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Abstract. The Serret-Andoyer transformation is a classical method for reducing the free rigid body dynamics,
expressed in Eulerian coordinates, to a 2-dimensional Hamiltonian flow. First, we show that this transformation
is the computation, in 3-1-3 Eulerian coordinates, of the symplectic (Marsden-Weinstein) reduction associated
with the lifted left-action ofSO(3) on T∗SO(3)—a generalization and extension of Noether’s theorem for
Hamiltonian systems with symmetry. In fact, we go on to generalize the Serret-Andoyer transformation to the
case of Hamiltonian systems onT∗SO(3)with left-invariant, hyperregular Hamiltonian functions. Interpretations
of the Serret-Andoyer variables, both as Eulerian coordinates and as canonical coordinates of the co-adjoint orbit,
are given. Next, we apply the result obtained to the controlled rigid body with momentum wheels. For the class
of Hamiltonian controls that preserve the symmetry onT∗SO(3), the closed-loop motion of the main body can
again be reduced to canonical form. This simplifies the stability proof for relative equilibria , which then amounts
to verifying the classical Lagrange-Dirichlet criterion. Additionally, issues regarding numerical integration of
closed-loop dynamics are also discussed. Part of this work has been presented in [16].

Keywords: Hamiltonian system, canonical transformation, group symmetry, symplectic form, symplectic reduc-
tion

1. Introduction

TheSerret-Andoyer transformationwas first introduced by Serret [23] as a canonical trans-
formation for the free rigid body dynamics that results in two ignorable (cyclic) coordinates.
Roughly speaking, let the transformation be denoted by

(ϕ, θ, ψ,8,2,9) 7→ (g, h, l ,G, H, L),

where (ϕ, θ, ψ,8,2,9) is the set of 3-1-3 Eulerian coordinates that characterize the
motion, and(g, h, l ,G, H, L) are the transformed coordinates. Then, the variablesg andh
are ignorable, i.e.,G andH are integral invariants, leaving a Hamiltonian in the remaining
variables,H(l , L). In essence, the transformation reduces the 6-dimensional dynamics of
the free rigid body to two dimensions.
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** Research partially supported by National Science Foundation PYI grant DMS-94-96221, AFOSR grant
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Serret deduced the transformation by solving the Hamilton-Jacobi equation, where reduc-
tion was achieved by requiring the generating function to take on a special form. Andoyer
[3] showed using spherical trigonometry that the transformation is really a change of Eu-
lerian coordinates that depends on the angular momentum vector. In effect, choosing
a spatial frame such that the 3-axis is parallel to the conserved spatial angular momen-
tum vectorp, and denoting the set of 3-1-3 Eulerian coordinates in this spatial frame as
(ϕ′, θ ′, l ,8′,2′, L), one finds that the Hamiltonian depends only on8′, l andL. Moreover,
8′ is a constant of motion (sinceϕ′ is cyclic) and in fact equals‖p‖, the magnitude of the
angular momentum. Thus, the reduced Hamiltonian above is obtained.

More recently, Deprit and Elipe [11] reconstructed the Serret-Andoyer transformation
using differential forms, and explained that the transformation has the meaning of reducing
the rigid body dynamics bySO(3) symmetry, although this connection was not explicitly
formulated as a quotient map on the phase space, which we do in the present study.

The significance of the transformation is that it allows, through further introduction of a
set of action-angle variables, the complete reduction of the free rigid body dynamics onto
the 2-torus, that is, in a form that is integrable by quadrature; see [11]. The notion of
integrability of Hamiltonian systems is well known.

The main purpose of this paper is to extend the definition of the Serret-Andoyer variables
to the controlled rigid body, and to attempt a similar reduction of the closed-loop dynamics
for a certain class of Hamiltonian controls.

To do so, we first explicate the connection between the Serret-Andoyer transformation,
and the notion of reduction of dynamics with symmetry due to Marsden and Weinstein
[2], [20]. In fact, we go on to generalize the Serret-Andoyer transformation to the case
of Hamiltonian systems onT∗SO(3) with left-invariant, hyperregular Hamiltonians, and
we show that this transformation is the computation in 3-1-3 Eulerian coordinates of the
symplectic (Marsden-Weinstein) reduction associated with the lifted left-action ofSO(3)
on T∗SO(3)—a generalization and extension of Noether’s theorem on the conservation of
momentum maps for Hamiltonian systems with symmetry.

Geometrically, the generalized Serret-Andoyer transformation is rather easy to visualize:
it amounts to choosing a spatial frame so that the 3-axis is aligned with the generalized
angular momentum, and characterizing the momentum level set with the 3-1-3 Eulerian
coordinates. The geometric interpretation of the Serret-Andoyer variables(l , L), i.e., the
remaining free variables, is two-fold:l originates as an Euler coordinate due to the above-
mentioned choice of the spatial frame, andL as its conjugate momentum; moreover,(l , L)
appear as canonical coordinates with respect to theleft Kostant-Kirillov symplectic form
for a local chart on the momentum level set. It is well known that this level set is a leaf of
the Poisson manifoldso(3)∗.

The generalized Serret-Andoyer transformation is next applied to the controlled rigid body
with momentum wheels. As further investigation of the work of Blochet al. [7], we are in
particular interested in control laws that stabilize stationary rotation about the intermediate
axis while preserving the group symmetry, i.e., such that the closed-loop motion of the
body is again Hamiltonian, left-invariant and hyperregular. A sufficient condition for a
symmetry-preserving control is given in Section 6.1.

For the class of Hamiltonian controls that preserve the symmetry onT∗SO(3), Noether’s
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theorem is applicable to the closed-loop motion of the main body. Thus, one can define a
controlled Hamiltonianwhich is generally different from the classical Hamiltonian. The
generalized Serret-Andoyer transformation for the controlled system then amounts to a
judicious choice of Euler coordinates relative to the momentum which, by design, is con-
served in space. Reduction is thus achieved, and the closed-loop main body motion is
again a 2-dimensional Hamiltonian flow in the generalized Serret-Andoyer variables. A
useful feature of the Serret-Andoyer variables analysis of the controlled dynamics is that,
since the reduced dynamics are Hamiltonian in canonical form, the stability proof can be
done by applying the classical Lagrange-Dirichlet criterion. Finally, we shall investigate
the computational properties of the Serret-Andoyer variables representation. To do this, we
simulate the reduced closed-loop dynamics using a general integration algorithm (Adams’
method) as well as second-order symplectic integrators [9]. We compare the solutions thus
obtained with those simulated with other representations, namely, Euler’s equations and
the full (3-degree-of-freedom) dynamics, focusing on the numerical preservation of energy
and momentum. The results show that the reduced representation is more economical by
having fewer (two) dynamical equations, naturally preserves momentum, and allows the
use of symplectic integrators that are accurate energy-wise.

In this paper, we show how a geometric approach to classical mechanics can be applied
to modern control theory. This approach appears to be useful in various settings; see,
for example, [8]. Some preliminary results on the topics discussed hereafter have been
presented in [16].

