A COMPARISON OF NET AND CONTINUUM THEORY
AS APPLIED TO CORD REINFORCED LAMINATES

S. K. Clark

ORA Project 02957

administered through:
OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR

DECEMBER 1967
The Tire and Suspension Systems Research Group
at The University of Michigan is sponsored by:

FIRESTONE TIRE AND RUBBER COMPANY

GENERAL TIRE AND RUBBER COMPANY

B. F. GOODRICH TIRE COMPANY

GOODYEAR TIRE AND RUBBER COMPANY

UNITED STATES RUBBER COMPANY
<table>
<thead>
<tr>
<th>TABLE OF CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>LIST OF FIGURES</td>
<td>v</td>
</tr>
<tr>
<td>NOMENCLATURE</td>
<td>vi</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>1</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>2</td>
</tr>
<tr>
<td>NET ANALYSIS</td>
<td>4</td>
</tr>
<tr>
<td>CONTINUUM ANALYSIS</td>
<td>14</td>
</tr>
<tr>
<td>ANALYTICAL AND NUMERICAL COMPARISONS</td>
<td>22</td>
</tr>
<tr>
<td>LITERATURE CITED</td>
<td>36</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Loaded element of net.</td>
<td>5</td>
</tr>
<tr>
<td>2. Membrane force distribution due to cord loads.</td>
<td>7</td>
</tr>
<tr>
<td>3. Element of laminate before and after applied load.</td>
<td>8</td>
</tr>
<tr>
<td>4. Principal stresses in the matrix.</td>
<td>12</td>
</tr>
<tr>
<td>5. Loaded element of symmetric laminate.</td>
<td>16</td>
</tr>
<tr>
<td>6. Transformed stress distribution.</td>
<td>18</td>
</tr>
<tr>
<td>7. Distribution of stresses carried by cord and matrix.</td>
<td>21</td>
</tr>
<tr>
<td>8. Matrix stresses combined in principal directions.</td>
<td>23</td>
</tr>
<tr>
<td>9. Dimensionless cord load caused by pure tension vs. cord angle.</td>
<td>31</td>
</tr>
<tr>
<td>10. Dimensionless matrix stresses due to pure tension S_y vs. cord angle.</td>
<td>32</td>
</tr>
<tr>
<td>11. Dimensionless matrix stresses due to pure tension S_y vs. cord angle.</td>
<td>33</td>
</tr>
<tr>
<td>12. Dimensionless cord load due to applied shear stress S_{xy} vs. cord angle.</td>
<td>35</td>
</tr>
</tbody>
</table>
NOMENCLATURE

English Letters

\(a_{ij} \) - coefficients used in Hooke's law, in.\(^2\)/lb.

\(c \) - coefficients used in analysis

\(d_c \) - cord diameter

\(E \) - Young's modulus of matrix, lb./in.\(^2\)

\(E_y \) - Young modulus of a single sheet of parallel cords coated with rubber, measured at right angles to the cords, lb./in.\(^2\)

\(G \) - Shear modulus of matrix, lb./in.\(^2\)

\(G_{xy} \) - Shear modulus of a single sheet of parallel cords coated with rubber, measured parallel to cord direction, lb./in.\(^2\)

\(H \) - effective matrix area per unit length per ply, in.\(^2\)

\(h \) - thickness of one ply, in.

\(N, N_x \) - shell membrane normal force, lb./in.

\(n_c \) - end count taken at right angles to cords, ends/in.

\(n_p \) - number of plies

\(Q_0, T_0 \) - cord loads, lb.

\(S \) - shell membrane shear force, lb./in.

\(t_x, t_y, t_z, t_\tau \) - matrix membrane forces, lb./in.

Greek Letters

\(\alpha, \alpha' \) - cord angle measured from bisector of cord centerlines,
\(\alpha \) before deformation, \(\alpha' \) after deformation

\(\delta \) - small angle

\(\lambda_x, \lambda_y, \lambda_z \) - extension ratios
Nomenclature (concluded)

\(\mu \) - Poisson's ratio of matrix

\(\sigma_x, \sigma_y, \sigma_{xy} \) - general stresses lb./in.\(^2\)

\(\sigma_c, \sigma_l, \tau \) - matrix stresses lb./in.\(^2\)
ABSTRACT

The basic formulation of plane stress analysis techniques for textiles imbedded in rubber is given both from the viewpoint of a load-carrying net and of a continuous elastic material with orthotropic properties. The developments are basically dissimilar, and yet it is shown that for material properties commonly encountered in rubber coated textiles both theories predict essentially the same textile loads, although the stresses carried by the rubber matrix differ in the two theories. This shows that the network approach, which is by far the simpler of the two, is perfectly valid for purposes of estimating cord loads in cord rubber structural members.

