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ESTABLISHING A CUSTOM OF PROVING IN AMERICAN
SCHOOL GEOMETRY: EVOLUTION OF THE TWO-COLUMN
PROOF IN THE EARLY TWENTIETH CENTURY

ABSTRACT. Having high school students prove geometrical propositions became the
norm in the United States with the reforms of the 1890’s — when geometry was designated
as the place for students to learn the ‘art of demonstration.” A custom of asking students
to produce and write proofs in a ‘two-column format’ of statements and reasons developed
as the teaching profession responded to the demands of reform. I provide a historical ac-
count for how proving evolved as a task for students in school geometry, starting from the
time when geometry became a high school subject and continuing to the time when proof
became the centerpiece of the geometry curriculum. I use the historical account to explain
how the two-column proof format brought stability to the course of studies in geometry
by making it possible for teachers to claim that they were teaching students how to prove
and for students to demonstrate that their work involved proving. I also uncover what the
nature of school geometry came to be as a result of the emphasis in students’ learning to
prove by showing that students’ acquisition of a generic notion of proof was made possible
at the expense of reducing students’ participation in the development of new ideas. I draw
connections between that century-old reform and current reform emphases on reasoning
and proof. I use observations from history to suggest that as we carve a place for proof
in present-day school mathematics we must be leery of isolating issues of proving from
issues of knowing.

1. INTRODUCTION: STUDENT PROVING IN AMERICAN MATHEMATICS
EDUCATION

Current recommendations for mathematics education, as expressed in the
Principles and Standards for School Mathematics (NCTM, 2000), include
the expectation that students at all levels be involved in reasoning and
proving. “Part of the beauty of mathematics is that when interesting things
happen, it is usually for good reason. Students should understand this.”
More specifically, “[by] the end of secondary school, students should be
able to understand and produce mathematical proofs” (NCTM, 2000, p.
56). The rationale for including proving among the main tasks for students
takes into consideration what is involved in the work of mathematicians
(Lakatos, 1976; Rav, 1999). As proof is intimately connected to the con-
struction of mathematical ideas, proving should be as natural an activity
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Figure 1. A two-column proof (photographed by the author from Schulze and Sevenoak,
1913, p. 53, Macmillan publishers).

for students as defining, modeling, representing, or problem solving. Yet,
important questions that must be raised concern what it takes to organ-
ize classrooms where students can be expected to produce arguments and
proofs and what proof may look like in school classrooms.

The notion that students should prove propositions is not completely
foreign to American teachers. It has been traditional to use the high school
geometry course to help students develop the skill of ‘doing proofs.” This
custom has been in place for more than a century and has had an en-
during influence on how Americans think about mathematical proof. For
most people, proofs are sequences of steps composed of two columns
of statements and reasons that show why the premises of a proposition
(the ‘givens’) lead to a conclusion (see Figure 1). Under this two-column
proving custom, proving activities for students have often been closer to
exercising logic to validate obvious and inconsequential statements (Kline,
1965), than to building compelling arguments for the reasonableness of
important mathematical ideas (Ball and Bass, 2000; Schoenfeld, 1987)

In spite of those criticisms, two things are important to note about two-
column proving. One, that however reductive we may find that custom, its
endurance for about a century has been effective in maintaining a place for
‘proof’ among the academic work that students do in school mathematics
(hereafter, student proving). Two, that the two-column proving custom de-
veloped at a time when curriculum discussions had brought to the fore
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concerns about school’s responsibility for students’ intellectual activity
(see Eliot et al., 1893; Nightingale et al., 1899). On account of those two
observations, it is conceivable that the two-column proving custom — this
reduction of mathematical reasoning to its logical, formal dimensions —
had developed as a viable way for instruction to meet the demand that
every student should be able to do proofs.

The investigation that I report herein explored that possibility. I account
for the correspondence between changes in how curriculum documents,
scholarly commentaries, and texts for teachers referred to proof in the
study of geometry and changes in the instructional practices related to
proof in school geometry (as these practices are prescribed in the textbooks
of the time). In analyzing those correspondences, the present article does a
historical reconstruction of how the two-column proving custom evolved
to become a part of geometry instruction in the period from the 1850’s to
the 1910’s. I show how geometry evolved as a subject of school studies in
synchrony with the dominant conceptions of the students as learners, the
notion also developed that students might be asked to craft proofs. As that
notion became an expectation for all students and a criterion for curriculum
development, the two-column proof format helped stabilize the geometry
curriculum by melding together the proofs given by the text and the proofs
expected from students.

An in-depth consideration of how concomitant questions about the sub-
ject of studies and about the students as learners became central and had an
effect in the development of a custom of proving can help us grapple with
the challenges of present day reform. Whereas different issues than that
century-old reform are at stake now, those issues also involve shaping the
course of studies and the activities expected of students. It is conceivable
that for the teaching profession to make room for the goals of present-
day reform, other issues also need to be considered and that systemic
effects analogous to those of the past century may be produced concom-
itantly. Thus as we think about current recommendation for change in
instructional practices, the history of how instruction responded to past
curriculum change efforts can serve as a source of information, encour-
agement, and caution.

I thus propose to look at history with the interest of drawing some les-
sons for the present. In section 2, I start this consideration of history with a
brief account of the reform movement that made student proving a standard
for geometry instruction a century ago. Then I situate the emergence of
that standard for student proving within a historical account of geometry
instruction. In section 3, I describe a baseline period when student proving
was not an explicit issue in geometry instruction. In section 4, I move
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to a discussion of a transition period when crafting proofs emerged as a
possible task for students. In section 5, I come back to examine the ideas
of the reform proposed to the Committee of Ten (Eliot et al., 1893) by an
appointed committee of mathematics specialists (the Mathematics Confer-
ence). In section 6, I show how in the years that followed, the study of
geometry changed dramatically as it became mandatory that students learn
the art of proving. Finally, in section 7, I propose an explanation for why
the two-column proof format brought stability to the study of geometry in
school.

2. THE REPORT OF THE COMMITTEE OF TEN AND THE STUDY OF
GEOMETRY

The imperative that the geometry course should be a place where students
should learn the ‘art’ of proving traces back to the report of the Committee
of Ten (Eliot et al., 1893). As the nineteenth century was coming to an
end, issues related to the secondary school population (who the clientele
was and what they were going to do after finishing school) coalesced to
set the stage for a discussion of curriculum that continued for many years
(Kliebard, 1987). The Committee of Ten was a group of educational lead-
ers, chaired by Harvard’s President Charles Eliot, called to serve by the
National Educational Association with the mandate to study the problems
related to college requirements for admissions. At that point, it was ac-
knowledged that there was a great diversity of courses being offered by
high schools, many of which were allocated so “short periods [of time]
that little training could be derived from them” (Eliot et al., 1893, p. 5).
The Committee had the mission of examining whether high school should
be different for students according to their interests and, in any case, what
should be the high school course of studies and best methods of teaching
each subject.’