2. Representation of Free Rigid Body Motion in Eulerian Coordinates

We consider the motion of a free rigid body in inertial space. By K¨onig’s theorem in
classical mechanics, this amounts to the study of the body’s motion about its center of
inertia which is fixed in space. Let thespatial framebe the set(s1, s2, s3) of right-handed
orthonormal vectors fixed in space, and let thebody framebe the set(b1,b2,b3) fixed in
the body sharing the common origin O with the spatial frame. See Figure 1. In terms of the
3-1-3 Euler angles [14], pp. 354–358 denoted by(ϕ, θ, ψ), the attitude of the rigid body
relative to space results from successive rotations of angleϕ abouts3, then of angleθ about
the imagel of s1 by the first rotation, and finally of angleψ aboutb3 which is the image of
s3 by the previous rotations. If(x1, x2, x3) and(X1, X2, X3) are the components of a vector
relative to, respectively, the spatial and body frames, then the rotation matrixR ∈ SO(3)
taking(X1, X2, X3) to (x1, x2, x3) is given by

R =
cosψ cosϕ − cosθ sinϕ sinψ − sinψ cosϕ − cosθ sinϕ cosψ sinθ sinϕ

cosψ sinϕ + cosθ cosϕ sinψ − sinψ sinϕ + cosθ cosϕ cosψ − sinθ cosϕ
sinθ sinψ sinθ cosψ cosθ

,
(1)

i.e., (x1, x2, x3)
T = R (X1, X2, X3)

T. The classical definition of thebody angular velocity
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Figure 1. 3-1-3 Euler angles.

ω = ϕ̇ s3+ θ̇ l + ψ̇ b3 yields

ω =
 θ̇ cosψ + ϕ̇ sinψ sinθ
−θ̇ sinψ + ϕ̇ cosψ sinθ

ϕ̇ cosθ + ψ̇

 . (2)

Thespatial angular velocity, Ω = Rω, then has the expression

Ω =
 θ̇ cosϕ + ψ̇ sinϕ sinθ
θ̇ sinϕ + ψ̇ cosϕ sinθ

ϕ̇ + ψ̇ cosθ

 . (3)

The Lagrangian of the free rigid body dynamics equals the body’s kinetic energyL(ω) =
1
2ω ·Iω,whereI is the matrix of the inertia tensor. Assume that the body axes coincide with
theprincipal axes of inertia, I = diag(I1, I2, I3). The associated Hamiltonian function in the
configuration variables(ϕ, θ, ψ) and their conjugate momenta(8,2,9) can be obtained
by the Legendre transform ofL. Computation yields [19]

8 = I1(ϕ̇ sinψ sinθ + θ̇ cosψ) sinθ sinψ

+I2(ϕ̇ cosψ sinθ − θ̇ sinψ) sinθ cosψ + I3(ϕ̇ cosθ + ψ̇) cosθ, (4a)

9 = I3(ϕ̇ cosθ + ψ̇), (4b)

2 = I1(ϕ̇ sinθ sinψ + θ̇ cosψ) cosψ − I2(ϕ̇ cosϕ sinθ − θ̇ sinψ) sinψ, (4c)

and the resulting Hamiltonian function has the expression

H(ϕ, θ, ψ,8,2,9) = 1

2

(
sin2ψ

I1
+ cos2ψ

I2

)(
8−9 cosθ

sinθ

)2

+ 92

2I3
+ 1

2

(
cos2ψ

I1
+ sin2ψ

I2

)
22

+
(

1

I1
− 1

I2

)(
8−9 cosθ

sinθ

)
2 sinψ cosψ. (5)
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Thebody angular momentumis given classically bym = Iω. Using (4),m then has the
expression

m1 =
(
8−9 cosθ

sinθ

)
sinψ +2 cosψ, (6a)

m2 =
(
8−9 cosθ

sinθ

)
cosψ −2 sinψ, (6b)

m3 = 9. (6c)

Finally, thespatial angular momentump is obtained by transformingm back to the spatial
frame:

p1 = 2 cosϕ +
(
9 −8 cosθ

sinθ

)
sinϕ, (7a)

p2 = 2 sinϕ −
(
9 −8 cosθ

sinθ

)
cosϕ, (7b)

p3 = 8. (7c)

Remark 1. Note that the variableϕ is cyclic in the HamiltonianH given by (5), i.e.,H
is invariant with respect to coordinate rotations about the axiss3. It is obvious that this
symmetry holds for any arbitrarily chosens3. In fact, as shown later, this property is true
for a more general class of motions.

3. The Classical Serret-Andoyer Transformation

The Serret-Andoyer transformation results from the following geometric operation. Let the
spatial and body frames be denoted as before. Leti be the image ofs1 by a rotationh about
s3, and letk be the image ofs3 by a rotationσ abouti. See Figure 2(a). The body frame is
obtained by successive rotations of angleg aboutk, then of angleβ about the imagej of i
by the first rotation, and finally of anglel aboutb3 which is the image ofk by the previous
rotations; Figure 2(b). Notice that(g, β, l ) are the 3-1-3 Euler angles that locate the body
framerelative to the intermediate frameformed byi, k and a third vector. The rotationR
from the spatial frame to the body frame passing through the intermediate frame can be
represented by the differential [11]

dR = s3dh+ idσ + kdg+ jdβ + b3dl. (8)

Instead of relying on spherical trigonometry as did Andoyer [3], Deprit and Elipe [11]
deduced the Serret-Andoyer transformation by requiring that the following differential
equation hold:

m · dR = L dl + G dg+ H dh, (9)

whereL, G and H are the momenta canonically conjugate tol , g andh. By choosingk
to be the direction of the angular momentum vector, i.e.,m = ‖m‖ k so thatm · i = 0
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Figure 2. Classical transformation using spherical coordinates.

andm · j = 0, the transformation(ϕ, θ, ψ,8,2,9) 7→ (l , g, h, L ,G, H) results in the
Hamiltonian

H = 1

2

(
sin2 l

I1
+ cos2 l

I2

)
(G2− L2)+ L2

2I3
, (10)

with H = G cosσ = 8, L = G cosβ = 9, andG = ‖m‖. Deprit and Elipe [11] argued
that the above transformation is canonical and results from a reduction bySO(3). In effect,
we notice that the variablesg andh are cyclic, and thusG andH are integrals of motion.
Moreover,H vanishes in (10), henceh is also constant along the flow ofH. An additional
integral of motion is obviously the HamiltonianH. Solutions ofl (t) andL(t) can then be
obtained by integration by quadrature, yielding

dl

dt
= G

√(
1

I3
− sin2 l

I1
− cos2 l

I2

)(
A− sin2 l

I1
− cos2 l

I2

)
, (11a)

L = G

√√√√A− 1
I1

sin2 l − 1
I2

cos2 l
1
I3
− 1

I1
sin2 l − 1

I2
cos2 l

, (11b)

whereA = 2H/G2 is an integral of motion. Derivation of (11) and further relevant issues
regarding integration are discussed in [11].

Remark 2. It is now apparent that the axesi andk are fixed in space, since the angle
h which locatesi in the space spanned bys1 ands2 is a constant of motion, andk is the
direction of the spatial angular momentum which is conserved. Hence, the Serret-Andoyer
transformation can be viewed as a change of spatial coordinates that depends on a conserved
quantity, namely, the angular momentum in space.
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4. Generalities in Hamiltonian Systems with Symmetry

We recall in this section some general notions concerning Hamiltonian systems on Lie
groups. We shall employ hereafter standard terminology and methodology of geometric
methods in control and dynamics, and we recommend, among others, the texts of Abraham
and Marsden [2], Arnold [5] and Marsden and Ratiu [19] for in-depth syntheses of the
subject. Nevertheless, we shall highlight here some elements of the theory of Hamiltonian
systems onSO(3) that are relevant to the development of our subsequent results.

Consider the Lie groupSO(3), i.e., the group of real 3× 3 orthogonal matrices with
determinant equal to 1. Letso(3) denote its Lie algebra, andso(3)∗ its dual. Recall that
elements ofso(3) are 3× 3 skew-symmetric matrices, and the algebra bracket is the usual
matrix commutator bracket,[V,W] = VW −WV .

