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NOMENCIATURE

English Letters

a Undeformed radius of the cylindrical shell, a structural
radius measured to the midline of the shell thickness

a Undeformed geometric radius of the cylindrical shell,
measured to the outside surface of the shell.

A,B,C,D Constants of integration

bp,bp Wave numbers for motion forward and aft of the contact
patch, respectively

by Width of cylindrical shell. This would normally correspond
approximately to the tread width of a tire.

c Viscous damping coefficient

c1 Propagation velocity'JEVE

T Dimensionless viscous damping coefficient
CWA Dimensionless damping factor

d Real part of complex root

D E-h (for a narrow shell or ring)

e Base of natural logarithms

E Young's modulus of shell material

g Damping constant used in hysteresis damping
h Shell thickness

H Shell deflection against a plane

i V-1
k Elastic stiffness of shell internal foundation

K Eh®/12 (for a narrow shell or ring)

ix



NOMENCIATURE (Continued)

KA Dimensionless spring rate

MO Moment about axle

N,M Shell stress resultants

P Pressure

158 Internal pressure

p(8) External pressure

P Vertical load carried by shell
PA Dimensionless internal pressure
PE ' Dimensionless external pressure
PO Dimensionless internal pressure
Po Dimensionless external pressure
q Complex root

Q Shear force, lbs

t Time

U, V,w Shell displacements

WA Dimensionless angular velocity
z,% Dimensionless shell deflection w/a.

Greek ILetters

oF h2/12a2, a dimensionless constant
K Poisson's ratio

p Material density in shell

Q Shell angular velocity
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NOMENCIATURE (Concluded)

Dimensionless shell angular velocity
Dimensionless time
0 -Qt, a moving co-ordinate

Angular positions of edge of contact patch, aft and forward
directions respectively
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I. . INTRODUCTION

It is a reasonably good approximation to state that most pneumatic tire
problems can be separated into two groups, these being:

(a) Those involving motion in the plane of the wheel or rim;

(b) Those involving motion transverse to the plane of the wheel or rim.
There are, of course, occasional exceptions to this compartmentalization
but in the main it ie felt that considerable knowledge could be gained by
devéloping methods for analytically studying pneumatic tire performance either
in the plane of the wheel or transverse to the plane of the wheel.

Preliminary efforts have been made by such writers as Saitol and Thor-
sen2 in developing techniques for predicting cornering forces and other ef-
fects transverse to the plane of the wheel. To the best of the writer's
knowledge, no systematic attempts have been made to study motion in the
plane of the wheel prior to Ref. 3, issued by this group. In that report,
the use of an elastically supported cylindrical shell was proposed as a means
for studying the static loading of a pneumatic tire against an infinitely
rigid, frictionless plane. The results obtained from that analysis seemed
to agree fairly well with contact patch length measurements made on real pneu-
matic tires.

In view of the many current problems associated with pneumatic tire
motion in the plane of the wheel, it was felt desirable to attempt to ex-
tend these analytical techniques to those dynamic cases which can be profit-

ably studied.



IT.  SUMMARY

An elastically supported cylindrical shell is used as a model for the
dynamic rolling of a loaded pneumatic tire. Such a model includes many of
the effects found in the real tire, such as bending of the tread in the con-
tact patch region, elastic support coming from the inflated sidewalls and
loss effects coming from the inherent dissipative properties of the materials
used.

Methods are presented for calculating the dynamic contact patch areas
of such a model, and it is shown that these are influenced considerably by
rolling velocity, the constructional parameters of the tire and its loss
characteristics. Dynamic pressure distributions inside these contact patch
areas may also be obtained analytically, and techniques are given for doing
this.

The free motion of the penumatic tire outside of the contact patch re-
gion is of considerable importance in the study of standing wave phenomena
in tires. Techniques are developed for calculating the radial deflection
of a rolling pneumatic tire both forward and aft of its contact patch re-
gion, and such calculations generally agree with the type of phenomena
which are observed.

As examples of the use of such a model, an elastically supported
cylindrical shell with both a viscous loss and hysteresis loss law are

used as a basis for the calculation of the load carrying and drag proper-



ties of a real pneumatic tire, to the extent that the various tire properties
may be approximated. In addition, results are given in which the predicted
performance of bias ply tires is compared to that of belted tires.

Many of the technically important characteristics of this model depend
on the specific mathematical form of the loss mechanism included in the sys-
tem. These are probably best known to those who have access to considerable
quantities of test information on rubber properties, and no attempt is made

in this report to explore this subject.



ITI. THE BASIC DYNAMIC MODEL FOR A ROLLING TIRE.

We consider first a generalized cylindrical shell under arbitfary

loads. This is shown in Figure 1, taken from Flugge.

Figure 1. ©Shell stress resultant conventions and nomenclature.

From Figure 1, force equilibrium equations may be written for the element
of cylindrical shell surface. Generally, these equations are directed in
the x, and r directions, and are given as:

*
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The following symbols are used:
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It is next necessary to consider displacements of a cylindrical shell,
where we let

u = displacement along the generator, positive in the direction of
increasing x;

v = displacement along a circle of radius a, positive in direction
of inecreasing O;

w = radial displacement, positive outward.

Using this notation, and assuming that: (1) all points lying on one
normal to the middle surface before deformation do the same after deforma-
tion; (2) that for all kinematic relations the distance z of a point from
the middle surface may be considered as unaffected by the deformations of
the‘shell; (3) that the stress op may be considered negligible compared with
the stresses o, and @Q.

By use of such assumptions, and by consideration of the definitions of
shell forces, one may finally express the various shell forces and moments

in terms of the deformation by means of the equations
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If one uses Egs. (3) and substitutes them into Egs. (1), it is possible
to obtain the three equations of equilibrium in terms of the three differen-
tial equations in displacements u, v and w of the middle surface of the shell.

These equations become
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We next wish‘to consider the specific case of a rather narrow cylindrical
shell which has no variation of loading with respect to the x direction.

In this case, the shell takes on the form shown in Figure 2, where a rather
narrow shell of widthb, and thickness h is made of material of modulus E

and density p, the radius of the cylinder being a.

P — by~

—

h E,P

- X

Figure 2. Narrow cylindrical shell notation.