Historians have written extensively about the work of the Commit-
tee of Ten and about its influence shaping American education (Kliebard,
1987; Krug, 1964; Ravitch, 2000; Sizer, 1964). George Stanic (1983, 1987)
has shown how the curriculum debates then started have imposed a con-
tinuous need for the justification of school mathematical studies. Fileen
Donoghue (1987) has elaborated on some of the consequences of those
debates in shaping mathematics teacher education programs. As far as geo-
metry teaching, histories have been written which cover, to varying degree
of detail, the period of influence of the report (Quast, 1968; Shibli, 1932)
though they do not examine in detail the evolution of proof in instruction.
My aim is not to write a comprehensive history of a period. Instead, I
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use the available histories along with my own examination of sources
(curriculum documents, geometry textbooks, and scholarly articles®) to
provide a historical reconstruction of how the place of proof in geometry
instruction evolved as the teaching profession responded to the curriculum
issues raised by the Committee of Ten. A tension was present in the work
of the Committee of Ten between the notion of a curriculum that would
discipline the mental faculties and a curriculum that would transmit the
knowledge of the academic disciplines (Baker, 1893/1969; Eliot et al.,
1893/1969; Eliot, 1905; Harris, 1894). The Committee of Ten consulted
with the Mathematics Conference, an appointed committee chaired by Si-
mon Newcomb, a mathematics professor at Johns Hopkins, and including
five other mathematics professors, two school principals, and two math-
ematics teachers. This Conference produced a report including important
observations and recommendations for the teaching of geometry. The Con-
ference’s recommendations made provisions for the transmission of cul-
turally valued geometrical knowledge, but used the notion that academic
studies were done in order to provide mental discipline as the criterion for
deciding what the high school curriculum should be. Drawing on those re-
commendations, the Committee of Ten identified the high school geometry
course as a vehicle for students to acquire the art of demonstration (or
proving), as “geometrical demonstration is to be chiefly prized [as] a dis-
cipline in complete, exact, and logical statement” (Eliot et al., 1893/1969,
p. 25).

The Committee argued that, as students had thus far been used to mem-
orizing the demonstrations of a geometry text, the mental discipline that
geometry made possible was being lost. Instructional changes were needed
in order to enable geometry to do its job. The fact that students were
memorizing the text was not new and would not disappear easily; what
was new was the institutional recognition that such a state of affairs was
problematic, that it posed a challenge for geometry instruction. To bring to
the fore the changes in the share of labor reserved to students that led to the
custom of two-column proving, I have characterized three periods in the
study of geometry. I identify a baseline period characterized by students
replicating the proofs given by a text, a transitional period of students
crafting proofs for propositions, and a final stage of students learning how
to do proofs. To understand the magnitude of the changes recommended
by the Committee of Ten, it is worthwhile to go back in time and start
with a brief characterization of geometry instruction at the time when high
schools started to teach it.
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3. THE ERA OF TEXT: REPLICATING PROOFS

American high schools started to offer geometry courses in the 1840’s as
universities started to make it a requisite for admission (Quast, 1968, p.
36). During this period, which I call the Era of Text, the study of geometry
entailed mastering the Euclidean body of knowledge as developed by a
text. Texts that served that purpose included Robert Simson’s (1756) Ele-
ments of Euclid John Playfair’s (1795/1860) Elements of Geometry, and
Adrien-Marie Legendre’s Elements of Geometry (translated and edited by
John Farrar in 1819). There are notable differences in how the three au-
thors — Simson, Playfair, and Legendre — develop the Euclidean body of
knowledge (Jones, 1944), but as far as what proving could have meant for
students who studied those texts, the three texts are similar. The student
was seen as a reader whose relationship with proof was built primarily
on values that could be called mathematical. Concerns about the demands
that the study imposed on students and how they would be able to meet
those demands were not apparent. For example, all three texts expose the
material in accordance with the notion that it is valuable to develop as
much as possible of the geometrical body of knowledge with the fewest
possible postulates and only call for more concessions when those are
deemed mathematically indispensable. The length or difficulty of a proof
was subordinate to that value. Thus Farrar’s 1841 edition of Legendre’s
book proudly offered a proof of the triangle sum theorem much longer and
complicated than Euclid’s on the presumption that it did not use the theory
of parallel lines (see Farrar, 1841, p. iv). It was considered valuable for
students to know (and be able to show) that the truth of the triangle sum
theorem might not depend on the theorems about parallel lines. How much
more effort it might take for them to learn this proof rather than the classic
Euclidean one that depended on parallelism was not an issue.

Playfair’s introduction to his Elements indicates what kind of pedago-
gical concerns would support that choice of exposition. “The end of Math-
ematical Demonstration. . . is not only to prove the truth of a certain pro-
position, but to show its necessary connection with other propositions, and
its dependence on them” (Playfair, 1795/1860, pp. xiv).

Thus, geometry was conceived as an organic body of knowledge to be
acquired as it was developed by a text. The purpose of studying geometry
in school was to grasp the necessary character of the relationships between
geometrical objects. It was essential to that acquisition to study the proofs
of those relationships. The word demonstration was used in the text, but
it was neither used as the name of an object to be studied nor used as the
name of a singular skill to be trained on. One would grasp the meaning of
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Figure 2. A proof from the Era of Text (photographed by the author from Legendre, 1841,
p. 17, Hilliard and Gray publishers.

demonstration through exposure to the particular demonstrations used for
various theorems stated in the text: Each proof was unique and expressed
the argument needed to show why the proposition had to be true on account
of other things that were already held as true. One can say that each proof
established its own norm for how it should be done, as proofs depended
heavily on the substance of the proposition at stake. Texts included neither
general descriptions of proof nor methods of proving. Proofs were writ-
ten in paragraph form and made up of sentences that could be long and
complex. Only some of those statements would make explicit references
to the postulates, axioms, or previous theorems that justified them; most
statements would rather perform an application of a previous proposition
leaving the statement of that proposition implicit (see Figure 2). It seems
as though statements would be backed by an explicitly stated reason when
communicating this reason was part of the insight to be gotten through the
reading of the proof.

The study of geometry was done through reading and reproducing a
text; such work would train the reasoning faculties of students. But, the
texts do not hint at the existence of official mechanisms to verify or steer
the evolution of students’ reasoning. To know geometry and to be able to
prove the theorems of geometry were indistinguishable. And the difference
between knowing geometry and remembering the text was immaterial in
school (see Quast, 1968, p. 40). As the geometry course became more
common in high schools, geometry instruction began to move away from
simply reproducing a geometry text.
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4. THE ERA OF ORIGINALS: CRAFTING PROOFS

Geometry textbooks multiplied in numbers as more high schools took
charge of the teaching of geometry. Changes in geometry textbooks started
to become apparent some decades before the work of the Committee of Ten
(Shibli, 1932, p. 107). Benjamin Greenleaf was one of the first American
authors of a geometry text written primarily for high school teaching. In
his preface, he cited “the aim [of adapting] the work fully to the latest and
most approved modes of instruction” (Greenleaf, 1858, p. iii).