Let thehat map̂ : R3→ so(3) denote the usual Lie algbera isomorphism that identifies
(so(3), [ , ]) with (R3,×):

v = (v1, v2, v3) 7→ v̂ =
 0 −v3 v2

v3 0 −v1

−v2 v1 0
.

 (12)

By duality,so(3)∗ is also identified withR3.
With the above identification, the classical definitions of body and spatial angular ve-

locitiesω andΩ, respectively, have the following geometric meaning: the pair(R, ω̂) is
thebody representation, i.e., left-translation to the identity, of tangent vectors inTSO(3).
Indeed,Ṙ ∈ TRSO(3) has the formṘ = Rω̂. Thus, left-translation givesTRL−1

R · Rω̂ =
R−1Rω̂ = ω̂. Likewise, the pair(R, Ä̂ ) is thespatial representationof tangent vectors by
right-translation to the identity. By duality, the body and angular momentum vectorsm and
p give the body and spatial representations, respectively, of covectors inT∗SO(3). The
pairing between tangent vectors and covectors is then given by the usual dot product onR3:
〈(R,m), (R, ω̂)〉 = m ·ω. Arnold [4] gave a clarification of the various representations for
general Lie groups, and showed that they can be applied to fluid mechanics. See also [19]
for an exposition.

A Hamiltonian functionH on T∗SO(3) is said to beleft-invariant if H ◦ L∗R = H for
all R ∈ SO(3), whereL∗ denotes the cotangent lifted action. In the body representation,
left-invariance means thatH depends only on the body angular momentum, i.e.,H :
SO(3) × so(3)∗ → R : (R,m) 7→ H(m). The fiber derivativeof H is the mapFH :
SO(3)× so(3)∗ → SO(3)× so(3) : (R,m) 7→ (R,∇mH). H is said to behyperregular
if FH is a diffeomorphism. The following is an important lemma, materials for the proof
of which can be found in [2, §4.4].

LEMMA 1 LetH : SO(3)×so(3)∗ → R be left-invariant, then the associated Hamiltonian
vector field in body coordinates is

XH(R,m) =
(
R · ∇̂mH , m×∇mH

)
. (13)

Moreover, ifH is hyperregular, the associated left-invariant LagrangianL : SO(3) ×
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so(3)→ R is given in body coordinates by

L(ω) = m · ω −H(m), (14)

wherem is given in terms ofω by the Legendre transformFL : SO(3) × so(3) →
SO(3)× so(3)∗ : (R,ω) 7→ (R,m) = (R,∇ωL), with (FL)−1 = FH.

The second component ofXH is sometimes called theEuler vector field, or the dynamical
equationṡm = m×∇mH are calledEuler’s equation. In particular, the classical Lagrangian
of free rigid body dynamics is given in body coordinates asL(ω) = 1

2ω · Iω. Thus, the
body angular momentum is the image by the Legendre transform of the body angular
velocity, FL : ω 7→ m = Iω, and the classical spatial angular momentum is its spatial
representation.

In general, given a hyperregular HamiltonianH (or, equivalently, a hyperregular La-
grangianL), one can define a generalized body angular momentum by the Legendre trans-
form, i.e.,m = ∇ωL, whereω is the classical body angular velocity.H in our setting will
generally be different from the classical Hamiltonian. For example, for the controlled rigid
body,H can be called thecontrolled Hamiltonian, andL thecontrolled Lagrangian.

Remark 3. Note that for a left-invariant Lagrangian in general, the variableϕ in the 3-1-3
Euler angles(ϕ, θ, ψ) is necessarily ignorable, sinceϕ does not appear explicitly in the
expression ofω (see (2)). In particular, this is true for the free rigid body dynamics, as
mentioned in Remark 1.

We conclude this section with the following property related to the 3-1-3 Euler angle
representation. This property is crucial for the generalization of the Serret-Andoyer trans-
formation discussed in the next section.

LEMMA 2 LetH ∈ F(SO(3)×so(3)∗) be a left-invariant, hyperregular Hamiltonian, and
letL be the associated Lagrangian. Then, choosing any arbitrary spatial frame and the set
(ϕ, θ, ψ) of 3-1-3 Euler angles, the conjugate momenta(8,2,9) associated withL are
related to the body representation by

8 = (m1 sinψ +m2 cosψ) sinθ +m3 cosθ, (15a)

2 = m1 cosψ −m2 sinψ, (15b)

9 = m3, (15c)

for all (R,m) ∈ SO(3)× so(3)∗. Moreover, in the chosen spatial frame and ignoring the
singular points corresponding toθ = 0, the spatial representation,p = Rm, is then given
in terms of these momenta by

p1 = 2 cosϕ +
(
9 −8 cosθ

sinθ

)
sinϕ, (16a)

p2 = −2 sinϕ −
(
9 −8 cosθ

sinθ

)
cosϕ, (16b)

p3 = 8. (16c)
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Proof: By definition,8 = ∂L/∂ϕ̇ = ∇ωL · Dϕ̇ω = m · Dϕ̇ω. From the expression 2
of the body angular velocity, one easily obtains (15a). (15b) and (15c) can similarly be
obtained. Finally, (16) is obtained by inverting (15) to yieldm in terms of(8,2,9), and
transforming to the spatial frame withR given by (1).

Remark 4. The variables(ϕ, θ, ψ,8,2,9) are a set of local coordinates forT∗SO(3).
Hence, Lemma 2 simply relates these coordinates with the vectorial representations, both in
the body and in space. Equations (15) and (16) are true for any left-invariant, hyperregular
Hamiltonian. In particular, they are true for the free rigid body Hamiltonian, as can be seen
by comparing (15) and (16) with (4) and (7).

5. Generalized Serret-Andoyer Transformation

In this section, we shall reconstruct the Serret-Andoyer transformation by employing the
notion of symplectic (Marsden-Weinstein) reduction. This notion is essentially based on
that ofmomentum maps, which are quantities generated by symmetry (group actions) on
a Poisson manifold. ByNoether’s theorem, momentum maps are conserved along the tra-
jectories of a Hamiltonian vector field when the Hamiltonian is itself invariant under the
symmetry. The conserved quantity defines a ‘slice’ of the manifold which, under further
assumption ofequivariance, can be projected onto a smooth manifold, thereduced phase
space, of lesser dimension equipped with a unique symplectic structure. The trajectories
of the original Hamiltonian vector field are thus projected onto those of a reduced Hamil-
tonian vector field on the reduced phase space. The Serret-Andoyer transformation is none
other than the computation in Eulerian coordinates of this process of reduction. In fact, it
generalizes to rigid motions with left-invariant, hyperregular Hamiltonians. But, first, we
shall introduce materials essential to the discussion.

5.1. Symplectic (Marsden-Weinstein) Reduction ofT∗SO(3)

Let G be a Lie group and and letg denote its Lie algebra. Moreover, letP be aPoisson man-
ifold, i.e., a manifold with aPoisson bracket{, } onF(P) = C∞(P) such that(F(P), {, })
is a Lie algebra and{FG, H} = {F, H}G+ F{G, H} for all F , G andH ∈ F(P). Let G
act onP (on the left) by Poisson maps,G × P → P : (g,q) 7→ Lg(q) = g · q, i.e., Lg

preserves the Poisson bracket for allg ∈ G: {F,G} ◦ Lg = {F ◦ Lg,G ◦ Lg} for all F and
G ∈ F(P). To this action corresponds aninfinitesimal actionof g on P, i.e., the vector
field

ξP(q) = d

dt

∣∣∣∣
t=0

[
etξ · q] , (17)

q ∈ P, ξ ∈ g.
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Definition 1. A mapJ : P → g∗ is called amomentum mapif X〈J,ξ〉 = ξP for all ξ ∈ g.
Moreover,J is said to beAd*-equivariantif J ◦ Lg = Ad∗g ◦ J for all g ∈ G.