A method is presented through the use of either theory to compute the fraction of load carried by the cord network and the fraction carried by the rubber matrix.
INTRODUCTION

At least two techniques are in common use for the evaluation of cord loads in rubber impregnated cord structures, such as commonly used in pneumatic tires and other rubberized structural members. One point of view focuses on the network of textile cords, due to the fact that their elastic stiffness is so much greater than the rubber in which they are imbedded. The usual procedure is to completely neglect the presence of the rubber and to deal with the loads carried by the net alone. This process is straightforward but requires large and nearly unrestrained deformations of the net in order to accommodate biaxial stress states whose normal force resultants do not lie parallel to the cord network. This type of analysis is most common in two-dimensional, or plane, structures where the net may be treated as a two-dimensional set of lines and the membrane stress is determined accordingly. Little effort has been made to adapt such net formulations to bending stress problems.

A second possible technique for conducting a stress analysis of a regular array of cords imbedded in some softer material is to consider the entire structure as an elastic continuum with the proper orthotropic elastic properties. In the case of twisted cords such as commonly used in pneumatic tires, it is necessary to imagine that the cords are untwisted and the filaments uniformly dispersed throughout the matrix, so that the orthotropic elastic properties become continuous across the width and thickness of the body in question. This avoids the mathematical difficulties of concentrated anisotropy, which is, of course, the true description of the material, and yet provides a reasonably
accurate overall or gross picture of the deformation characteristics of the body in question. Such an approach neglects the local effects of the cords, but it does accurately represent phenomena averaged over at least several cord diameters and spaces. This type of analysis has been pursued by a number of authors interested both in applications of cord-reinforced rubber and in applications of fiber and filament reinforced materials of higher strength. Such materials have been studied in the plane case by Akasaka (1)* by Azzi and Tasi (2), and by Clark (3), while a complete theory has been given by Reissner and Stavsky (4). A thorough discussion of the elastic properties and stress analysis techniques associated with this continuum approach to materials has recently been given by Hofferberth and Frank (5). While some effort has been devoted to the study of bending characteristics in such materials, primarily by Reissner and Stavsky, most of the published information concerns membrane effects. Whitney (6), has recently pointed out that plane symmetric materials commonly studied in the references cited are symmetric only insofar as their membrane characteristics are concerned. They are completely unsymmetric in regard to bending.

With the complete theory of Reissner and Stavsky available, it seems most probable that the bending characteristics of such fiber reinforced materials will be approached from the continuum point of view, and that such analysis only requires determination of the proper elastic constants for its complete implementation. On the other hand, plane or membrane stress problems may apparently be done by either method, and there are significant advantages to the net analysis approach in membrane stress analysis since it represents a far simpler technique.

*Numbers in parentheses refer to references in the bibliography.
in most cases. Further, the results may be more easily interpreted in terms of their physical effects on the composite cord rubber structure. This is particularly true when the cords or reinforcing elements are significantly stiffer than the matrix in which they are imbedded. This is commonly the case in pneumatic tire construction, as well as in many other applications of rubber-coated fabrics, but not necessarily so true in regard to fiber-reinforced plastics or whisker-reinforced metals.

NET ANALYSIS

Here a symmetric multi-ply laminate is treated as an inextensible plane net of cords imbedded in a softer matrix. The cords in successive plies form positive and negative angles with an axis of symmetry, such as shown in Fig. 1. A portion of the total load applied to the laminate is carried by the net and the remainder by the matrix. These different portions are found by evaluating the load-carrying capability of the net and by requiring that any remaining load be carried by the softer matrix. The load carried by the net causes net deformation, due to the change in cord angle, and since the matrix is attached to the net it must also deform in a similar manner. Utilizing equilibrium conditions and deformation compatibility requirements, the loads carried by the net and the matrix can be found, as can the resulting deformations.

In carrying out this net analysis, one begins by assuming cord loads in the net. These net loads are then resolved into the principal directions, or directions of symmetry, of the original laminate so that the total external imposed stress may be expressed as a function of these cord loads. The
element used for this analysis is illustrated in Fig. 1, where T_o and Q_o are the loads per cord in alternate plies. Loads in alternate plies are assumed to be different until otherwise determined, i.e., both T_o and Q_o are independent unknowns. However, it is assumed that each set of cords running in the same direction carries the same load per cord. We assume an even number of plies to maintain approximate membrane symmetry and orthotropy, along with the assumption that the thickness is small enough compared to the other dimensions so that this may be considered a plane structure with vanishing or unimportant thickness effects. In addition, it will be convenient to let each ply have the same physical and geometric characteristics, except for the cord angle, although this requirement can be avoided where desirable.