Changes in the geometry for school studies responded in part to evolving
considerations about the students. The notion developed that students were,
as Charles Davies said, ‘untrained intellects’ who had to acquire the facts
of geometry as well as the logical reasoning that connected those facts
(Davies, 1850, p. 256-258). In addition to being accountable for replicat-
ing the proofs of the propositions in the course of studies, students were
given opportunities to craft proofs for ‘original’ propositions. In the fol-
lowing sections I show how these originals emerged and what other ele-
ments were developed concomitantly to accommodate their presence in the
curriculum.

4.1. The emergence of original propositions for students to prove

The texts by Greenleaf (1858) and later by William Chauvenet (1870)
differed from those of the Era of Text in that they included exercises at the
end. As these exercises were spoken of as opportunities for students to do
original work, I call this transitional period in the evolution of proving the
Era of Originals. These originals were corollaries of propositions proved
in the main text and additional theorems that might not have deserved a
place in the main text. Thus, they afforded opportunities for students to
use their reasoning to further their geometric knowledge. In his preface to
a later edition of Chauvenet’s (1887) text, William Byerly said the pur-
pose of originals was to “compel the student to think and to reason for
himself” beyond just learning “to understand and demonstrate a few set
propositions” (p. 5). Changes in the way later texts would give original
exercises seem to respond to that purpose of training students’ “power of
grasping and proving a simple geometrical truth,” a power that “can never
be gained by memorizing demonstrations” (Chauvenet, 1887, p. 5). In that
spirit, George Wentworth (1878) would give long lists of original exercises
at the end of each chapter, and Wentworth (1888) would also interject some
of those original exercises in between the propositions of a given chapter.
The presence of originals presumed that students would learn to reason
by reasoning. But what they would be reasoning about (what kind of pro-
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positions they would be proving) initially depended on what aspects of
the subject matter needed to be covered and what ideas the student should
know about and be able to use. To prove these originals could require as
much ingenuity as that needed to come up with proofs for the theorems
given in the text. As the time of the Committee of Ten approached, the
goal of disciplining the students’ minds took priority over that of having
them explore the subject of studies. Thus, suggesting a contrast with older
texts, Wentworth (1888) indicated that the originals he proposed were “not
so difficult. . . but well adapted to afford an effectual test of degree in which
[the student] is mastering the subject of his reading” (p. iv).

As these originals became more prominent in textbooks and in the dis-
course about the study of geometry, other features began to appear along
with them. On the one hand, students would not just be given opportunities
to prove propositions; they would also be afforded resources that enabled
them to prove. In the following section I exemplify this by noting changes
observed in the way diagrams were given. On the other hand, students’
production of proofs was guided and monitored by increasingly explicit
characterizations of what proving entailed. In the section after next I show
how texts developed the bare bones of a norm for proving. In both cases
— resources and norms — I note how these features had an impact on the
nature of the subject of studies.

4.1.1. Diagrams that enabled student proving: Hypothetical
constructions

For authors to come up with new conventions to draw diagrams had been
common since Legendre’s text. Davies (1848), Greenleaf (1958), and Chau-
venet (1870) used dotted lines to represent constructions done in the course
of a demonstration — to distinguish them from lines given by the conditions
of the proposition to prove. For the exercises he gave, Greenleaf provided
no diagrams, whereas Chauvenet did, indicating his purpose thus,

In order to make these exercises progressive as to difficulty, and to bring them
fairly within the grasp of the student at the successive stages of his progress, many
of them are accompanied by diagrams in which the necessary auxiliary lines are
drawn. (Chauvenet, 1870, p. 293)

Wentworth also made changes to the diagrams he would give with proposi-
tions. In addition to the full and dotted lines, Wentworth (1878, p. iii) added
a third way of drawing lines: “The given lines of the figures are full lines,
the lines employed as aids in the demonstrations are short-dotted, and
the resulting lines are long-dotted.” The origin of those aids or auxiliary
lines was sometimes problematic. In his critique of the then-so-called-
new methods of geometry, Eugene Richards, a professor of mathematics
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at Yale, targeted the changes in “arrangement and order of propositions”
(Richards, 1892, p. 33) in modern geometries. In Richards’ opinion it was
this “[interference] with the natural order of development of the subject”
(p- 33) that had made necessary some hypothetical constructions which
were problematic:

The pupil is told to make a line equal to another line, an angle equal to another
angle. . . without being instructed how to make these necessary constructions. . ..
[Modern geometry does not] inform the pupil what constructions it is possible for
him to make. ... Having proved certain propositions by means of “hypothetical
constructions,” they then take up the problems on which the theorems really
depend. They prove the problems to be done, according to theorems already
proved by means of the problems. This may all be good classification, but it is not
geometry. Neither is it good logic. (Richards, 1892, p. 34; see also Halsted, 1893)

But, in a rejoinder to Richards’ article, George Shutts (1892) defended
the use of hypothetical constructions because they were “represent[ing]
to the eye, for convenience in demonstration, the relations desired to be
considered” (p. 265). On the one hand, it seems apparent that what was at
stake for the ‘moderns’ in the study of geometry was no longer the con-
ditions under which certain assertions were true or certain constructions
were possible, but rather,

Modern geometry seeks the shortest path to results. . .. Discipline of mind is ac-
quired through mental exercise in gaining truth, and the particular subject-matter
studied is of less importance than that the pupil succeeds in detecting truth and
eliminating error, in holding logically to a line of thought until he has reached a
conclusion. (Shutts, 1892, p. 264)

On the other hand, the hypothetical constructions were used not (necessar-
ily) because of ignorance of geometry on the part of textbook writers but
in response to a felt instructional need: To afford students some of the ele-
ments that they would need in furnishing a proof. The emergence of these
‘hypothetical constructions’ is therefore important for this inquiry because
they exemplify how the educational system chose to afford resources for
student proving, in spite of the non trivial changes that those provisions
imposed in the nature of school geometry. Indeed, school geometry was
becoming the logical treatment of a universe of objects whose existence
and truth were taken as factual, independent of the reasoning involved
in dealing with them. This separation had been instrumental to classify
the content, carve a share of labor for students, and provide resources for
students to craft proofs. At the same time that hypothetical constructions
in diagrams were included as resources for student proving, a norm was
being shaped for teachers to monitor the work that students were to do.