The linear map Ad∗ : g∗ → g∗ is theco-adjoint actionof G on g∗ (see [19] for the
definition). ForG = SO(3) one has:

LEMMA 3 The co-adjoint action of SO(3) on so(3)∗ ' R3 is the usual coordinate trans-
formation inR3, Ad∗R−1m = Rm for all R ∈ SO(3), m ∈ so(3)∗.

THEOREM1 Let P= T∗G be equipped with the canonical symplectic form and, thus, with
the associated Poisson structure. Then, the left-action of G on T∗G is Poisson. Moreover,
the Ad*-equivariant momentum mapping of this action is given in body coordinates by
J(g, µ) = Ad∗g−1(µ) [2, pp. 317–318].

Note in particular that forG = SO(3), Lemma 3 and Theorem 1 imply that the associated
momentum map is simply the (generalized) angular momentum represented in the inertia
3-space.

THEOREM2 (NOETHER’S THEOREM) If the action of G on P is Poisson and admits a mo-
mentum mapJ : P → g∗, and if the smooth functionH : P → R is G-invariant, i.e.,
H ◦ Lg = H for all g ∈ G, thenJ is a constant of the motion for XH, i.e.,J◦ϕt = J, where
ϕt is the flow of XH.

The following specializes Theorems 1 and 2 to left-invariant Hamiltonian vector fields
on cotangent bundles.

COROLLARY 1 LetH : T∗G→ R be left-invariant. Then, the spatial representation of the
momentum mapJ is invariant along the trajectories of XH.

Corollary 1 generalizes the classically known fact that the angular momentum of a free
rigid body is conserved in space. Now, letG = SO(3), let p ∈ so(3)∗ be given, and let
Mp = J−1(p) denote themomentum level setcorresponding top. In this case,Mp is a
smooth manifold. Since the momentum mapJ is equivariant (Theorem 1), thestationary
subgroup Gp ⊂ SO(3) given by

Gp = {R ∈ SO(3) : Ad∗R−1(p) = p}

leavesMp fixed.

PROPOSITION1 The stationary subgroup Gp for the rigid body problem is the 1-parameter
subgroup of rotations in the direction of the spatial angular momentump.

Proof: Let R ∈ Gp. Then, Ad∗R−1(p) = p, which impliesp · v = p · Ad∗R−1 (̂v) =
p · (R−1̂vR). Hence,p · v = p · R−1v, or (Rp − p) · v = 0, for all v ∈ R3. p is therefore
an eigenvector ofR.

The quotient manifoldFp = Mp/Gp is a symplectic manifold endowed with the unique
symplectic formωp(α, β) = ω(α′, β ′), whereω is the canonical symplectic form on
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T∗SO(3), and the vectorsα andβ tangent toFp at [x] ∈ Fp are obtained by projec-
tion of someα′ andβ ′ tangent toMp at x [5], [20]. Fp is known as thereduced phase
space. Given a left-invariant Hamiltonian onT∗SO(3), define thereduced Hamiltonian
hp : Fp → R byH|Mp = hp ◦ πp, whereπp is the projectionπp : Mp → Fp. Then, the
trajectories ofXH project to those ofXhp . One therefore obtains, as an image by reduction
of the original Hamiltonian system, another Hamiltonian system on the reduced phase space
with the above-mentioned symplectic structure.

By Lemma 2, givenH left-invariant and hyperregular,Mp can be characterized in Eulerian
coordinates by the values of(ϕ, θ, ψ,8,2,9) satisfying (16) forp fixed. Moreover, to
factor out the action ofGp on Mp, one recalls thatϕ is ignorable inH (see Remark 3) for
an arbitrarily chosen spatial frame. We may always choose a spatial frame such that the
axiss3 is parallel top. In other words, considerp ∼= (0,0,G) whereG ∈ R is a nonzero
constant. Substituting into (16) and ignoring the singular points corresponding toθ = 0
yields the following result.

PROPOSITION2 LetH ∈ F(SO(3)×so(3)∗)be a left-invariant, hyperregular Hamiltonian,
and letp ∈ so(3)∗ be fixed. Choose a spatial frame in whichp ∼= (0,0,G), G being a
nonzero constant. Relative to this spatial frame, denote the 3-1-3 Euler angles by(ϕ, θ, l )
and their conjugate momenta by(8,2, L). Then the momentum level set Mp is locally
given by

2 = 0, cosθ = L/G, 8 = G, (18)

(ϕ, l , L) ∈ (0,2π) × (−π, π) × (−G,G). Moreover, the mapπp : Mp → Fp is the
coordinate projection(ϕ, l , L) 7→ (l , L).

Proof: By the choice of spatial frame, (16c) yields immediately8 = G. Renaming
(ψ,9) (l , L), (16a) and (16b) therefore yield2 = 0 andL = G cosθ sincep1 = p2 = 0.
This shows thatMp is a 3-dimensional manifold with local coordinates(ϕ, l , L). Finally,
by Proposition 1, elements of the stationary subgroupGp are rotations of angleϕ abouts3

leaving the variables(l , L) fixed. This shows thatπp is the coordinate projection alongϕ.

Remark 5. Following the nomenclature in [11], we shall call(l , L) the Serret-Andoyer
variables. Geometrically, they are the third direction cosine and conjugate momentum in
the 3-1-3 Euler angle representation associated with the specially chosen spatial frame.
In fact, one easily verifies that(l , L) are exactly the same geometric objects as those, by
the same names, that result from the classical Serret-Andoyer transformation described in
Section 3. Moreover, (18) reproduces the classical transformation.

5.2. The Serret-Andoyer Variables as Canonical Coordinates of the Co-Adjoint Orbit

The reduced phase spaceFp can be identified with the orbitOp of p ∈ so(3)∗ under
the co-adjoint action [5]. Indeed, the projectionπp has the following expression in body
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coordinates:

πp(R,m) = Ad∗R ◦ J(R,m) = Ad∗Rp = m,

for all (R,m) ∈ Mp. Hence,Op is the body representation ofMp. Schematically, this can
be represented by

Mp

πp J

���������

HHHHHHHHj
�

co-adjoint action
Fp ' Op ⊂ so(3)∗ {p} ⊂ so(3)∗

More precisely,Op is given by

Op = {m ∈ R3 : m = R−1p, R ∈ SO(3)} = {m ∈ R3 : ‖m‖ = ‖p‖},
i.e.,Op is the sphere traced by body angular momentum vectors that have magnitude‖p‖,
classically known as themomentum sphere. Op is a symplectic manifold with the unique
symplectic formsω±, calledKostant-Kirillovsymplectic forms, given by

ω±m(̂vso(3)∗(m), ŵso(3)∗(m)) = ±m · (v× w) , (19)

m ∈ Op, v, w ∈ R3, where tangent vectors toOp have the form̂vso(3)∗(m) = v×m. See
[19] for an exposition; see also [5].

PROPOSITION3 The Serret-Andoyer variables(l , L) given in Proposition 2 define a local
chartUp : (−π, π)× (−G,G)→ Op given by

m = Up(l , L) =
(√

G2− L2 sinl ,
√

G2− L2 cosl , L
)
. (20)

Moreover, (l , L) are canonical coordinates with respect to the left (-) Kostant-Kirillov
symplectic form.