If the loading is uniform with respect to the x direction, and if
the width by is small enough so that contraction in the x direction may
be neglected, than one méy visualize that all derivatives with réspect
"to x in Egs. (4) will vanish. In addition, all displacements u in the
x direction become negligible and will be dropped, as will pressure com-
ponents in the x direction. Allowing thse simplifying assumptions to be

used in Egs. (u) causes them to reduce to

9 (v a”
RS B )
5
v 2, % 5 Pro _
oot o2

There are several ways that one may proceed to analyze Egs. (5). Per-
haps the simplest of these is to visualize that for a frictionless plane

Py vanishes so that the first of Egs. (5) simply states that

(QX +vw) = Cons't (6)

o0

We may arbitrarily set the value of the constant in Eq. (6) equal to zero,
in which case the pair of Egs. (5) reduce immediately to the single equa-

tion
IV | P a®
Qv v +w) = = (7)
Eh

This equation now represents the equation for deflection of a cylindrical
shell against a frictionless load, so that only radial pressures exist.

Note that the constant af is given by



In Eq. (7), it is desirable to include most of the properties of a
real pneumatic tire by means of adjusting the radial pressure term P, for
various tire effects.  Specifically, it is desired to support the elastic
shell by means of some kind of generalized impedance in such a way that
both real elastic moduli and imaginary elastic moduli can be operative.
This might be thought of, in some respects, as filling the inside of the
shell with a massless foam-like material of generalized impedance. For
purposes of this report, the generaslized impedance will be gpecialized to
the specific case of a real elastic and viscous loss support system, but
it is readily understood that the viscous loss support mechanism may be
replaced by other mechanisms such as a hysteresis type of loss. This is
done in one of the example problems worked out in the last section of this
report. For the present, the viscous loss mechanism represents a very
simple device which is easily treated analytically, and for that reason
will be retained here.

As an additional feature of Eq. (7), it ig desirable to include both’
a uniform internal inflation pressure and an external pressure loading
term denoting contact pressures coming from contact with the ground sur-
face.

Finally, inertia terms form part of the radial loading since it may
be anticipated that the shell in question will be accelerating in the w
direction as well as being subjected to:.an overall rigid body rotation of
angular velocity Q. Accounting for all of these factors, one may write

the total radial pressure of the shell in the form
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(®) p, = -kw
(¢) p, = cw

where

Including all of these effects into Eq. (7), one finally obtains

2.-,- 2 IV
Bl +8Cq+ o+ 2o
c1®  mp
2 2.2 2
vulo?s 2 DA o 2[5 p(0)+phan®]
Eh ey En ©

(9)

In this equation, the presence of the 0f term is due to the fact that the

shell is assumed to be rotating with angular velocity Q. We will next

allow loads to move in the opposite direction to Q around the periphery of

the rotating shell by means of transforming the shell equations into a new

independent variable

0; = 0 -t
3() _ 3 g3
3t 3 30,
30 e s
S = () -aa() +e7()

Using these, one obtains

2 2
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C12 Eh
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where

-2
Cy = E/p

Next, introduce the new variables (see Ref. 5)

W s
B T (12)
Mg a P

from which the equation of motion of the shell may now be written in the

form
Eh c1
2
2  a%% « ach
+ (20 + )z" - =—— 2!
( cis Eh (13)
2 2 2 5
t (o vk _f8 .y, o 2[p(0) +p_ + phat ]
En  Eh Eh ©
Introducing the variable
2.1 (1)
Ci1

one finally obtains Eq. (13) in the form

7+ a;il 5 - ot + o2+ (20 T0)2"
2
JBCCL T o+ (of + KB 0% (15)
Eh Eh

= 2 [p(0) +p_ + pha0”]
Eh ©

In Eq. (15), we define the new constants as follows:

acic .. % a p(9) _ PE
Eh Eh (16)
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and dividing by az, one finally obtains the equation of motion

Z c . NS » IV =2 Yoy
—5 * 32 - UL R (2.+ Q_) 2" . cf 2!
@ a o2 o2 o2
x o2 _ 2
+ (l.+k—2-9_)z - _FE T PO (17)
a o a2 a2 a2
where
_ 2
K = k&
Eh

Equation (17) is an equation for motion of the cylindrical shell and
contains all terms necessary for representing most of the phenomena which
can be observed in a rolling pneumatic tire. Loss terms are represented
through the viscous loss constant T, dynamic terms through the guantity Q
and elastic terms through the quantity kK. The angular velocity of the wheel
is given by the dimensionless angular velocity @ so that Eq. (17) in effect
represents a circular cylindrical shell, supported as indicated in Figure 3,
with a moving load of angular velocity Q. In addition to this angular ve-
locity €, one may superimpose a rigid body rotation of angular velocity {
in the opposite direction, as was done with the inertia term of the form
(a + w)92 in Eq. (8). This term, whose effect is to superimpose the rigid
body rotation of angular velocity Q on the entire system, results in Eqg. (17)
now representing rotating tire with stationary impressed load, such as 1s

shown in Figure 3.

11



p(9)

Figure 3. ©Shell characteristics.
We now consider steady state solutions to Eq. (17). Under this con-

dition, all time derivatives vanish and making substitutions of constants

in the form
2 —— —
C ooy 28 - oomy K- o
052 a2 ag (18)
PE
= - o B - m
a a
one sees that this reduces to
Iv " )
z7 + (2 + WA)z" - (CWA)z' +(1 + KA-WA)z
(19)

= PA - PO + WA
where, of course, the primes represent derivatives with respect to the
variable @1, and in general Eq. (19) represents steady state, or standing
wave, solutions to the deformation of the rotating cylindrical shell.
First imagine the process of inflation only. Here, one may define a

particular solution associated with the inflation of the static, or non-

12



rolling pneumatic wheel in which the constant WA vanishes. The particular

solution becomes

5z = A (20)
P 1 + KA

This value of dimensionless displacement may be thought.of as that associated

with the inflation process. Now define the new variable

T = 7.2 (21)

Using this variable, the equation of motion (19) becomes

IV . , _
Z  + (2+WA)Z" -(CWA)Z' + (1L+KA-WA)Z
(22)
- WA (1+§ji-) = - PO
14KA

Equation (22) now represents a working equation for the deformation of a
cylindrical shell of the form being discussed, where dimensionless deflec-
tions Z are now measured from the inflated position and not from the initial
position. From Eq. (22) one may see that a static problem may readily be
obtained by allowing the values WA and CWA both to vanish simultaneously.