TWO-COLUMN PROVING CUSTOM 293

4.1.2. The beginnings of a generic norm for proving

In his text about the teaching of mathematics, Davies (1850) had suggested
that teachers quote or spell out reasons for statements as they presented
the proofs of the theorems in the course of studies. But neither Davies’
(1848) edition of Legendre’s text nor Greenleaf’s or Chauvenet’s textbooks
changed much the style of the era of text: They kept writing proofs in
paragraphs and providing only some of the reasons for statements. It was
Wentworth (1878) who first changed several of the features of the printed
page in a geometry text (Shibli, 1932, p. 144). Wentworth (1878) com-
mitted himself to displaying every theorem and its proof in a single page
to facilitate its understanding, and he introduced normative considerations
about the format in which demonstrations would be written,

The reason for each step is indicated in small type between that step and the
one following, thus preventing the necessity of interrupting the process of the
argument by referring to a previous section. . .. Moreover, each distinct assertion
in the demonstrations. . . begins a new line. . .. This arrangement presents obvious
advantages. The pupil. .. readily refers to the figure at every step, ... acquires
facility in simple and accurate expression, rapidly learns to reason.

(p. 1v, italics in original)

The demonstrations given by the book were developed in more succinct
sentences as a result of the condition to give them in steps or lines (see
Figure 3). Each of those lines was accompanied by reasons: A number
to the right of each line referred to the paragraph (usually a theorem)
that supported the statement made, and a sentence below each statement
indicated how the previous paragraph applied.

In contrast with the proofs of the Era of Text, the proofs given by
Wentworth (1878) and subsequent authors would thus adhere to a more
general norm of exposition that tended to make explicit what logical reas-
oning was. Wentworth’s identification of ‘the process of the argument’ as
a proper part of the demonstration (which included the argument and the
references) points at the use of that general norm. The particular proof (ar-
gument) is provided within a normative frame (lines, references) by which
the spelling out of the proof may (if needed) be judged as understood.
The fact that the student provided reasons for each statement upon request
would mean, for the teacher, that the student had understood the argument
as having the status of proof (see also Wells, 1894, p. viii).

4.2. Student proving

The elements were then in place to make it possible for students to engage
in proving. The student had to be trained in reasoning and absolute truth,
and this training could be done through the study of geometry. But that was
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Figure 3. A proof from the Era of Originals (photographed by the author from Wentworth,
1888, p. 24, Ginn publishers).

not seen as an automatic byproduct of exposure to the study of a text. To
effect such training, the knowledge of geometry had had to be transposed
into the subject-matter of school geometry, particularly yielding an image
of school geometry as the organization of a collection of factual truths
about plane and space. Each of those truths was justified according to the
logical principles of deductive reasoning, though the notion that such reas-
oning actually had a share in producing those truths was farther from view
than in the Era of Text. Student proving was a means by which the expected
training could be monitored and it happened in two kinds of situations:
(1) demonstrating (understanding of the proofs of) the propositions of the
main text and (2) proving original propositions. Those situations were not
essentially different, in that both entailed exercising the reasoning faculties
and acquiring and demonstrating acquisition of new knowledge.
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As the time of the Committee of Ten approached, student proving was
not only suggested as convenient for mental discipline but it was also be-
ginning to be fostered and surveyed. When informing the Committee of
Ten’s recommendation to make student proving a requirement, the Math-
ematics Conference drew heavily on the instructional adaptations done
during the Era of Originals.

5. THE MATHEMATICS CONFERENCE’S RECOMMENDATIONS ON
GEOMETRY TEACHING

The main challenge for the Committee of Ten was to find a way to ac-
commodate the diversity of available studies into an academic curriculum
meant for all students (Ravitch, 2000, p. 42). The notion of exposure to
the liberal arts, those arts that would liberate the intellect, was not enough.
New fields of knowledge could use it to find their way into the curriculum,
but reformers were aware that an overloaded curriculum would make that
exposure trivial. The doctrine of mental discipline became a tool for gen-
eral educators to handle the problem of how those possible studies could
be compared and contrasted in the interest of specifying a curriculum
of optimal educational value (see Harris, 1894). The “educational value
of mathematics” would thus be identified in the “training to the mind’s
powers of conceiving, judging, and reasoning” (Hill, 1895, p. 353). And,
whereas the physical sciences would train students in inductive methods,
“in formal geometry we have the best possible arena for training in deduct-
ive reasoning” (Hill, 1895, p. 354). Hence, mental discipline, that had been
used before to provide a justification for the study of mathematics, was now
being officially used as a criterion to decide what should be included in the
study of mathematics (Newcomb et al., 1893, p. 105).

The Mathematics Conference (Newcomb et al., 1893), recommended
changes to the geometry curriculum that intended to accommodate the ten-
sion between training the mental faculties and transmitting the culturally
valued geometrical knowledge. They recommended a new course of stud-
ies in concrete geometry for the elementary school. Such a course would
“familiarize the pupil with the facts of plane and solid geometry and with
those geometrical conceptions to be subsequently employed in abstract
reasoning” (p. 106). In envisioning the high school geometry course, the
Conference could thus count on the students knowing basic facts from the
previous concrete geometry course. They concentrated on envisioning a
course on “demonstrative geometry [as] the most elaborate illustration of
the mechanism of formal logic in the entire curriculum of the student” (p.
115). In the years before, school geometry had been conceived of as the
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logical treatment of truths about the plane and space — separating questions
about how geometric objects came to exist and have properties from the de-
ductive reasoning used to justify those properties. The reforms proposed by
the Committee of Ten were able to keep the privileged place of geometry
in high school by going farther than Davies in the same direction — arguing
that it was not the geometric truths but their logic that was most important.
‘The art of demonstration’ (i.e., proving) thus became a main objective
of the study of geometry. It was understood that the way to acquire the
art of demonstration would be by demonstrating, by actually dealing with
the geometric truths as a pretext to acquire the art. Those geometric truths
that had served as anchors for the development of reasoning would now
be taught as factual truths before any attempt at deductive reasoning (see
Halsted, 1893). But such changes responded to the awareness that logical
reasoning and memorization of a logically reasoned text were not the same
— and students had to learn the former.

So, whereas giving students the opportunity to prove had been part of
the study of geometry in high school for some time, the Committee of
Ten made it the centerpiece of the course. The normative impetus to get
students to prove and to reject “demonstrations that are not exact and form-
ally perfect” because they did not provide the training sought (Eliot et al.,
1893/1969, p. 25) posed a crucial challenge for instruction. The challenge
was one of how to ensure that the high school geometry course became a
place where students not merely could but rather would prove.

6. THE ERA OF EXERCISE: LEARNING TO DO PROOFS

Important changes in geometry texts resulted from the recommendations of
the Committee of Ten. Opportunities for students to craft proofs increased
in number and changed in nature as one contrasts the textbooks published
after the recommendations of the Committee of Ten with those of the Era
of Originals. Because most of the changes observed in the course of studies
seemed to be geared toward enabling and supporting students’ perform-
ance in those proof ‘exercises, I call this period the Era of Exercise. In the
sections 6.1, 6.2, and 6.3, I account for the changes that occurred in the
study of geometry during this period.