Proof: As remarked above,Op is the body representation ofMp. Substituting (18), which
definesMp, into (6), which gives the expression of body angular momentum, yields (20)
after eliminatingθ and renaming(ψ,9) (l , L). Differentiating (20) yields

ṁ1 = − sinl√
G2− L2

L L̇ +
√

G2− L2 cosl l̇ = − sinl√
G2− L2

L̇ m3+ l̇ m2

ṁ2 = − cosl√
G2− L2

L L̇ −
√

G2− L2 sinl l̇ = − cosl√
G2− L2

L̇ m3− l̇ m1

ṁ3 = L̇,
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Figure 3. Two-fold interpretation of the Serret-Andoyer variables.

i.e., tangent vectors toOp have the formṁ = v×m, where

v =
(

cosl√
G2− L2

L̇ , − sinl√
G2− L2

L̇ , −l̇

)
.

Substituting into (19) gives

ω−m(v1×m, v2×m)

= −m · (v1× v2)

= −
 √G2− L2 sinl√

G2− L2 cosl
L

 ·



cosl√
G2−L2

L̇1

− sinl√
G2−L2

L̇1

−l̇1

×


cosl√
G2−L2

L̇2

− sinl√
G2−L2

L̇2

−l̇2




= l̇1L̇2− l̇2L̇1

= dl ∧ dL
(
(l̇1, L̇1), (l̇2, L̇2)

)
,

which proves that(l , L) are canonical local coordinates.

Remark 6. The Serret-Andoyer variables as geometric objects thus have two meanings. On
the one hand, they are Eulerian coordinates as mentioned in Remark 5. On the other hand, by
Proposition 3, they locally canonically coordinatize the 2-dimensional symplectic manifold
Op. This geometric interpretation is summarized in Figure 3. In particular, as shown in
Figure 3(b),(l , L) can be viewed as the ‘longitude’ and ‘latitude’ on the momentum sphere.
In addition, the canonical symplectic form can be viewed as the area elementdl∧dL that is
oriented inward, which corresponds to the(−) sign of the left Kostant-Kirillov symplectic
form.
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5.3. Main Result

As an immediate result of Propositions 2 and 3, the Serret-Andoyer transformation can be
generalized for any Hamiltonian system onT∗SO(3) with a left-invariant, hyperregular
Hamiltonian. Indeed, identifying the reduced phase space with the co-adjoint orbit, the
reduced Hamiltonian system lives on the latter. Since the Serret-Andoyer variables are
canonical coordinates of the co-adjoint orbit, dynamics of the reduced system are thus
given in canonical symplectic form in these variables.

THEOREM3 (THE GENERALIZEDSERRET-ANDOYER TRANSFORMATION) LetH ∈ F(SO(3)
× so(3)∗) be a left-invariant, hyperregular Hamiltonian, and letp ∈ so(3)∗ be the con-
served spatial momentum. Under the conditions of Proposition 2, the reduced Hamiltonian
hp is locally given in the Serret-Andoyer variables by

hp(l , L) = H ◦ Up(l , L), (21)

(l , L) ∈ (−π, π)× (−L , L), whereUp is defined by (20). The reduced dynamics are then
given in canonical form, that is,̇l = ∂hp/∂L, L̇ = −∂hp/∂l. Moreover, relative to the
spatial frame defined in Proposition 2, the integral solution in SO(3) is characterized by
the 3-1-3 Euler angles(ϕ, θ, l ), with cosθ = L/G andϕ = ∫ ∂H/∂8|Mppdt.

Remark 7.

1. The last equality,ϕ = ∫ ∂H/∂8|Mpdt, results from the fact thatϕ is ignorable forH
left-invariant (recall Remark 3). Note that we are taking the restriction of∂H/∂8 on
the momentum level set,Mp, according to (18). Since∂H/∂8|Mp is a function solely
of (l , L),

∫
∂H/∂8|Mpdt is a line integral when(l (t), L(t)) are available.

2. The construction leading to Theorem 3 shows that the Serret-Andoyer transformation is
the computation in Eulerian coordinates of the symplectic reduction associated with the
lifted left-action ofSO(3) on T∗SO(3). In particular, the choice by Serret for the axis
k to be in the direction of the spatial angular momentum yields precisely the conditions
of Proposition 2.

3. The result of Theorem 3 provides a reduced representation of the class of systems in
question. This representation is given in a two-dimensional phase space which one
can think of as the unit circleS1. As we shall discuss in Section 8, this simplifies
the numerical integration of the equations of motion to that ofS1 dynamics. One
then reconstructs the full dynamics onT∗SO(3) by solving, in closed form,θ =
arccos(L/G) on the one hand, and taking the line integralϕ = ∫ ∂H/∂8|Mpdt on the
other hand.

Example. [The Classical Serret-Andoyer transformation] One recovers immediately the
results for the free rigid body. Indeed, as mentioned in Remark 5,(l , L) are the same
geometric objects as encountered in the classical transformation which is then reproduced
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by the characterization according to (18) of the reduced phase space. Finally, substituting
the free rigid body Hamiltonian,H = (I−1m) ·m, into (21) yields (10).

Theorem 3 generalizes the Serret-Andoyer transformation to a large class of rigid motions
other than the usual one. In particular, one can consider rigid bodies subject to control by
means of internal torques. The presence of controla priori breaks the original symmetry
of the phase space, which now consists ofT∗SO(3) and the shape space. The basic idea,
then, is that with Hamiltonian controls that preserve the symmetry onT∗SO(3), so that
the motion of the main body or base of the controlled system becomes that of a new
(controlled) left-invariant Hamiltonian vector field onT∗SO(3), Noether’s theorem still
holds. A controlled momentum vector can then be found that is preserved in space. In
the case where the Hamiltonian is also hyperregular, the results of Section 5 can then be
applied, yielding a set of Serret-Andoyer variables for the controlled motion of the main
body.

6. Rigid Body with Single Symmetric Rotor

Consider now a system consisting of a main body (the base) equipped with a single, sym-
metric rotor aligned with the third principle axis (see Figure 4). LetJ1 = J2 andJ3 be the
moments of inertia of the symmetric rotor, and denote byγ the angular position of the rotor
relative to the body. The Lagrangian of the free system, i.e., in the absence of control, is
given by [7]

L f (ω, γ̇ ) = 1

2
ω · (I+ J)ω + 1

2
J3(ω3+ γ̇ )2, (22)

whereI = diag(I1, I2, I3) andJ = diag(J1, J2,0). The corresponding Legendre’s trans-
form is given by

FL f :


ω1

ω2

ω3

γ̇

 7−→


m1

m2

m3

0

 =


(J1+ I1)ω1

(J2+ I2)ω2

I3ω3+ J3(ω3+ γ̇ )
J3(ω3+ γ̇ )

 , (23)

which yields the free Hamiltonian

H f (m, 0) = 1

2

(
m2

1

λ1
+ m2

2

λ2
+ (m3− 0)2

I3

)
+ 02

2 J3
, (24)

whereλi = Ii + Ji , i = 1,2.
The configuration space of the present problem is the Lie GroupSO(3) × S1, with Lie

algebraso(3)∗ × R. The group action in question isL(R,γ )(S, φ) = (RS, γ + φ). As in
the case of the free rigid body (recall Section 4), the rigid body with rotor admits a body
representation via the mappingλ̄ : T∗SO(3) × T∗S1 → (SO(3) × so(3)∗) × (S1 × R) :
(αR, γ, 0) 7→ (R, T∗e LR · αR, γ, 0). As usual,so(3)∗ is identified withR3.
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Figure 4. Rigid body with single symmetric rotor.