In Fig. 1, x and y represent the principal directions of elasticity while α is the angle made by the cords with the y axis. Letting n_o be the number of cords per unit length measured perpendicular to the cord direction, and n_p the total number of plies, then the normal force per unit length on the y face is
\[N = \frac{1}{2} (T_0 + Q_0) \cdot n_c \cdot n_p \cdot \cos^2 \alpha. \] \hspace{1cm} (a)

Similarly, the normal force per unit length on the x face is

\[N_x = \frac{1}{2} (T_0 + Q_0) n_c \cdot n_p \sin^2 \alpha \]
\[= N \cdot \tan^2 \alpha. \] \hspace{1cm} (b)

The shear force per unit length on each face is

\[S = \frac{1}{2} (T_0 - Q_0) n_c \cdot n_p \sin \alpha \cos \alpha \] \hspace{1cm} (c)

\(T_0 \) and \(Q_0 \) are independent variables, i.e., may be specified arbitrarily. Using Eqs. (a), (b), and (c), the independent variables may now be considered as \(N \) and \(S \). Physically this means that any magnitude of shear force \(S \) will be carried completely by the symmetric net arrangement, since \(S \) may be specified arbitrarily. However, only one ratio of normal forces in the x and y direction may be carried by the net alone, since \(N_x = N \tan^2 \alpha \) at all times. Thus, a net may be thought of as an array which, when viewed from principal axes laid out along the bisectors of the cord angles, carries any shear without deformation and any set of normal membrane forces in the ratio \(N_x = N \tan^2 \alpha \). The net array only deforms due to those normal forces which are not in the ratio \(N_x = N \tan^2 \alpha \), and hence the role of the matrix in which the net is imbedded is is to carry such "excess" normal membrane forces. The load distribution carried by the net is illustrated in Fig. 2.

Under a general stress state a portion of the total load is carried by the net and a portion carried by the matrix. The net loads are shown in Fig. 2. Figure 3 is a sequence of sketches illustrating the net and matrix both before and after application of some general load. In Fig. 3, \(S_Y, S_X, \) and \(S_{XY} \) are the
applied general stresses while t_y and t_x are the stresses carried by the matrix. This implies, of course, that all of the applied shear stress is carried by the net as previously discussed.

The net deforms under load, resulting in a new cord angle. The matrix deforms accordingly. This means the unknowns N, α', t_y, and t_x must be found in terms of the applied stresses and the original cord angle α. The equations available for this are those of equilibrium, and of strain or deformation compatibility. The equilibrium equations are

\begin{align}
N + t_y \cdot n_p \cdot H &= S_y \cdot n_p \cdot h \\
N \cdot \tan^2 \alpha' + t_x \cdot n_p \cdot H &= S_x \cdot n_p \cdot h
\end{align}

where h is the thickness of an individual ply, d_c is the cord diameter and

$$H = \left(h - \frac{\pi}{4} d_c^2 \cdot n_c \right) .$$

H is the effective area of the matrix per unit length for each individual ply.
Fig. 3. Element of laminate before and after applied load.
Strain compatibility arises from the fact that the deformation of the matrix in the x and y directions must correspond to that of the net in those directions. For small strains, conditions are represented by the equations

\[
 t_y = E[(\cos \alpha'/\cos \alpha - 1) + \mu (\sin \alpha'/\sin \alpha - 1)]/(1 - \mu^2) \quad (3)
\]

\[
 t_x = E[(\sin \alpha'/\sin \alpha - 1) + \mu (\cos \alpha'/\cos \alpha - 1)]/(1 - \mu^2) \quad (4)
\]

where \(E \) and \(\mu \) are the Young's modulus and Poisson's ratio of the matrix for small strains. It should be noted that Eqs. (3) and (4) are constructed here on the basis of infinitesimal strain or deformation, since this is the simplest and most readily recognizable stress-strain law. Later on in this section it will be shown that equations similar to (3) and (4) can be written for finite deformations. Equations (1) and (2) are valid independent of the magnitude of the deformation, since the stresses \(t_x, t_y, S_x, \) and \(S_y \) are referred to the original area. Since all of the applied shear stress is carried by the net, shear stress does not enter into the matrix stress-strain relations and the matrix is free of shear deformation.