6.1. Teaching about proof

Whereas it had already been customary to ask students to craft proofs,
textbooks had not delved at length into what a proof was. Also, whereas
methods and strategies for proving had been used to prove propositions in
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the text, it had not been customary for textbooks to detail those methods.
A notable change during the Era of Exercise had to do with the making
explicit of what a proof was considered to be. Textbooks also began to
instruct on methods and strategies for coming up with proofs.

6.1.1. From descriptions of proof to the two-column format

Textbooks from the Era of Originals had conveyed the sense of what a
proof was by giving proofs for the theorems of the course of studies. Fol-
lowing the report of the Committee of Ten, more explicit definitions or
descriptions of proof began to appear. For example, Wooster Beman and
David Eugene Smith started a series of ‘New plane geometry’ textbooks
in 1895. They developed a section on ‘Preliminary propositions’ to “show
to the beginner the nature of a geometric proof and to lead him by easy
steps to appreciate the logic of geometry” (Beman and Smith, 1899, p.
13). And, in addition to giving the proofs of some propositions as models,
Beman and Smith also included a section on ‘the nature of a logical proof’
(ibid., p. 19) that explicitly described what a proof should look like:

Every statement in a proof must be based upon a postulate, an axiom, a definition,
or some proposition previously considered of which the student is prepared to
give the proof again when he refers to it. . .. No statement is true simply because
it appears to be true from a figure. . .. [In a proof] are set forth, in concise steps,
the statements to prove the conclusion ... asserted. If the proof is written on
the blackboard, the steps should be numbered for convenient reference by class

and teacher. The teacher will state how much in the way of written or indicated
authorities shall be required after each step. (Beman and Smith, 1899, pp. 19-20)

Beman and Smith put on paper things that were known and already in use
by teachers in inspecting the formal aspects of student work. But making
those stipulations explicit amounted to indicating to students that what was
important in their work was the logical arrangement of statements.

The next remarkable change in making proof explicit was pioneered
by the second edition of Arthur Schultze and Frank Sevenoak’s geometry
textbook (1913). Shibli (1932) says those authors were the first to write
proofs in two columns of statements and reasons divided by a vertical line
(see Figure 1). Shibli (1932) adds,

[This arrangement in two columns] seems to emphasize more strongly the neces-

sity of giving a reason for each statement made, and it saves time when the teacher
is inspecting and correcting written work. (p. 145)

After using the two-column format for the first time, Schultze and Sev-
enoak described it as follows:
Every proof consists of a number of statements, each of which is supported by a

definite reason. The only admissible reasons are: a previously proved proposition;
an axiom; a definition; or the hypothesis.  (Schultze and Sevenoak, 1913, p. 19)
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It is intriguing how widely used this format became and how long it has
endured as an icon of proof in school mathematics. The graphical arrange-
ment that the format imposed on the elements of a proof involved yet
another move toward establishing a norm for the production and control
of proofs by students. The format also established more clearly what was
considered important in students’ performance by providing an image of
what the finished product should look like.

As far as proof is concerned, the educational literature of the time (e.g.
Slaught et al., 1912) was focused on the contrast between informal and
Jformal proofs — where the latter referred to proofs for which every state-
ment was given an explicit reason. In line with the aims of the Committee
of Ten, a premium was put on students learning to write formal proofs,
even if some propositions in a text were only ‘informally’ proved. The
fact that the two-column format emphasized in so evident ways the formal
aspects of proving, enforcing the notion that a proof consisted of steps of
statements and reasons, made it useful at the time. I return to this issue after
describing how other aspects of the geometry course changed accordingly.

6.1.2. Teaching methods and strategies for proving propositions

The Committee of Ten had recommended teaching students methods for
discovering proofs. Popular textbooks like Wentworth’s and Wells’ were
revised accordingly (Wells, 1908; Wentworth, 1899). Wentworth (1899)
added a section on ‘Methods of proving theorems’ to the end of the first
chapter and before the exercises where he exposed the synthetic, analytic,
and indirect methods of proving.

Some of the many new texts developed during that time also included
more specific points about method. For example, in their first edition,
Shultze and Sevenoak (1901) wanted to “introduce the student systemi-
atically into original geometrical work.” Hence, they complemented the
exposition of theorems with “remarks” about the strategies used in proving
those theorems and their import for student work. Thus, after proving all
the conditions for parallelism they said,

Lines are demonstrated to be parallel by proving that (a) two alternate interior
angles are equal, (b) two corresponding angles are equal, or (c) two interior angles
on the same side of a transversal are supplementary. (p- 20)

Exercises were often placed near theorems where those strategies had been
used. The nature of these exercises and their relationship with the theorems
of the course of studies deserves more elaboration.
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6.2. Ensuring that students would do proofs: From originals to exercises

More precise directions about how to organize the geometry course were
provided in a document issued by a new Committee (Nightingale et al.,
1899). This new Committee was also informed by the report of a group of
mathematics specialists, whose chair was Jacob W. A. Young, a professor
of mathematical pedagogy in the University of Chicago, and that included
seven mathematics professors and two school principals. (Young et al.,
1899). They suggested that the geometry course should be composed of
two different kinds of propositions: Fundamental propositions and exer-
cises. The fundamental propositions would be “the minimum which all
pupils alike should know” (p. 142) — they would serve to develop the sub-
ject of studies. But additionally, the proofs of those fundamentals would
exemplify what it meant to prove a proposition, and the propositions them-
selves would be the information that students would use as they did the
proof ‘exercises.” These exercises were extremely important. The 1899
Committee had insisted that to make the study of mathematics valuable,
the student had to think and produce; “Not to learn proofs, but to prove,
must be his task” (Young et al., 1899, p. 136).

As shown in section 4, it was not new that students be given the oppor-
tunity to craft proofs. But whereas a change in names from ‘originals’ to
‘exercises’ might seem a trivial consequence of the popularity of mental
discipline jargon, the change was not just a change of names. ‘Originals’
were then regarded as having been too few and too difficult. The ‘exercises’
where students would produce proofs, would instead have to be “many,
easy, and carefully graded” (Young et al., 1899, p. 136) and their proofs
would have “to be based on the fundamental propositions" (ibid., p. 142).

In contrast with the Era of Originals, students would not just be given
the opportunity to craft proofs; students would actually “learn to demon-
strate by demonstrating” (Young, 1906, p. 259). Schultze (1912, p. 98)
thus pointed out that it was not the same to just devote time for original
work and to do so in a way “consistent with sound pedagogical principle.”
And Young (1906, p. 260) said that students were expected to “actually
succeed in discovering” proofs. To give students the opportunity to prove
was therefore just the first step — that opportunity had to be actually taken
and its purpose had to be accomplished for the course to fulfill its purpose
as the place to acquire the art of proving.