This allows Eq. (22) to reduce immediately to Eq. (23) as given below.

7 4+ (AT = - PO (23)

13



IV. THE CONTACT PATCH REGION

There are two problems associated with attempting to define the region
or length of contact of the tire model pressed against a frictionless plane.
The first of these is the determination in some form or another of some of
the elastic constants which fit into the various equations of motion just
developed, particularly Eq. (22), which is the primary statement of deforma-
tion from the inflated state.

One method of accomplishing this is to observe that the static case
of Eq. (22), given in this report as Eq. (23), indicates that the static
problem of contact is a relatively simple one involving only a single
elastic constant, "the dimensionless foundation modulus denoted here by the
symbol KA. It should be possible to determine the value of KA by appro-
priate‘tests on various regl tirés, in which certain deflections are im-
posed and the resulting contact patch lengths ére measured. As a rough
estimat¢ of the kinds of numbers to be obtained here, rather complete
tests have been run on two different pneumatic tires of T7.50x1L.00 size,
one of these being a standard bias ply passenger car tire while the other
was a Michelin X-type passenger car tire of the same size. The detailed
results of these measurements will not be given in this report since they
will be presented as part of some forthcoming work in which methods of de-
termining the necessary constants for this tire model are discussed. How-

ever, it should be pointed out that in the usual region of deflection the

1k



constant KA can be determined from a static test in which the length of
the contact patch of the tire is measured, and further, that rather major
differences appear between this constant as measured for the bias ply tire
and as measured for the X-type tire. For the particular tires mentioned,
the best average values of these constants worked out to be the following:
Bias Ply 350
X Type 190
This indicates that in general the constant KA may be determined from ex-
periment and used in subsequent calculations, such as in Eq. (22).

Similar techniques have not yet been developed for the direct measure-
ment of other elastic constants appearing in Eg. (22). TFor purposes of
this report, tire consﬁruction may be used as a guide in calculating some
of the constants appearing in this equation, and in this regard we are
rather fortunate in having the extensive background which exists in
material properties of cord rubber laminates. By the use of such informa-
tion one could generally hope to obtain the constants necessary in Eq. (22).

In connection with Eq. (22), one must next decide on techniques for
treating the deformation of the cylindrical shell model against a friction-
less plane. In doing this, it is seen that the left side of the equation
contains terms involving deflections while the right side contains only
the external pressure loading term. If one could know the deflections of
the shell model inside the contact patch region, then it might be possible
to specify the values z on the left side of Eq. (22) and to calculate the

particular values of © for which the external pressure vanished, by means

15



of the right side vanishing in Eq. (22). This may be accomplished by

reference to Figure 4 from which one may deduce by geometry that

U

Figure 4. Geometry of intersection of elastic shell with a rigid plane surface.

7 = -(1- cosQo) (2k)
cos@
where z = AL .
89

The first, second and fourth derivatives of this function are needed, and

these work out to be

- cosQy s sin®
7! = ——— —
cosQ cosQ (25)
2@
+ sin ¢
z" = CosG (LE Sin = (26)
cos® cos<0

EIV _ cos& [5_*18 sin®0+sin%0 I

cos® coso

16



Having these derivatives, it may be seen at once that given the proper
elastic constants all terms of Eq. (22) may be evaluated by using Egs.
(2k) - (27), which physically mean that the outer surface of the shell
is in contact with the flat plane of Figure L. We then search for the
pressures PO in Eg. (22) which cause this situation to occur. Inside the
region of the contact patch such pressures will be positive, while outside
the contact patch region such pressures will be negative. Thus, we search
for solutions to Eg. (22) in which the right hand side is zero. Such
solutions must be functions of the angle ©, and such solutions thus give
angles © which define the ends of the contact patch.
| Note that all functions on the left side of Eq. (22) are even except

for the first derivat%ve function which occurs in connection with the damp-
ing term. If the damping is nonzero, then it may be seen that the forward
and aft angular locations of the contact patch will not be equal to one
another, and in general this has been observed to be a fact. Use of Eq.
(22) thus gives dynamic information concerning the contact patch in a
rolling tire under the assumptions of complete contact with the flat plane.

In the later sections of this report several specific examples of the
calculation of contact patch lengths under dynamic conditions will be pre-
sented. For the moment, the theory is complete and need only be worked

out for the proper numerical cases.

17



V. FREE OSCILIATION OUTSIDE THE CONTACT PATCH REGION

For the region outside the contact patch, imagine the deflection z to
be given by Eq. (19) of the previous chapter, noting that the contact pres-

sure PO now vanishes. This causes the equation to become

zIV + (24WA)z"-(CWA )z' + 1+KA-WA)z = PA+WA (28)

In Eg. (28) we are basically interested in two types of solutions, one for-
ward of the contact patch leadin% edge and the other aft of its tralling edge.
Accordingly, the solutions will 5e split into the two parts and considered
separately.

Consideringﬂfirst the region forward of the leading edge of the contact
patch, one has in accordance with Figure L4 all values

>0
In this region we will consider particular solutions to Eg. (28) as well as
the solution to its complementary form. Thus, the total displacement z will
be of the form
z = zp tozp (29)

where the particular solution is given by

PA+WA
1+KA-WA
The complementary solution of Eq. (28) will be in the general form

a01

z, = Ae (31)

which, upon substitution into the complementary form of Eq. (28) gives

18



g (oA ) g 2o (CHA ) g +H(1+KA-WA) = O (32)
We must now search for the four roots g, which in general will be complex
numbers. In view of the large number of different possible combinations of
parameters which are to be considered, it is perhaps best to approach Eq.
(32) numerically. This may be accomplished by setting
g = d+ib

which, upon substitution into Eg. (32), yields

(a2-p2)2-4aZ3+hdb (32-02)1+(2+WA ) [ (d2-b2) +2db1 ] (33)
-(cwa)(a+ib) + (1+KA-WA) = O
Equation (3%) may be separated into its real and imaginary parts. This
gives two distinct equations, each of which must vanish. These are of the

form

(32-02)2-4d%p%+(2+WA ) (d2-b2) - (CWA)d+(1+KA-WA) = O (34)

4db (a2-b2)+(2+WA ) 2db-b(CWA) = O (35)
From Eq. (35), one may solve

La 2

a2-p=

Substituting this into Eq. (3L4) gives

[ CWA @ﬂm)]g_lﬂqd%cmA+(2mm]
Lg 2 La 2

+ (o[ WA _ (24A) 4

- (cwA)a +(1HA-WA) = 0 (37)
La 2

Multiplying Eq. (37) by dg, and collecting coefficients of d, one obtains

an equation involving only the real part, d, of the complex number g.