LetH ∈ F(so(3)∗×R)), in other words, a left-invariant smooth function on the cotangent
bundle. It can be shown, by a result analogous to Lemma 1 for the Lie groupG =
SO(3)× S1, that the associated Hamiltonian vector field is given in body coordinates by

XH(R,m, γ, 0) =
(
R · D̂1H , m× D1H , ∂H/∂0 , −∂H/∂γ

)
, (25)

whereD1 denotes the derivative with respect to the first argument. In particular, the equa-
tions of motion for the free system are obtained withH = H f . In addition, let the system
be feedback-controlled by applying a torqueu(R,m, γ, 0) to the rotor, which then yields
the following controlled equations of motion.

Ṙ = R · D̂1H f , (26a)

ṁ = m× D1H f , (26b)

γ̇ = ∂H f /∂0, (26c)

0̇ = u(R,m, γ, 0). (26d)

6.1. Structure Preserving Control

Definition 2. We say that the controlu(R,m, γ, 0) preserves the canonical structure
on T∗SO(3) or preserves the rigid body structureif there exists a smooth functionHc ∈
F(so(3)∗) such that the closed-loop equations of the base motion have the form

Ṙ = R · ∇̂mHc, (27a)

ṁ = m×∇mHc. (27b)



GENERALIZED SERRET-ANDOYER TRANSFORMATION 55

That is, a control that preserves the rigid body structure yields closed-loop Euler’s equation
that is Hamiltonian with respect to the usual Lie-Poisson structure onso(3)∗. Moreover,
one can easily verify the following lemma which gives a sufficient condition for such a
control.

LEMMA 4 Given the controlled equations of motion (25), a sufficient condition for the
control u to preserve the rigid body structure is that, along the flow of the closed-loop
system,

i. 0 is a function ofm, i.e.,0 = 0(m), and

ii. ∇mHc(m) = D1H f (m, 0(m)). (28)

Remark 8. Abesser and Steigenberger [1] discussed Hamiltonian control systems that
preserve the structure of the entire phase space. However, for our purpose, Definition 2
suffices.

Bloch et al. [7] gave a Hamiltonian control for which the closed-loop reduced equations
are Lie-Poisson onso(3)∗. In fact, they satisfy (28). We shall prove in the following a
slightly more general result.

PROPOSITION4 Letφ : R→ R be aC1 function. Then, the feedback control

u(m) = φ′(m3)

(
1

λ1
− 1

λ2

)
m1m2 (29a)

preserves the rigid body structure with the closed-loop Hamiltonian

Hc(m) = 1

2

(
m2

1

λ1
+ m2

2

λ2
+ m2

3

I3

)
− 1

I3

∫
(φ(m3)+ p)dm3, (29b)

where p is a constant.

Proof: Expanding (25b) and (25c), one gets the following:

ṁ1 =
(

1

I3
− 1

λ2

)
m2m3− 1

I3
0m2, (30a)

ṁ2 =
(

1

λ1
− 1

I3

)
m1m3+ 1

I3
0m1, (30b)

ṁ3 =
(

1

λ2
− 1

λ1

)
m1m2, (30c)

0̇ = u. (30d)
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It can thus be seen that, given (29a), the quantityp = 0 − φ(m3) is conserved and, hence,
i. in Lemma 4 is satisfied. Next, by (29b),

∇mHc(m) =
(

m1

λ1
,

m2

λ2
,

m3

I3
− 1

I3
(φ(m3)+ p)

)
=
(

m1

λ1
,

m2

λ2
,

1

I3
(m3− 0(m3))

)
= D1H f (m, 0(m)),

i.e., (28), which completes the proof.

Remark 9. Settingφ(v) = kv, wherek is a constant, recovers the result in Theorem 5.1 of
[7].

6.2. Serret-Andoyer Variables for the Control System

By Proposition 4, the base motion of the system subject to the control (29a) is that of a
Hamiltonian system onT∗SO(3) with the left-invariant HamiltonianHc. The expression
of the Hamiltonian (and the associated Lagrangian) depend ultimately on the definition of
the functionφ. Nevertheless, we are able to proceed implicitly as follows.

THEOREM4 Suppose thatφ′(v) 6= 1 for all v ∈ R. Then, the HamiltonianHc given by
(29b) is hyperregular, and the closed-loop main body motion of the system (26) with the
control (29a) is reduced by the generalized Serret-Andoyer transformation to

l̇ = −L

(
sin2 l

λ1
+ cos2 l

λ2

)
+ 1

I3
(L − φ(L)− p) , (31a)

L̇ = (G2− L2)

(
1

λ2
− 1

λ1

)
sinl cosl (31b)

with the reduced Hamiltonian

hp(l , L) = 1

2
(G2− L2)

(
sin2 l

λ1
+ cos2 l

λ2

)
+ L2

2I3
− 1

I3

∫
(φ(L)+ p)dL. (32)

Moreover, in the spatial frame defined in Proposition 2, the closed-loop motion of the
main body is described by the 3-1-3 Euler angles(ϕ, θ, l ), with cosθ = L/G andϕ =∫
∂Hc/∂8|Mpdt.

Proof: We need only to prove thatHc is hyperregular, providing which the rest of The-
orem 4 is a direct application of Theorem 3. By the inverse Legendre transform for the
closed loop, i.e.,ω = ∇m Hc, one gets

ω1 = m1/λ1,

ω2 = m2/λ2,

ω3 = (m3− φ(m3)− p)/I3.
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Sinceφ′(v) 6= 1 for all v ∈ R, the above is invertible with differentiable inverse by the
implicit function theorem. Hence, the inverse Legendre transform is a diffeomorphism, i.e.,
Hc is hyperregular.

Example. Let φ(v) = kv, k 6= 1. Then,

hp(l , L) = 1

2
(G2− L2)

(
sin2 l

λ1
+ cos2 l

λ2

)
+ ((1− k)L − p)2

2I3(1− k)
. (34)

In particular, it can be verified that the case where the rotor is locked corresponds top = 0
andk = J3/(I3+ J3). Substituting the latter expression ofk into (34) recovers the reduced
Hamiltonian for the free rigid body with moments of inertiaIi + Ji , i = 1, . . . ,3.

6.3. Spin Stabilization About the Intermediate Axis

Suppose in the following thatλ1 > λ2 > I3 + J3, so that the second body axis is the
intermediate axis of the locked system. An immediate consequence of Theorem 4 is a
simpler stability proof for relative equilibria. First, note that rotation about the intermediate
axis, i.e.,m = (0,G,0), corresponds to an equilibrium point at(l , L) in the reduced phase
space. In [7], the energy-Casimir method was used to prove stability of the relative equilibria
m = (0,G,0) for the closed-loop Lie-Poisson system. However, for Hamiltonian systems
in canonical symplectic form, which is the case of the reduced system (31), the classical
Lagrange-Dirichlet stability criterion suffices. In effect, the point(l , L) = (0,0) is a stable
equilibrium in the sense of Lyapunov if the partial derivatives ofhp vanish at(0,0), and if
the 2× 2 matrixδ2hp of second partial derivatives evaluated at(0,0) is either positive- or
negative-definite. See [17] for a statement and proof of the Lagrange-Dirichlet criterion.
The following generalizes Theorem 5.2 in [7].

THEOREM5 Consider the caseφ(0) + p = 0 andφ′(0) > 1− I3/λ2. Then, the point
(l , L) = (0,0) of the reduced system (31) is stable in the sense of Lyapunov and, hence,
the control (29a) stabilizes rotation about the intermediate axis of the body-rotor system.