Teachers had to take proactive steps to ensure that the course served
its purpose. The argument was common at the time and addressed what
educators thought of students as learners. D.E. Smith (1911, p. 70) sugges-
ted that to give the opportunity to prove might not be enough because the
diversity of students in geometry classes made it unrealistic for teachers
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to expect all students in their classes to be enthusiastic “over a logical
sequence of proved propositions.” But whereas it was not reasonable to
expect that all students would “discover new truths,” proving truths stated
by somebody else was something that all students should be able to do
(ibid., p. 160). The task of ensuring that all students would do proofs was
one that the teaching profession had to take on.

Authors of texts for teachers — like Schultze, D.E. Smith, and Young —
gave suggestions on what could be done to induce success in student prov-
ing. Young (1906, p. 259) recommended that “the matter [be] duly simpli-
fied, and cut up into small portions for [the student].” Later, the Committee
of Fifteen on the Geometry Syllabus would also make recommendations
for easier and more concrete exercises formulated in connection with the
specific theorems that the exercises were an application of (Slaught et al.,
1912, p. 93). For the “rank and file” not “to become discouraged and hope-
lessly lost in the so-called ‘originals’. .. the grading [had to be] carefully
done, and steps of difficulty [had to be] kept down to a very reasonable
lower limit” (Slaught et al., 1912, p. 95).

The purpose of these exercises for students was still, in part, to “give op-
portunity for quiet thinking.” But they were now also to “drill on operations
whose theory [was] understood” and had the mission of "completing the
class work of the previous day, not of preparing for the next” (Slaught et al.,
1912, p. 132). Thus the exercises provided after a few theorems tended to
call in one way or another for application of those theorems. Smith (1911)
had said that these simpler, sometimes ‘one-step’ (p. 70) exercises would
“create the interest that comes from independent work, from a feeling of
conquest, and from a desire to do something original” (p. 112).

Therefore, the ‘exercises’ were similar to the ‘originals’ in that they
required students to exercise their reasoning skills to produce proofs. They
were different, however, in that they were no longer meant as opportunities
for students to develop new ideas that pertained to the course of stud-
ies. Rather, exercises were to be used to practice what had been already
learned. The transition in contexts for student proving, from originals to
exercises, thus involved continuity in the formal aspects of the work that
they called for — crafting proofs. But it also involved rupture in the sub-
stantial aspects of that work — from proving as means to know new things
to proving to practice using known things in proofs. In the next section
I discuss how the course of studies responded to those changes in the
meaning of student proving.
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6.3. A course of studies that would teach students how to prove

The distinction between fundamental propositions and exercises played
an important role in making possible the teaching of the art of proving.
Fundamentals were to develop the subject matter as well as provide tools
for students to do their proof exercises, but it was imperative that students
spend time working and succeeding in proof exercises. The textbooks of
the time show that authors confronted difficult questions when conceiv-
ing of a geometry course that would adequately balance attention to fun-
damentals and exercises. Which propositions should be the fundamental
ones? In which sequence should they be placed in the text? What proofs
should be envisioned for them? How should the ‘discovery’ of these proofs
be reported in the text? A remarkable diversity in the exposition of these
fundamental propositions can be observed in geometry textbooks from
the beginning of the century (Smith, 1909; Schultze and Sevenoak, 1913;
Shibli, 1932). In different ways, authors tried to balance respect for the
integrity of the discipline of geometry with usefulness of the exposition
to enable and support students’ performance in exercises. They also en-
deavored to reduce the number of fundamental propositions and increase
the number of exercises. The following sections describe ways in which
the course of studies increased its capacity to enable and support students’
production of proofs. As I describe those changes, I also discuss how those
changes impacted the nature of the geometry being studied.

6.3.1. Changes in what must be proved and what can be taken as an
axiom

Pedagogical concerns were invoked by the 1899 Committee to suggest

changes in the way axioms were given. The Committee recommended

reserving for a later stage the introduction of those axioms that were “more

nearly self-evident” (Nightingale et al., 1899, p. 142) and directly omitting

self-evident propositions like “all right angles are equal.”

At about the same time, mathematicians had been making important
progress in establishing Euclidean geometry on a solid axiomatic basis, for
example making explicit as axioms things that Euclid had assumed without
comment (e.g., Hilbert, 1899/1971). But mainstream recommendations for
geometry instruction in the United States were apparently taking the op-
posite direction. The subsequent Committee of Fifteen weighed the math-
ematical recommendation of an “irreducible minimum of assumptions”
against pedagogical considerations that “such a list would be unintelligible
to pupils” (Slaught et al., 1912, p. 81). The axioms they chose balanced
mathematical considerations with considerations about the learners:
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The principle is that a logical sequence should be maintained, and formal proofs
of propositions necessary to the sequence should be required, so far as this is
consonant with the educational principle of adapting the matter to the mind of the
learner. (Slaught et al., 1912, p. 81)

Schultze (1912) also suggested that the import for geometry instruction of
the progress in axiomatics was that it had warranted choosing for school
geometry axioms different than Euclid’s:

We do not need to strive for absolute completeness when compiling lists of ax-
ioms. A statement may be considered an axiom even if it can be deduced from
other axioms; and a common sense reason may sometimes be given when tech-
nically an axiom should be quoted. (p. 65)

Similarly, George Carson suggested turning into assumptions all proper-
ties that it was “possible to induce the child to accept without the aid of
numerical measurement” (Carson, 1913, p. 98).

The possibility of choosing what to propose as axioms served a pur-
pose. The emphasis of the Committee of Ten on using geometry as a
context for learning to prove had helped establish a specific notion of proof
in geometry that had already been latent in the Era of Originals. According
to this notion, the existence and properties of geometric objects were true
facts, independent of the proofs given for them. To the background had
gone the notion that it is the existence of a proof what makes properties
true, by stipulating the theoretical conditions under which those properties
should be taken as facts. As a result of that move, to have many axioms
was not seen as any different than to have a few, as long as they all stated
things that were true. And it helped reduce the number of fundamental
propositions that all students should know how to prove. The fundamental
propositions to be proved would be those most central to the develop-
ment of the subject matter, those not so evident to be held as axioms,
and those that could illustrate methods of proving. This reduction in the
number of fundamentals would likely allow more class time for students
to craft proofs for exercises. At the same time, the existence of a long
list of propositions taken as axioms would enable students to use what
those propositions asserted without requiring them to know how those
propositions came to be true. Thus, an assumption could be referred to
as reason in a proof because it was an accepted truth, without the need
for questioning whether it was a proposition provable with the available
tools. Finally, the fact that concrete geometry (including how to construct
geometric objects) would be taught before demonstrative geometry would
help dispel questions regarding the existence of geometric objects. On this
matter it is important to note that during the first decade of the century, geo-
metry textbooks started to enlarge the introductory section (traditionally
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used to define some geometric objects and state the postulates) incorpor-
ating elements of concrete geometry (particularly constructions). Hence,
even if students had not actually seen concrete geometry in elementary
school, the secondary course would separate the geometry studies between
a first encounter with the “facts” and a second encounter with their logical
organization as proposed by the Committee of Ten.