19



_4a®-og*(24un) +a%- -(-Q-J%*-f + (1 + KA-WA)]

+ (CWAy2
L

= 0

Examination of the coefficients of Eq. (38) shows that it will yleld three
distinct values for dg. Of these, one will be negative, one positive and
one complex. Returning to the original assumption for the nature of d, it
is seen that it is by definition a real number so that only the positive
root of Eq. (38) is of interest here. The others may be neglected as phy-
sically meaningless in this situation. From the positive root for d2 from
Eq. (38), one will obtain equal positive and negative values of the constant
d in this problem.

From Eg. (56), one may solve for the constant b associated with each

particular d in the form

(39)

It may be seen from this equation that there will be a value of b associated
with each value of d. If one uses the positive valve of d in the Eg. (59),
then a corresponding value of b will be obtained, while if one uses a nega-
tive value of d, a different value of b will result. Accordingly, a nota-
tion will be adopted to handle this as shown in Eq. (40). It should be em-

phasized that the numerical values of bp and b, are different.

> b, -d ~ by (40)

Using the values of d and b obtained from Egs. (38) and (39) respec-

tively, one may return to the original form of the solution to this equation,

given as Eq. (51), and note that the result of having available these four

20



combinations of d and b values allows the final solution to the complemen-

tary form of Eg. (28) to be written as

1 .
Zop = © (A sinb, 01 + B cos b, 0:)

-36, (k1a)
+ e (c SianOl + D cos bF91>

In using Eq. (L41), one must keep in mind that the complete solution for de-
flection is given by Eq. (29), in which the particular solution is added to
the one Jjust obtained.

In this particular case it appears easiest to utilize the solution
as given by Eg. (L1) by means of shifting the ©; origin to the forward
edgé of the contact patch. This has no numerical effect on the solutions
to the motion in the free region, but does make it possible to satisfy the
boundary conditions in a somewhat easier way algebraically. Before proceed-
ing to that, it is desirable to note that Eq. (41) contains two different
types of terms, one involving positive exponentials and the other negative
exponentials. In view of the fact that the constant d i1s expected to be of
gome reasonable size, and in view of the fact that the boundary conditions
at the top of the rolling wheel (defined by © = &), would require very
small values for the constants A and B, it is felt that one may approximate
the solution to this problem by considering that the only portions of this
solution which are valid and operative near the forward edge of the contact
patch are those portions associated with the negative exponentials. This,
in effect, assumes that the cylinder is of indefinite diameter compared to

the size of the contact patch. It is an approximation which turns out to

2l



be reasonably well justified by subsequent calculations. Hence, one may

write for the region forward of the contact patch

2. = e 99 sinp

oF 0, + D costQl) (41pb)

F

We will subsequently provide initial conditions for determining the
constants of integration C and D of Eq. (hl), by means of matching the de-
flection and slope of the free shell at the leading edge of the contact
patch with the corresponding deflection and slope of the cdnstrained shell
at this same point.

For the portion of the shell aft of the trailing edge of the contact
patch, one will have a very similar solution to that just obtained for the
forward portion. ©Such a solution may generally be set down, using primes

to denote it fron the previous one, in exactly the same form as is done in

Eq. (L2)
dér, ., .
Zop = € (A'SlnbAQl+B'cosbA91)
(k2)
-d®e;
+e (C’sian91+D'costQl)
Here, we wish to set a new origin at © = _Oaft’ and to direct the positive
© direction in this case to the rear. Hence, we set
t
01 = - 01
This causes Eq. (42) to take on the form
—in . ' !
Zop = € (-A'sinb,0;+B'cosb,01)
de ' ! !
+e l(-C’sianOl+D'costOl) (43)

Disregarding the positive exponential portion of this gives an approxima-

22



tion to the solution of the form

~d0;
z = e (-A’sinbAOl+B’cosb 01) (k)

CA A
Again, the complete solution for the aft portion of the wheel outside the

contact region is given by

We now have complete solutions for motion both forward and aft of the con-
tact patch in the region not in contact with the plane of rolling. It is
next necessary to set up conditions by means of which the constants of in-
tegration of Egs. (41) and (44) may be obtained. It would be desirable to
have four constants of integration associated with each of the solutions
given by Egs. (41) and (4L4). This would be necessary if one wished to match
deflection, slope, bending moment and shear force in the free shell region
with those quantities at the end of the contact patch region. Having only
two constants of integration available for each solution, it is only possible
to match the gquantities of primary importance, namely the deflection and

slope. Accordingly, the matching equations are

zp(0) = 2(0p) (L5a)
(%?l: oy T EB:(OF) (k5D)
zp(0) = z(-6,) | (b5¢)
dzA —
(553)9;20 = -7'(-9,)

where the contact patch area deflection is given by Eq. (24) and the contact

patch slope is given by Eq. (25).
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Using Egs. (2L4) and (25), along with Egs. (45), the constants of in-

tegration in Egs. (41) and (4k4) may be obtained in the form

D = (COSQQ:_]—) _ (PA+WA ) ()4-68.)
cosQF 14HKA-WA
c = (g_)D + L (s1n9£cosOo) (46b)
bF by cos QF
coso
B! = (—2Q —l) _ ( PA+WA ) ()-L6C)
cos@y 1+KA WA
A = (g-—‘)B’ +_]_-_ (SinQACE'OSQo) ()—l-6d)
by bA_ cos QA

Use of these constants of integration still leaves the second and third
derivatives of dimensionless displacement z discontinuous at the Junction
of the contact patch and free tire region. The bending moment mismatch has
been investigated numerically and generally is small. It is based upon the

definition of moment obtained from Ref. 4, and given in Eq. (L7).