Proof: From (32),∂hp/∂l = 0, and∂hp/∂L = −(φ(0) + p)/I3 which equals zero if
φ(0)+ p = 0. The point(0,0) is thus an equilibrium point. Next,

∂2hp

∂l 2
= (G2− L2)

(
1

λ2
− 1

λ1

)
(sin2 l − cos2 l ),

∂2hp

∂l∂L
= 2L

(
1

λ2
− 1

λ1

)
sinl cosl ,

∂2hp

∂L2
=
(

1

λ2
− 1

λ1

)
sin2 l +

(
1

I3
− 1

λ2

)
− 1

I3
φ′(L).

Hence,

δ2hp(0,0) =
 −G2

(
1
λ2
− 1

λ1

)
0

0
(

1
I3
− 1

λ2

)
− 1

I3
φ′(0)

 ,



58 LUM AND BLOCH

which is (negative) definite forφ′(0) > 1− I3/λ2. The Lagrange-Dirichlet criterion is thus
satisfied.

7. Rigid Body with Three Symmetric Rotors

The Serret-Andoyer analysis can also be applied to a system with three rotors. Indeed,
consider now the rigid body equipped with three symmetric rotors, each aligned with a
principal axis of inertia of the rotor. The Lie group in question isSO(3) × S3, with
(SO(3)×so(3)∗)× (S3×R3) as cotangent bundle in body representation. The Lagrangian
of the free (uncontrolled) system is [7]

L f (ω, γ̇) = 1

2
ω ·Λω +

3∑
i=1

Ji

2
(ωi + γ̇i ) (35)

forω ∈ so(3) ' R3, γ̇ ∈ R3, whereΛ = diag(λ1, λ2, λ3) is the locked inertia tensor which
is diagonal by the assumption that the rotors are symmetric and aligned with the principal
axes. Ji , i = 1, . . . ,3 are the rotors’ moments of inertia along their respective axes of
rotation. By the Legendre transform, the conjugate momenta are

FL f :

[
ωi

γ̇i

]
7−→

[
mi

0i

]
=
[
λiωi + Ji (ωi + γ̇i )

Ji (ωi + γ̇i )

]
, i ∈ {1, . . . ,3}, (36)

and the free Hamiltonian is left-invariant and is given by

H f (m, 0) = 1

2

(
(m1− 01)

2

λ1
+ (m2− 02)

2

λ2
+ (m3− 03)

2

λ3

)
+ 1

2

(
02

1

J1
+ 0

2
2

J2
+ 0

2
3

J3

)
.

(37)

Introducing control inputs in the form of torques on the rotors, the generic controlled
equations are

Ṙ = R · D̂1H f , (38a)

ṁ = m× D1H f , (38b)

γ̇ = D2H f , (38c)

0̇ = u. (38d)

In the following, we consider feedback control of the formu : (SO(3)× so(3)∗)× (S3×
R3)→ R3.

As in the case of the system with a single rotor, we are interested in controls that pre-
serve the rigid body structure as defined in Definition 2. We recall below a large class of
Hamiltonian controls given in [7] that satisfy the conditions of a straightforward extension
of Lemma 4 for the present system.

PROPOSITION5 Letφ : R3 → R3 be a smooth map such that the3× 3 matrix Dφ(m) is
symmetric for allm ∈ R3. Then the feedback controls
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u = Dφ(m) · ṁ (39)

for the system (38) preserve the rigid body structure in the sense of Lemma 4.

The proof of the above is based on the properties that the given control conserves the
quantity0−φ(m), and that the symmetry condition guarantees that there exists anHc(m)
such that∇mHc = D1H f (m, 0(m)). See [7, Theorem 4.2] for the details.

For the sub-class of (39) whereφ(m) = (φ1(m1), φ2(m2), φ3(m3)), so that the symmetry
condition in Proposition 5 is satisfied, the Hamiltonian is quite easily obtained. We shall
use this to demonstrate the application of the generalized Serret-Andoyer transformation
for the rigid body with three rotors, bearing in mind that even in the general case, the same
can be done if the expression ofφ is given.

COROLLARY 2 Letφi : R→ R beC1 functions, i= 1, . . . ,3. Then, the feedback control
u = (u1,u2,u3)(m) for the system (38), defined by

ui = φ′i (mi )ṁi , i ∈ {1,2,3} (40)

preserves the rigid body structure in the sense of Lemma 4, with the closed-loop Hamiltonian

Hc(m) =
3∑

i=1

1

λi

∫
(mi − φi (mi )− pi )dmi , (41)

where p1, p2 and p3 are constants. Moreover, ifφ′i (v) 6= 1, i = 1, . . . ,3, thenHc is
hyperregular.

Proof: Observe by expanding (38) that the control (40) conserves the quantitiespi =
0i − φ(mi ), i = 1, . . . ,3. Then it can easily be verified by taking partial derivatives of
(41) that (28) is satisfied. The inverse Legendre transform of the controlled Hamiltonian,
ω = ∇mHc, relates the body controlled momentumm and the body angular velocityω by

ωi = (mi − φi (mi )− pi )/λi

for i = 1, . . . ,3. Sinceφ′i (v) 6= 1 for all v ∈ R, the above is invertible with differentiable
inverse by the implicit function theorem. Hence,Hc is hyperregular.

The following are then immediate applications of Theorem 3.

THEOREM6 Supposeφ′i (v) 6= 1, i = 1, . . . ,3, for all v ∈ R. Let φ̃1 = φ1 ◦ U1 and
φ̃2 = φ2◦U2. Then the closed-loop main body motion of the system (38) with the control (40)
is reduced by the generalized Serret-Andoyer transformation tol̇ = ∂hp/∂L, L̇ = −∂hp/∂l
with the reduced Hamiltonian

hp(l , L) = 1

2
(G2− L2)

(
sin2 l

λ1
+ cos2 l

λ2

)
+ L2

2λ3
− 1

λ3

∫
(φ3(L)+ p3)dL

−
√

G2− L2

∫ [
(φ̃1(l , L)+ p1)

cosl

λ1
− (φ̃2(l , L)+ p2)

sinl

λ2

]
dl. (42)
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Moreover, in the spatial frame defined in Proposition 2, the closed-loop motion of the
main body is described by the 3-1-3 Euler angles(ϕ, θ, l ), with cosθ = L/G andϕ =∫
∂Hc/∂8|Mpdt.

For the particular case whereφ1 = φ2 = 0, that is, control is applied to rotor 3 only, the
momenta01 and02 are integrals of motion. We thus have the following.

COROLLARY 3 Under the conditions of Theorem 6, and choosingφ1 = φ2 = 0, the reduced
Hamiltonian is then given by

hp(l , L) = 1

2
(G2− L2)

(
sin2 l

λ1
+ cos2 l

λ2

)
−
(
01 sinl

λ1
+ 02 cosl

λ2

)√
G2− L2

+ L2

2λ3
− 1

λ3

∫
(φ3(L)+ p3)dL, (43)

where01, 02 and p3 are constants.

8. Numerical Integration of Controlled Equations

We conclude this study by presenting some results in numerical integration of the controlled
equations. It is well-known that integrating the full 6-dimensional equations of motion
presents some distinct disadvantages compared to integrating a reduced set of equations
such as the Euler equations, or the 2-dimensional reduced dynamics presented in this paper.
In addition to confirming this, we shall also present various ways of integrating the reduced
dynamics.

We consider the system of Section 6 with a stabilizing control according to Theorems 4
and 5 and given by:

φ(v) = 2 tan
( v

G

)
, p = 0.

The closed-loop system is a left-invariant Hamiltonian system with conserved momentum
of magnitudeG = 1 and HamiltonianHc = 0.47.