6.3.2. Changes in notations and in the way diagrams were given
Innovations in notation and language use were also geared toward sup-
porting student proving. The notion that a proof was composed of ‘concise
steps’ (Beman and Smith, 1899, p. 20) could operate normatively to pre-
vent students from interjecting unwarranted arguments. Yet, to do so it
had to be supported by available language that permitted such concise-
ness. Hence, it became customary to write proofs using notation more
flexibly (e.g., various ways of denoting angles). It also became custom-
ary to shorten the statements of special propositions (e.g., ‘a. s. a’ for the
theorem that asserts triangle congruence based on the congruence of two
angles and their common side). It seems that such abbreviations would
support students’ random access to previous theorems to quote them as
reasons when producing a proof. All of these changes would help students
use productively the notion that a proof was composed of statements and
reasons. A diversity of notation and a plurality of technical words would
protect from the risk of having to shift the activity of proof production into
one of searching for the canonical way of writing a statement or quoting
a reason. Instead, random and rapid availability of propositions that could
be used as reasons could be used heuristically to think of statements that
might be possible to make.

Another feature that came to support student proving was the way dia-
grams were provided. Newcomb et al. (1893) had recommended that stu-
dents do oral exercises at the blackboard assisted only by a figure. Young et
al. (1899) had also said that teachers should give students “frequent drills
in seeing relations in a given figure...” (p. 142).

To facilitate students’ inspection of diagrams, Schultze (1912) provided
“graphic methods for presenting geometric facts,” devised to “remove all
external difficulties” for “students who can reason logically” but who for-
get “parts of the proof, and hence are unable to continue” (p. 110). Like
some others before him, Schultze used small numbers to indicate which
angles of a figure were of interest for a proof. He added the suggestion
that a small square be used to indicate whether an angle was right and that
equal number of arcs inside angles be used to signify that those were con-
gruent. Other symbols were devised to indicate parallel lines or congruent
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segments in a diagram. These ‘graphic methods’ would not just dress the
figure to express visually the same information contained in the premises
of the proposition to prove. The figure so dressed would unpack what the
premises involved (e.g., to give a triangle with equal number of hash marks
on two sides and equal number of arcs on two angles made explicit more
than to merely say “consider an isosceles triangle”). In doing so, the figure
would indicate to the student that those pieces of information had to be
used in the proof.

7. THE TWO-COLUMN PROOF FORMAT: BRINGING STABILITY TO THE
GEOMETRY COURSE

Sections 3 through 6 have accounted for the evolution of a custom of
student proving, developed as the teaching profession and the textbook
authors tried to meet the expectation that the course of studies in geometry
teach students the art of proving. The evolution that took place during the
Era of Exercise included further changes to the geometry course, some of
which went in a direction different from those of the Era of Originals. The
notion that all students had to learn to prove, practice it, and succeed on it,
but that not all of them should be expected to generate new knowledge, was
behind the change from originals to exercises. To make room and stream-
line support for work on exercises, the propositions of the course were
reduced to a smaller number of ‘fundamentals,” whose proofs students
would learn in order to know how to prove and what to use in their proofs.
In this section I use that historical account to provide an interpretation of
the role that the two-column format played in the establishment of that
custom. I intend to put forward the hypothesis that the two-column proof
format brought stability to the geometry curriculum by providing a way to
meld the proofs given by the text and the proofs asked from students. In
the following subsections I elaborate that hypothesis.

7.1. Fundamentals and exercises: Similar and different

The words ‘fundamentals’ and ‘exercises’ were brought in to refer to the
two categories of propositions to be proved. I contend that the function
assigned to propositions in each of those categories had the effect of in-
creasing the distance between the proving work of the student and the
proving work of the teacher (or the text). For example, whereas proofs for
self-evident propositions were not to be stressed in the course of studies,
exercises were supposed to call for easy proofs whose building blocks
could be discovered by looking at a figure. Also, whereas fundamentals
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were to be the important building blocks of the subject-matter and were
chosen because they were useful in proving other propositions, the main
criterion for choosing exercises was the chances for students’ practice and
success, not how interesting or consequential were their results.

However, both kinds of propositions, no matter how different in sub-
stance, were instrumental in supporting the new identity of the course,
centered on student proving. For students to have ‘reasons’ to justify all
their statements as they proved, they needed the powerful results provided
by the fundamentals. The more compelling the proofs for those funda-
mentals the better students would see “the chain of reasoning by which the
proofs [are] discovered” (Young, 1906, p. 261). Proofs of fundamentals
would thus illustrate why mathematical proofs are necessary and show
what kind of reasoning goes into proving. To give those proofs was essen-
tial for geometry teachers not just as a way of justifying the propositions
under study but also as a warrant for them to be able to claim that they were
indeed feaching the art of proving. Yet, in order to ensure that students
were actually learning such art of proving, it was required that students
succeed in crafting proofs. Exercises would have to target simpler argu-
ments as a way to aim at students’ practice in the formal aspects of proving,
without making their success contingent on their abilities to come up with
the ideas for an argument. Thus the identity of the geometry course was
established on the interdependence between fundamentals and exercises,
but the viability of the course was to be obtained by distancing exercises
from fundamentals. This simultaneous dependence and distance created a
problematic situation. I explain why such state of affairs was problematic
in the next section.

7.2. Making fundamentals and exercises refer to the same object

As the fundamentals and exercises distinction came to the fore, the prob-
lem emerged of how to make so different activities as proving fundament-
als and solving exercises refer to a same object of learning, namely the
art of proving. Exercises were very different from fundamentals in re-
gard to their substance. Whereas fundamentals were consequential, often
important geometric theorems, exercises were obvious or immediate con-
sequences of propositions, inconsequential for further activity. To prove
the fundamentals would have been mathematically in order (they did not
go without saying, to prove them was mathematically relevant). But to
prove the propositions stated as exercises would have been mathematic-
ally uninteresting (even a diehard formalist would have agreed that it was
evident they could be proved, so why bother?). To hold fundamentals and
exercises as comparable objects may have been an action needed for the
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viability of instruction, but an action that created instability in the subject
of studies.