3
My o= DB (i) ()
12a2 '

where a is the radius of the cylindrical shell once again. Using the moment
equilibrium of a small element of shell, the shear force becomes

En°®

1082

Q =

b (z'+2"") (48)

The first derivative z' in Eqs (48) is matched at the interface or Junction
between the region in contact and the free region of the shell. Hence the
total concentrated shear force necessary there, represented by the shear

mismatch, is given by

bw[zf'(o)-i (OF)] (L9a)
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Q. = EnS b+ [2" (0)-z™ (0.)] (ll-9b)
A P A A
12a

Now from the expressions previously developed, namely Eqs. (41) and (LL),

one may write a third derivative as

-d01 2.2 .
z;' = e [E{ibF(d _bF)+2db§]costol
2 2 2. . 2 2 =2
+[2de—d(d -bF)]s1anQ£§ + Di}deF-d(d -bF)]costol (50)

e 0”6 g |

and

1f -dOl |
' = e [; '{ibA(dZ—b§)+2dbA2]cosbA91

222_ 2 , 2 2
+[2dbA-d(d -b, ) 1sinb, 01 ¢ + B4 [2db,-d(d by ) lcosb, 01 (51)

2 2. 2\1 .
+ [-deA-bA(dd«bA)]s1nbAO£}i]
from which the shear forces at the forward edge of the contact patch and

at the aft edge of the contact patch become respectively,

3

b Eh nt i}
= W -z"" (0
Q = [ZF (0)-z"" ( ) (52a)
b Eh3 "t =t
Q) = S [ZA (0)+z"' (-04)] (52b)

122
The vertical load carried by the tire, as well as the drag force
caused by shifting of the center of pressure from directly under the axle
point, may be calculated now if one knows the angles Op and QA, defining
the contact patch position. ILetting P represent total vertical load and

MO moment of this load about the axle, one obtains

P = po'a‘bw(QF+QA) tQp T Q (53)
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MO = pg aZbW (o;-gi) +a' Qp by (53)

- a*Qp oy

A real question arises concerning the existance of such concentrated
shear forces as given by Egs. (52). In a real tire, in which a soft outer
tread is used as a scuff resistant cover, there is some doubt whether such
concentrated forces could be generated by means of a mismatching of the third
derivatives of displacement. What more probably happens is that this soft
outer cover actually forces the displacement and its derivatives to be con-
tinuous at the junction of the contact patch with the free portions of the
shell, so that in many cases, in fact most all cases, such concentrated
forcesg cannot exist. This seems to be partially confirmed by static pressure
distribution testg down the length of a contact patch, which show consider-
able similarity to calculations which are done on the basis of no concen-
trated forces. These are presented later on in the succeeding chapters of
this report. The measurements cited, however, are static measurements and
no similar measurements apparently exist for relatively high speed rolling
conditions. It may be surmised that for relatively high speed conditions
one would find it harder and harder to consider that the tread actually pre-
vents the mismatch of the shear forces as given by Egs. (52). 1In this case,
one might visualize that some influence of such‘shear forces would indeed
appear at higher speeds. At the present time we are not in a position to
answer this speculation in any quantitative way, since it would require

either the addition of shear deformation to the present theory or a modifi-
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cation of the present theory to include a relatively soft tread around the
running band. Both of these approaches have been investigated briefly and
seem to lead into formulations of considerable complexity. While it is

not implied that such theories would be impossible to carry out, it is felt
that their utility might be somewhat restricted by their length and the dif-
ficulty of solution of the equations which they generate. For that reason,
we will attempt here to construct this theory primarily on the basis of the
fact that these concentrated forces clearly do not appear during static
measurements, and hence it will be assumed that they do not appear at all
during the rolling process. It should be understood that this assumption
may be subject to a revision as more information becomes available and as

more familiarity with. these equations is obtained.
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VI. TYPICAL EXAMPIES AND CALCULATIONS

There are at least two methods for attempting to verify some of the
theoretical ideas brought out by the use of a model such as proposed in
this report. Perhaps the best and most direct of these would be to manu-
facture a model of the type visualized here and to actually conduct tests
involving its rolling over some essentially frictionless plane, in such a
way that pressure distributions, total vertical loads and drag forces could
be measured accurately. If the properties of the model were well known,
then the predictions of the theory could be compared with measured data.
A certain amount of this type of testing and comparison has been done in
connection with various point load problems, which are not discussed in
this report. However, such a series of experiments becomes rather difficult
when they must be done ona flat plane as visualized here, since the equip-
ment for rolling a wheel on such a flat surface is expensive and complicated.
For that reason a different approach will be used in this report, where we
will attempt to utilize characteristics which closely approximate those of
a real tire, and attempt to predict some of the known operating character-
istics of such a tire. In some respects this is less satisfactory than the
first process, since it is known that many of the important operating charac-
teristics of a tire depend heavily on its internal loss characteristics.
Thege internal loss characteristics are not yet well known for rubber-cord

combinations. It is clear that a simple viscous loss law does not represent
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such loss characteristics very well, and so in our calculations it will

not be possible to exactly represent the behavior of any real tire in
operation. For this reason it should be pointed out clearly that the pur-
pose of this report is not to model a specific tire exactly, but rather to
introduce a technique which, given the proper loss characteristics, can be
used to perform such modeling. Hence, in the subsequent calculations rather
idealized loss laws are used simply because their form is readily available.
The resulting calculations are indications of the general nature of tire
behavior under such conditions. The fact that some of their important
characteristics seem to agree with actual tire characteristics gives hope
that the theoretical framework outlined here will have some utility as a
tool in predicting the overall operating characteristics of a real pneumatic
tire.