8.1. Modeling and Integration Algorithms

The closed-loop equations of motion of the main body are integrated in the following five
approaches, differing in representation and integration algorithm:

1. The full 6-dimensional equations in the variables(ϕ, θ, ψ,8,2,9), with Adams’
integration method.

2. Euler’s equations, i.e., (27) and HamiltonianHc given by (29b), and Adams’ integration
method.

3. The reduced dynamics in the Serret-Andoyer variables, i.e., (31) and reduced Hamil-
tonianhp given by (32), with Adams’ integration method.



GENERALIZED SERRET-ANDOYER TRANSFORMATION 61

4. The reduced dynamics as above but with a symplectic integrator based on a generating
function.

5. The reduced dynamics as above but with a symplectic integrator based on Euler’s mid-
point rule.

Adams’ method is well-known to bestrongly stable[15, §2.7–§2.8]. However, like
most general integration algorithms, Adams’ method does not respect the structure of
Hamiltonian systems, and long-time simulation may fail to numerically preserve conserved
quantities. Integration errors in the Hamiltonian and momentum functions can thus be
used to discriminate among the above approaches. Note, however, that the Serret-Andoyer
variables already present an advantage by naturally preserving momentum except for some
round-off errors. We note that one may alternatively consider the approach of Crouch and
Grossman [10] that may help preserve momentum by embedding the momentum level set
in some Euclidean space.

Symplectic integrators, on the other hand, approximate the flow of a Hamiltonian system
with a symplectic map. Nevertheless, a theorem found in [13] implies that even such
approximations cannot preserve the Hamiltonian function unless the resulting solution
is exact up to a reparametrization of time. Here, we apply two second-order symplectic
integrators to the reduced dynamics which, as we know, are symplectic. In 4., the symplectic
integrator is based on an update law(lk, Lk) 7→ (lk+1, Lk+1) of the form lk = ∂S/∂Lk,
Lk+1 = ∂S/∂lk+1, whereS is a second-order generating function. See [9] for more details.
In 5., we discretize the reduced system according to the following mid-point rule:

lk+1− lk
h

= ∂hp

∂L

(
lk+1+ lk

2
,

Lk+1+ Lk

2

)
,

Lk+1− Lk

h
= −∂hp

∂l

(
lk+1+ lk

2
,

Lk+1+ Lk

2

)
,

whereh is the time step. It was shown in [6] and [12] that Euler’s mid-point rule is a
symplectic integrator. Moreover, following the standard analysis of [15], one can show that
Euler’s mid-point rule is a second-order accurate approximation of the differential equations
it integrates.

We mention in passing that there exist Lie-Poisson symplectic integrators applicable to the
Euler equations representation which we shall omit in the present study; see, for example,
[13] and [22]. See also articles in [18] on other implementations of symplectic integrators.

Remark 10. In the case of a hyperregular Hamiltonian, it can be shown that Euler’s
mid-point rule applied to Hamilton’s equations is equivalent to thediscrete Euler-Lagrange
equations. In [21], it was shown that these equations admit adiscrete momentum mapwhich
is conserved with further assumption of invariance underdiagonal action—a ‘discrete
Noether’s theorem’. For the class of rigid body dynamics considered in this paper, one
might want to first discretize the full dynamics onT∗SO(3), then perform the reduction.
Unfortunately, when cast in Eulerian coordinates, the resulting discrete equations are not
diagonally invariant. However, such an approach appears to be applicable in the quaternionic
setting.
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2. Reduced dynamics (Symplectic integrator)

3. Reduced dynamics (Adams methd)
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5. Euler equations (Adams method)

Average relative error of Hamiltonian function ( t   = 1000 sec. )
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f

(a) Error of Hamiltonian function

(b) Error of angular momentum

Figure 5. Comparison of errors in numerical values of the Hamiltonian function and angular momentum.

8.2. Numerical Results

The following results are obtained using MATLAB simulation tools. The time step is
chosen to beh = 1 ms for all five approaches, with round-off tolerance of 1e-6 for Adams’
method and 1e-8 for the symplectic integrators. Initial conditions are chosen such that the
resulting trajectories are those of stabilized rotation about the intermediate axis.

As shown in Figure 5(a), the mid-point rule gives the best performance in preserving en-
ergy, whereas the reduced representation generally performs better regardless of algorithm.
In addition, one finds in Figure 5(b) that all approaches except the full dynamics preserve
momentum. Further evidence of momentum preservation (or failure thereof) is given in
Figure 6, where it can be seen, especially in Figures 6(b) and 6(c), that discrepancies in the
full dynamics produce trajectoriesinsidethe sphere of radius 1. Finally, the reduced flows
in the Serret-Andoyer variables (post-processed for the Euler equations and full dynamics)
are shown in Figure 7.

The above results confirm the numerical advantages presented by the reduced equations
in the Serret-Andoyer variables. Moreover, the symplectic nature of these equations allows
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(a) projection alongm2 (b) projection alongm1

(c) projection alongm3

(d) perspective view

Figure 6. Trajectories of body angular momentum: projected and perspective views.
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Figure 7. Reduced flow.

simple symplectic integrators such as Euler’s mid-point rule to be employed. Although sym-
plectic integrators are usually CPU-intensive, this is compensated by the reduced number
of equations—two in the Serret-Andoyer variables.

9. Conclusions

We have shown in this paper that the classical Serret-Andoyer transformation can be un-
derstood in the context of geometric mechanics and, in particular, in that of the symplectic
(Marsden-Weinstein) reduction of Hamiltonian systems with symmetry. This understanding
proves to be useful not only in allowing the transformation to be reconstructed without heavy
computations involving spherical trigonometry or differential forms. It is most valuable in
enabling us to generalize, in a straightforward fashion, the Serret-Andoyer transformation to
a rich class of rigid motions, namely, Hamiltonian systems onT∗SO(3)with left-invariant,
hyperregular Hamiltonian functions.

The significance of the analysis is made apparent in Sections 6 and 7, where we examine
the dynamics of the controlled rigid body with momentum wheels, for a non-trivial but rich
class of Hamiltonian controls that yields closed-loop dynamics with symmetry onT∗SO(3).
The key point to note is that, although the presence of feedback control deforms the Hamil-
tonian structure of the unforced system, if this deformation is such that the symmetry of
rigid motions (with a different metric) is preserved, then the generalized Serret-Andoyer
transformation is immediately applicable, and reduces the closed-loop motion of the main
body to a 2-dimensional Hamiltonian system in canonical form. This computation proves
to be useful in that the stability proof of relative equilibria becomes simpler, by verifying the
classical Lagrange-Dirichlet criterion. This approach appears to be applicable in various
settings, see, e.g., [8]. For asymptotic stability, one can consider a combination of this
approach with dissipative feedback of a suitable type. The Serret-Andoyer variables may
also be useful for analyzing more complicated coupled rigid body systems.

Additionally, we discuss the numerical integration of the reduced closed-loop dynamics,
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and compare the solutions with those obtained using other representations. We confirm
numerically that the Serret-Andoyer variables naturally preserve momentum; in addition,
for moderately long simulation time, energy can also be preserved using a generic integration
algorithm, without having to resort to special schemes such as symplectic integrators. Since
it requires integration of fewer equations the representation may prove to be advantageous
in time-critical implementations.

In adopting a geometrical approach, we not only give the Serret-Andoyer variables a new
interpretation, but we establish a link between the Serret-Andoyer variable formulation of
classical rigid body motion and geometric control theory. Finally, we note that Deprit and
Elipe [11] reformulated the classical Serret-Andoyer transformation in terms of quaternions,
a representation that is being used increasingly in the controls community. A similar
generalization in the control context also appears to be worth investigating. In view of
Remark 5.7, one may also consider incorporating the discretization discussed in [21].
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