To solve that problem, proof, as an object of the discourse of geometry
instruction, would need to evolve, beyond the traditional implicit notion
that proof was the process by which the truth of a proposition is demon-
strated (Legendre, 1841, p. 3). To do so would help ease the differences
between fundamentals and exercises and make them serve together the
purpose of the high school geometry class. As soon as it could be acknow-
ledged that fundamentals and exercises were specimens of the same kind,
the former would be justified as preliminary training to the latter, and the
latter would be a valid criterion to assess the acquisition of the former. The
two column proof format would do that job at the expense of making proof
come to the foreground as an object of teaching and learning whose main
thrust was in logical form rather than in the geometric substance.

The move from the implicit norms for proving provided by model, com-
plete proofs (e.g., Wentworth, 1888), through descriptions of proof (e.g.,
Beman and Smith, 1899), and eventually to the two-column format (e.g.,
Schultze and Sevenoak, 1913) had the effect of stabilizing the geometry
course. It gave students an ‘objective’ representation that enabled smoother
recognition of the similarities between such different activities as proving
fundamental propositions and solving proof exercises.

The emphasis on formal aspects of proving permitted a sort of trade
between teacher and students in regard to proving fundamentals and ex-
ercises. It was understood that a mature reader would not need reasons
for every statement to understand a proof. However, it was expected that
teachers and textbooks present proofs of fundamentals in the form of state-
ments and reasons: The argument was that only in that way the ‘beginner’
would understand how the argument had been put together (Young, 1906,
p. 262).

Young was suggesting that giving the reason that justified a statement
was equivalent to spelling out the conditions that made such statement rel-
evant. By holding him or herself accountable for sharing those heuristics,
a teacher would enable students to discover the proofs for fundamentals.
The teacher would be able to use the same argument to hold the student
to the formal norm of proving embodied in the two-column format — the
teacher could pretend that the proof done by the student would not be un-
derstandable unless all reasons had been given. Thus, on the one hand the
teacher would use the two column format to explain (in the sense of help
understand) the proof to students. On the other hand the students would
use the two column format to explain (in the sense of show their work on)
the proof to the teacher.
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The two-column proving custom was an accomplishment of geometry
instruction in the sense that it helped comply with a mandate. But that
accomplishment did not come for free. It brought to the fore the logical
aspects of a proof at the expense of the substantive role of proof in know-
ledge construction. Questions about the relevance or the strength of the
propositions proved, or about the accomplishments and potential use of
the theories being developed, were left in the background. This happened
not because those issues lacked advocates (Dewey, 1903; Moore, 1902;
Smith, 1909), but perhaps because those issues were difficult to reconcile,
in practice, with the more pressing mandate that the course would teach all
students the art of proving.

8. CONCLUSION: WHAT CAN WE LEARN FROM THE HISTORY OF
PROVING IN GEOMETRY ?

The history of how the high school geometry course accommodated the
mandate to teach the art of demonstration gives us an important analogy
to think about the renewed emphasis on proof in mathematics education.
We learn that incorporating student proving as a normative element of the
curriculum involves important work that is systemic in nature. Many as-
pects of geometry instruction were involved in responding to the mandate
of the Committee of Ten. Notably, changes in the conception of students as
learners effected and were affected by changes on the nature of the subject
of studies. But also, to make student proving possible, a system of re-
sources had to be developed and coordinated with a norm for accomplished
proofs. The integration of all those elements produced a stable geometry
course oriented toward students’ learning the art of proving embodied in
the two-column format. However, that stability came with a price — that
of dissociating the doing of proofs from the construction of knowledge.
Whereas notable attempts to change the role of proof in school geometry
have taken place during the 20" century (e.g., Fawcett, 1938), the reduc-
tion of proof to its logical, formal aspects has endured for about a century
now. The comment of an undergraduate student of mine speaks about the
same issue: “We did proofs in school, but we never proved anything.”
When we think about the present recommendations that students should
be engaged in proving across the school years and in all subjects (NCTM,
2000), we should take into consideration those lessons from history. First
of all, recommendations for practice are not viable by decree; to make them
viable requires work, and that work is systemic in nature. In order to make
proof a salient element of school mathematics, several other elements must
be acted upon. We must ask how does our notion of proof cohere with our
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conceptions of the student as learner and with the course of mathematical
studies where that learning is to take place. Further, what kind of resources
and norms are needed in order to enable students to do proofs that deserve
a place within that course of studies and that cohere with the goals we have
for students’ learning in the context of mathematical work in classrooms?

A second lesson is that whereas engaging students in proving is some-
thing we must talk about, it may be dangerous to talk about it outside of the
context of developing knowledge of specific mathematical ideas and find-
ing out things that are interesting about those ideas. We learn from Lakatos
(1976, 1978) that mathematical proof is not a generic logical process, but a
substantive methodological tool for developing and shaping concepts, for
finding out which theorems may be true and why. If this valuable role of
proof as a tool to create knowledge merits a place in classrooms — and
I think it does — we need to be leery of thinking of proof as something
independent of the domain of mathematical activity where it is being used.
Proving and proofs may look different according to the questions being
asked and the knowledge and tools available to those who address those
questions in classrooms. Proof is essential in mathematics education not
only as a valuable process for students to engage in (such as developing
their capacity for mathematical reasoning) but, more importantly, as a ne-
cessary aspect of knowledge construction. This historical investigation on
the evolution of proof in American education suggests that making proof a
separate object of study will not empower children to use proof as a means
to know with, but will rather separate the practices of proving from the
practices of knowing.

It would be unfair to judge the evolution of the two-column proving
custom with the criteria of the present. It would be equally unfair to inter-
pret the renewed emphasis on proof as a warrant to insist on teaching and
learning any ‘art of proving.” The Principles and Standards (NCTM, 2000)
provide the elements to envision classrooms where students’ active parti-
cipation in making knowledge claims is accompanied by responsibility to
argue why those claims are reasonable. Thus we need to develop means
to address the Standard of Reasoning and Proof so as to keep a balance
between substance and form as we ask students to craft arguments and
proofs. The crucial question should not be whether students’ arguments
are expressed in a form that a logician would approve of, but whether they
are adapted to the nature of the mathematical objects that a community of
knowers wants to know more about.
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NOTES

1. The author acknowledges valuable comments from Daniel Chazan, Humberto Alagia,
and two anonymous reviewers.

2. Reform ideas in mathematics (geometry in particular) were emerging in other coun-
tries as well (see Howson, 1982, pp. 134-136, 155-159; Kilpatrick, 1992, Poincaré,
1899). In writing this paper I have limited the corpus of archival sources to those
that influenced directly American classrooms, though several of those indeed make
reference to trends that were taking place internationally (see, for example, Moore,
1902; Schulze, 1912; Slaught et al., 1912).

3. I have not come across records of what actual geometry instruction looked like in the
period of interest. The choice to focus on textbooks as records of instruction is thus a
simplification warranted on pragmatic reasons.
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