One must first turn to the constants needed in evaluating the various
equations in this report. Basically, these constants are exactly those
which one must use to define the overall characteristics of a circular
cylindrical shell of the type proposed here. An attempt has been made to
chose such characteristics to be compatible with a 7.50x14.00 automotive

tire, and the resulting numerical values are being used for subsequent cal-

culations.
a = 12.35 in. h = 1.50 in. (53)
- 2, L
a_ = 13.35 in. p = 1x10 1b-sec /in.
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Using this particular value of theoutside radius of the wheel a,, namely
13.35 in., one finds that the angular velocity is related to the linear
speed in miles per hour by the relation
Q = 1.32 rad/sec/mph. (54)
Consider next the problem of calculating the response of a pneumatic
tire having the properties given in Egs. (53) under conditions of given
velocity and load. For this purpose, one must first specify the loss law
to be used. As a first example, the viscous loss type of law discussed in
the main body of this report will be utilized, and we will choose a value
of the damping factor c to be
c = 0.13 (55)
This is based on interpretation of oscillograph records from free vibration
tests of a pneumatic subjected to an impulsive blow. A digital computer
program«has been constructed which first calculates the forward and aft
edges o£ the contact patch at a fixed value of damping constant, and for
various values of the other paremeters listed in Egs. (53) and (54). This
is done by‘gpecifying the tire deflection, which is effectively accomplished
by fixing fge angle O of Eq. (24) or of Figure 4. Next, for the viscous
loss law, the motion of the shell in the free region forward and aft of the
contact jatch is calculated by means of Egs. (38) and (39). Eq. (38) gives
the damping factor while Eq. (39) or (40) gives the forward and aft wave
numbers b. These quantities define the motion of the free region, and are
readily calculated from the expressions developed. For this particular ex-

ample, the deflection 6, will be caused to vary between 0.3 and 0.5, while
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the linear velocity will be allowed to range from O to 120 miles per hour
and the inflation pressure will take on two values, namely 24 psi and LO
psi.

As a check, it should be noted that in general drag losses are larger
for the larger inflation pressure, a condition which is verified by experi-
ment .

In these calculations, it is necessary to have some value for the
dimensionless foundation modulus K/ag = KA, which has been previously dis-
cussed. It was pointed out in Rept. 18 of this series that this quantity
can be obtained directly from a static test in which the length of the con-
tact patch is measured. In doing this on two real tires, a conventional
bias ply tire and a Michelin belted tire gave values of 350 and 190 for
this constant, respectively. Hence, the calculations will also be allowed
to range over both of these specific values as a means of generally com-
paring the operating conditions of a bias ply tire of those with a belted
tire.

The results of these calculations are first given in Figure 5. Here,
the forward and aft boundaries of a typical contact patch are plotted as a
function of rolling velocity for two different inflation pressures and two
different values of the dimensionless foundation modulus KA, corresponding
to the bias ply and belted tires. It may be seen that for the bias ply tire
the static value of the contact patch length is considerably longer than for
the radial tire, but at about 40 miles an hour the radial tire exhibits a

growth of the contact patch which mekesg the two equal at that speed, and at
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all higher velocities the radial tire exhibits a greater length of contact
patch for the fixed tire deflection.

In Figure 5, the angle OO was set to be 0.375.

One might deduce from Figure 5 that the rolling radius of a belted
tire would tend to increase more rapidly with speed than the rolling radius
of a bias ply tire. One might also note that generally speaking the bias
ply tire exhibits a forward shift of the contact patch with speed, in that
the forward and aft edges both move forward with velocity. This causes the
entire pressure distribution to move forward and results in a shift of the
center of pressure forward of the axle point so as to cause a drag force,
In the case of the belted tire, as defined by the constant KA = 190, the
growth of the contact patch occurs in both fore and aft directions, but it
is greater in the forward direction than in the aft direction.

It may be seen that the influence of inflation pressure is to cause
the contact patch lengths to be longer as the inflation pressure is in-
creased.

In Figure 6 are shown curves of the influence of rolling velocity on
vertical load carried at constant tire deflection. These curves are plotted
for two different values of inflation pressure and for values of the param-
eter KA corresponding to the bias ply and belted tire., For the lower pres-
sure of 2k fsi, it may be seen that at constant deflection the belted tire
carries a smaller load than the bias ply, but that this situation reverses
at a rolling velocity of about 4O miles per hour, where the belted tire be-

gins to pick up more vertical load than the biag ply tire.
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A similar situation exists at a higher inflation pressure of L0 psi,
where the crogsover point between equality of load carrying capacity occurs
at about 30 miles per hour. In this case, the belted tire picks up large
loads at high velocities and it is clear from such a diagram as Figure 6
that at constant load the rolling radius of a belted tire would increase
congiderably with speed at higher inflation pressures.

In Figure T, the drag force is plotted as a function of rolling velocity
for the same parameters as covered in Figure 6, namely two values of inter-
nal pressure and two values of foundation modulus KA corresponding to belted
and bias ply tires., It should be emphasized that these curves are almost
entirely dependent upon the detailed form of the koss law which was assumed
in meking the calculations. As will be recalled, this loss law was taken
to be a simple viscous function, which is known to be inaccurate, but was
chosen merely for simplicity. Using this function, one may refer to Figure
7 and note that generally drag forces, expressed as pounds of force at the
axle, increase with Vélocity. The drag forces at higher inflation pressures
are greater for constant deflection than the drag forces for lower inflation
pressures. This is in general in accordance with observations. However,
in all cases the drag forces associated with the belted tire appear to be
greater than the drag forces assoclated with a bias ply tire. Since both
the belted and bias ply tire calculations were performed using the same
value of the viscous loss coefficient, this might indicate that the re-
duced rolling resistance reported in belted tires arises due to inherently

lower internal hysteresis characteristics rather than to dynamic effects.
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Subsequent calculations contradict this, however. It should also be noted
that Figure 7 does not contain any loss from the scrubbing in the contact
patch, and this may also be a factor in comparing bias ply and belted tires.
Figure T is intended as a general presentation of the type of information
which can be obtained by calculation from this model, and should not be
construed as representing the specific characteristics of the model.

In Figure 8, the maximum contact pressures in the contact patch are
plotted as a function of rolling velocity for the same four cases as treated
previously, the two internal pressures and the two values of the foundation
moduluss The general results obtained from this set of calculations seem
to indicate that at low rolling velocities the bias ply tire exhibits a
higher contact pressure with the ground while at somewhere between forty
and sixty miles per hour the belted tire begins to show higher pressures
so that at extremely high speeds the maximum contact pressures with the
tire of lower foundation modulus are markedly greater.

The results shown in Figure 8 seem to indicate that at the usual in-
flation of 2L psi, contact pressures would normally not exceed 40 psl under
ordinary driving conditions.

Figure 9 shows plots of the contact pressure distribution in the contact
patch at two different speeds, at O and 100 miles per hour, and for the two
values of the foundation modulus previously discussed. Here, it may be seen
that under static conditions the bias ply tire exhibits a longer contact
patch with higher pressures than does the belted tire. Hence, under static

conditions of equal deflection the bias ply tire will carry considerably
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more load, as is shown in the calculations and in the curves of Figure 6.

