return to the same region from which they originate.
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towards the neck region again. This means that these trajectories must have a
close encounter with the origin and are thus defined as locally captured
trajectories. This discussion does not prove that the locally captured trajec-
tories must perform a revolution around the origin. However, for the low
value of energies considered, numerical integrations show that this is indeed
the case (see Villac and Scheeres, 2003).

Numerically these definitions allow us to quickly decide if a trajectory
escape (or is captured) without having to integrate to an arbitrary radius.
Indeed, checking the sign of fðrÞ and wðrÞ suffices to decide of these issues.

4.2. HILL’S PERIODIC ORBITS AND QUASI-CIRCULAR TRAJECTORIES

Another interesting consequence of this partitioning of the position space is
that for low values of the Jacobi constant, the two inner roots of wðrÞ define
the location of quasi-circular orbits. Indeed, the surfaces defined by the two
inner roots of wðrÞ are almost circular (they do not depend on g to the first
order in their dependence on J). The periapsis of quasi-circular orbits must lie
below the first curve in the retrograde case and its apoapsis must lie above it.
Since the eccentricity is small at each point of these orbits, the two apses must
be close together, and close to the inner surface of wðrÞ ¼ 0. The same sit-
uation holds true in the direct case with the second curve.

It can be easily checked that variations of these two inner surfaces with J is
given by:

r� ¼ � 1

2J
� 1

2
ffiffiffi
2

p
J5=2

þO 1

J3

� �
ð16Þ

where the plus sign refers to the most inner surface.
Thus, when J ! �1, the two inner surface w(r) collapse towards a single

sphere r ¼ � 1
2J and the distinction between retrograde and direct motion

disappears, in concordance with the two body problem results discussed in
the introduction (as J ! �1, the bounded regime of motion in Hill’s
problem approaches the Keplerian dynamics since Z shrinks to zero and
close to the origin the perturbations becomes negligible as compared to the
Keplerian terms). Moreover, these results give us an asymptotic expression
for the separation between direct and retrograde motion. Indeed the first and
second roots of wðrÞ separate as 1ffiffi

2
p

J5=2
�

Finally, note that for these low values of energy, the Hill’s periodic orbits
(families f and g in Hénon’s terminology) become quasi-circular (see Hénon,
1969) and thus follow the above results. We can also note that the retrograde
orbits which are more stable than the direct ones are constrained to be closer
to the origin, as our physical intuition would suggest.
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Thus, we see that the three roles played by the circular orbits in the two
body problem (as discussed in Section 1) are now played by several objects,
but stay closely related for low values of the Jacobi constant. In fact, only the
geometrical role of the circular orbits (scaling of the zero velocity surface) can
be continued into the Hill’s problem as a single, connected object8 (defined by
the inner root of fðrÞ ¼ 0), while the dynamical roles of the circular orbits
result in different curves/surfaces according to the direction of motion (direct
or retrograde). The circular periodic orbits are continued into the distinct
families, f and g (in the planar case) and the separation between periapsis and
apoapsis regions are now played by the curves wðrÞ ¼ 0, one curve delimiting
between direct periapsis and direct apoapsis while a different curve delimits
retrograde periapsis from retrograde apoapsis. The surface fðrÞ ¼ 0 plays the
role of a mean separatrix from which the curves characterizing direct and
retrograde motion separate.

5. Conclusion

While not necessitating more sophisticated mathematics than the analysis of
the zero velocity surface, Z, the analysis of the concept of apsis yields deeper
qualitative properties of the dynamics of the Hill’s problem than does the
simple study of Z. It gives a direct physical insight into the global dynamics
of the problem with limited computational effort and may thus represent a
useful approach to these interesting non-linear dynamics, complementary to
quantitative tools such as the analytical/numerical continuation of periodic
orbits or the study of the libration point dynamics. Hill’s problem also shares
a common realm of application with the circular restricted three body
problem, thus similar computations to the one presented in this article are
applicable to this problem.
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