On the other hand, at a rolling velocity of 100 miles per hour the situa-
tion has reversed and the bias ply tire now exhibits a smaller contact length
along with lower contact pressures, thus allowing the belted tire to carry
considerably greater load.

The static pressure distributions are symmetric and come close to being
rectangles. On the other hand, the dynamic pressure distributions evaluated
at 100 miles per hour show rather large differences between the peak pressure
near the center of the contact patch and the inflation pressure. In addition,
the entire pressure distribution has shifted forward. This causes a forward
movement of the center of pressure which results in drag forces.

In Figure 10, plots are given of three of the parameters describing the
wave shape outside the contact patch region as a function of the rolling
velocity. The damping factor d is plotted as a function of velocity, and
it may be seen that it drops very abruptly from a relatively high value of
20 miles per hour to a small value at 100 miles per hour. This is also in
accord with general observations that the damping must decrease as speed
increases.

The wave number pertaining to shell displacement aft of the contact
patch is also plotted in Figure 10, and first increases and then decreases.
This indicates that the wave length of bending displacement behind the con-
tact patch reaches a minimum at about 4O miles per hour and then continues
to increase as the speed increases from there on. The forward wave number

is also plotted in Figure 10 and it may be seen that this increases rapidly
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with velocity, as can be observed by noting that it 1s necessary to plot
this wave number to one tenth scale in order to accomodate it to the scale
of Figure 10. The fact that this wave number rises so rapidly indicates
that very high frequency waves are being generated just forward of the con-
tact patch, and these, of course, will give rise to relatively severe bend-
ing stresses due to their high frequency nature. This also is in general
accord with observations of the critical speed phenomena.

In general it might be said that by use of the equations discussed in
the preceeding sections it i1s possible to calculate most of the important
quantities dealing with the rolling of a pneumatic tire in a straight line
under constant velocity conditions. One very important characteristic in
such calculations is the form of the loss laws, since this determines al-
most completely the general form of the drag forces which are generated
and also dictates to some extent the nature of the contact patch shift as
velocity increases., Therefore, it should be emphasized that users of this
type of mathematical model will probably find it necessary to generate
their own individual loss laws and to insert them into the appropriate
equations of this report. Only by this process will it be possible to ob-
tain realistic tire performance data from a mathematical model such as
this. An example of this type of loss law is given in the subsequent
numerical example.

It should be noted in closing this discussion of the viscous loss law
that examination of the equations concerning the forward and aft wave num-

bers and the damping constant d will indicate at once that these are in-
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dependent of the deflection imposed on a tire. This means that the wave
phenomena can be generated by small as well as large deflections, and hence
that the critical speed, if one exists, is quite independent of the load

carried on the tire or its deflection.
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VII., STRUCTURAL DAMPING

An alternate approach to the use of viscous damping is to attempt
to write some simple expression involving structural damping as a mechanism
of loss in a pneumatic tire model. In order to do this, we may draw upon
various simple descriptions of structural damping, such as that of Tong .
There, structural damping is defined as damping which is proportional in
megnitude to the elastic forces and is directed opposite to the velocity.
In this case, we choose to define the elastic forces as the elastic forces
in the foundation of the circular shell. According to the definition of
structural damping, a radial pressure is generated, due to such damping,
of magnitude given by Eq. (56)

pp = | B |y (56)
W

Note that this may be treated within the framework of the same general
equations previously written by inserting this radial pressure in place of
the one previously defined for viscous forces, and that such a substitution

will give an equation of the motion of the form
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where

O
]
= ¢]=

This may be compared with Eq. (9). It is now necessary to transform this
equation into moving coordinates, as previously described. This results

in the expression for steady state motion given by Eq. (58).

IV Q2 y_1 kK |z kK Q2
z +(2+&3)Z'-ga§|m,lnz'+(.1+&-§-a§)z
2
= -2 +8 +Ro (58)
¢ a® af

This may be compared with Eq. (17). In Eg. (58), the radial pressure due

to the structural damping has been transformed into

pr = - gk [——| (-av') (59)

We
from which the steady'state conditions give rise to the radial pressure
Z
= gkQz'|— (60
Py |Qz‘| )

The dimensionless version of this equation of motion then reduces to

22V 4 (o4iA)z" -..-gz'rgz(m.)]aZ_‘l +
Z

(1+4KA-WA)z = PA - PO + WA (61)
We will again remove the displacement due to internal pressure by means of

the transformation

V4 = 7 Zp (62)
We now assume that structural damping is proportional to Z, and not to the
original variable z. This allows the equation of motion finally to be

written in the form
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IV B i} 7
g+ (o4WA)Z" - ng'(KA,)laf—t] +(1+KA-WA )z
RY

(63)
- WA(L + EA_-__)

1+KA

= - PO

It may be seen that this problem may be handled within the same framework
as the viscous loss problem but now the loss coefficient ¢ must be written
as

¢ = gxa)|=| (64)

In this case, it 1s seen that it is relatively simple to include the
structural damping mechanism as part of the contact patch calculations.
Identical calculations to those previously Qescribed were performed using
this loss mechanism and attempting to set the magnitude of the constant g
in such a way that the losses were approximately the same magnitude as pre-
dicted by the viscous mechanism. Again two different values of the dimen-
sionless foundation modulus E/a2 were used, one value of 350 being approxi-
mately representative of normal bias ply tires while the éther value of 190
is approximately representative of a Michelin belted tire. Some of the
results of these calculations using this structural damping mechanism are
given in the succeeding figures.

Figure 11 shows plots of the position of the contact patch as a func-
tion of velocity for these two values of dimensionless foundation modulus,
and using an identical fixed tire deflection of Qo = 0,375 in both cases.
The loss mechanism in both of these cases was taken in the form given by
Eq. (64). It may be seen that for the tire whose dimensionless foundation

modulus is approximately that of a bilas ply tire, increasing velocity first
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causes the contact patch to move forward and finally to spread out in ex-
tent. For the lower value of dimensionless foundation modulus, correspond-
ing to the belted tire, this effect is extremely pronounced and the growth
of the contact patch at higher speeds is very noticeable.

In Figure 12 the vertical load carried by two different tires of
approximately_?.SOle.OO size is plotted as a function of rolling wvelocity.
The inflation pressure is taken to be 24 psi while the tire deflection is
given by 69 = 0.375. Again the same hysteresis loss law is assumed for
both tires and again two values of dimensionless foundation modulus are
compared. Here, it may be seen that the bias ply tire generally increases
its load carrying capacity at fixed deflection at a slower rate than does
the belted tire. This would seem to indicate that at fixed load the roll-
ing radius of a belted tire would increase more rapidly than the rolling
radius of a comparable bias ply tire. The increase in load at fixed de-
flection for the belted tire is rather remarkable between a speed range of
O through 120 miles per hour. This is due both to an increase in the con-
tact pressure as well as a considerable growth in the contact patch area.

It should also be noted that the bias ply tire exhibits the rather
interesting phenomena of decreasing in its load carrying capabilities up
to about 20 miles an hour, at which point its load starts to increase.
This is an interesting point and worth comment, since such a phenomena has
been observed in laboratory testing on road wheels.

Figure 13 shows the calculated variation in drag force with rolling

velocity, again comparing the two different types of tires previously dis-
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cussed. The hysteresis loss law seems to predict the drag forces which
peak at lower velocities, such as represented here by the 20 mile per hour
calculated point, and then decrease as speed becomes greater. This phe-
nomena is clearly represented in Figure 13. As a very interesting feature
of Figure 13, one notes that the drag forces exhibited by the particular
model representing a belted tire are considerably less for all speeds than
the corresponding drag forces for a bias ply tire of the same size, infla-
tion pressure and tire deflection. This seems to indicate that hysteresis
loss phenomena predict that the belted tire would be a more efficient tire
from the point of view of power consumption. This is in opposition to the
reéult obtained from the viscous damping law, and illustrates the sensiti-
vity of the results ?o the particular form of loss mechanism chosen for the
model.

In the construction of Figure 13, one should not be particularly mis-
led by the fact that the drag forces seem to decrease as velocity builds
up. What is important here is the relative drag force between the two
tires, and the trends which are indicated. If one were to construct a
drag force curve similar to this but using a more exact loss law, say one
in which both the real and imaginary parts of the complex material modulus
were varied with speed, then one might expect a more realistic representa-
tion of the overall drag force as a function of speed. Not much effort
has been made here to provide such a realistic law since we feel that the
sponsors' own laboratories are much better equipped to formulate such a law

than are we.
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Figure 14 shows the maximum contact pressure as a function of velocity,
again taken for the two types of tires being compared with all other condi-
tions being the same. The inflation pressure is 24 psi in both cases. The
static maximum pressure for the belted tire is about 25.5 psi while for the
bias ply tire it is about 28.5 psi. As velocity increases, the maximum con-
tact pressure for the belted tire grows more rapidly and at 120 miles per
hour it is about 49 psi while for the bias ply tire the maximum pressure at
this speed is about 43 psi. As may be seen from this figure, the general
trend is for the contact pressure to build up as the tire increases in its
rolling speed.

Figure 15 shows plots of the contact pressure distribution versus
position in the contact patch for both static and 100 mile per hour roll-
ing velocity conditions. Again, the two types of tires previously dis-
cussed are being compared and once again an initial inflation pressure of
ok psi is postulated, along with a fixed deflection corresponding to OO =
0.375. It may be seen from Figure 15 that for the bias ply tire the initial
contact pressures'are somewhat higher while the initial contact patch is
considerably longer. The combination of thesge effects causes considerably
greater load to be carried by the bias ply tire at zero velocity. As the
velocity increases this situation generally reverses and, using this par-
ticular hysteresis loss law, it is seen that at 100 miles per hour the
pressure distribution for the belted tire now exceeds considerably the
vpressure distfibution for the bias ply tire. Further, the contact patch

for the belted tire is now longer with the result that at speed it carries

52



45

40

35

30

25

15

10

Fixed Tire Deflection
| 1% of Radius

PO = Inflation Pressure
= 24 psi

B KA =350 (Bias Ply)
—t— KA =190 (Belted)
— 7:50 x 14 Tire Approx.
Hysteresis Loss Law
I I | l | |
0 2 40 60 80 100 120

Velocity, mph

Figure 14. Maximum contact pressure vs. velocity.
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much greater load than does the bias ply tire. This phenomena of reversal
of load carrying capacity seems to be an interesting one and would apparently
bear some experihental confirmation.

It should again be emphasized that considerable effort may have to
be expended in generating a meaningful loss law for rubber coated fabrics
or steel wire used in current pneumatic tire production. However, if this
is done, there appears to be a good possibility that a model such as dis-
cussed here would well represent many of the phenomena encountered in the
straight line rolling of a pneumatic tire under steady state deflection
conditions, or under steady state load conditions, where such effects as
drag forces, pressure distributions, and load carrying ability are of im-

portance.

55



l.

VIIT. REFERENCES

Saito, Y., "A Study of the Dynamic Steering Properties of Pneumatic
Tires,"” 9th International Automobile Technical Congress, 1962, pub-
lished by the Institution of Mechanical Engineers, London.

Thorsen, K. R., 1951 Boeing Airplane Company Report No. D-11719, "A
Rational Method for Predicting Tire Cornering Forces and ILateral
Stiffness.”

Clark, S. K. "An Analog for the Static Loading of a Pneumatic Tire,"
The University of Michigan, Office of Research Administration, Re-
port 02957-19-T. March 196k.

FlUgge, Wilhelm, "Stresses in Shells," Springer-Verlag, Berlin, 1960.

Goodier, J. N. and McJvor, J. K., "The Elastic Cylindrical Shell Under
Heavly Uniform Radial Impulse,” A.S.M.E. Paper No. 63 APMW-6, 1963.

Tong, K. N., "Theory of Mechanical Vibration," John Wiley and Sons,
Inc., N. Y. 1961.

56



IX, DISTRIBUTION LIST

The General Tire and Rubber Company
Akron, Ohio

The Firestone Tire and Rubber Company
Akron, Ohio

B. F. Goodrich Tire Company
Akron, Ohio

Goodyear Tire and Rubber Company
Akron, Ohio

United States Rubber Company
Detroit, Michigan

S. S. Attwood

R. A. Dodge

The University of Michigan ORA File
S. K. Clark

Project File

57

No. of
Copies

10



N

A
3 5388

9015 02828