Substituting \(t_y \) and \(t_x \) from Eqs. (3) and (4) into Eqs. (1) and (2) gives

\[
 S_y = N/(n_p t_p) + \frac{E \cdot H}{h(1-\mu^2)} [(\cos \alpha'/\cos \alpha - 1) + \mu (\sin \alpha'/\sin \alpha - 1)] \quad (5)
\]

\[
 S_x = N\tan^2 \alpha'/(n_p t_p) + \frac{E \cdot H}{h(1-\mu^2)} [(\sin \alpha'/\sin \alpha - 1) + \mu (\cos \alpha'/\cos \alpha - 1)] \quad (6)
\]

\(H/h \) is the ratio of the total volume of a given element to the matrix volume in that same element. Eliminating \(N \) from Eqs. (5) and (6) results in the following transcendental equation for the final cord angle \(\alpha' \) of the net
\[\left[\frac{\sin \alpha'}{\sin \alpha - 1} + \mu \left(\frac{\cos \alpha'}{\cos \alpha - 1} \right) \right] - \tan^2 \alpha' \left(\frac{\cos \alpha'}{\cos \alpha - 1} \right) \\
+ \mu \left(\frac{\sin \alpha'}{\sin \alpha - 1} \right) = \frac{S_y \cdot h \cdot (1 - \mu^2)}{E \cdot h} \left(\frac{S_x}{S_y} - \tan^2 \alpha' \right) \]
(7)

It is instructive to write the right hand side of Eq. (7) in the dimensionless form indicated since it shows that the final cord angle depends not only on the magnitude of the ratio of applied stresses to the matrix modulus, as given by the quantity

\[\frac{S_y \cdot h \cdot (1 - \mu^2)}{Eh} \]

in Eq. (7), but also upon the ratio of the two applied stresses, \(\frac{S_x}{S_y} \). After some consideration of Eq. (7), it may be demonstrated that for those cases where the ratio \(\frac{S_x}{S_y} \) on the right side is exactly equal to \(\tan^2 \alpha' \), then the solution to Eq. (7) for the final angle \(\alpha' \) of the net is exactly equal to the original angle \(\alpha \). In other words, the unique solution for a zero right-hand side of Eq. (7) is \(\alpha = \alpha' \). This means that a net loaded in such a way that the applied force vectors are co-linear with the cord directions in this symmetric net results in no change of geometry of the net. This is to be expected from physical considerations. For those cases where such a simple solution to Eq. (7) does not exist, it is necessary to use it to determine the final angle \(\alpha' \) of the network. In addition, one must also draw upon the fact that all of the applied shear loads are carried by the net itself so that the applied shear stresses are related to the quantity \(S \) through Eq. (8)

\[S = S_{yx} \cdot n_p \cdot h \]
(8)

The value of \(\alpha' \) found from Eq. (7) may be used in either Eqs. (5) or (6) to obtain \(N \). The quantity \(S \) may be obtained from Eq. (8), and these values can
then be used in Eqs. (3) and (4) to obtain the stresses carried by the matrix. Equations (1) and (2) give the cord loads T_o and Q_o, which may also be obtained from the direct solution for these cord loads in the form given by Eq. (9)

$$
T_o = \left[\frac{N}{n_p \cdot \cos \alpha} + \frac{S_y \cdot h}{\sin \alpha} \right] / (n_c \cdot \cos \alpha)
$$

$$
Q_o = \left[\frac{N}{n_p \cdot \cos \alpha} - \frac{S_y \cdot h}{\sin \alpha} \right] / (n_c \cos \alpha)
$$

The final angle obtained from Eq. (7) depends on the linearity of the stress-strain relation as expressed in Eqs. (3) and (4). Generally this is only good for relatively small ranges of strain, which means small ranges of cord-angle change. Even when the cords are inextensible there can be large angle changes which result in finite deformations of the matrix. An additional refinement to this previous theory can be made by substituting a finite deformation stress-strain law in place of Eqs. (3) and (4). These new equations may be used with Eqs. (1) and (2) to form a general finite deformation theory which is not subject to the restrictions indicated.

Referring to Fig. 4 for notation, let the matrix stresses t_z, t_y, and t_z be referred to the original or unstrained area of the element. Let the ratios of final lengths to original lengths of the sides of the element be called extension ratios λ_x, λ_y, and λ_z. Then a good approximation to the stress-strain curve of rubber is shown by Treloar (7) to be given by the expressions

$$
\lambda_x t_x - \lambda_z t_z = G(\lambda_x^2 - \lambda_z^2)
$$

$$
\lambda_z t_z - \lambda_y t_y = G(\lambda_z^2 - \lambda_y^2)
$$

Using the condition of incompressibility in the form

$$
\lambda_x \lambda_y \lambda_z = 1
$$
Fig. 4. Principal stresses in the matrix.

and noting that $t_z = 0$ for the plane problem in question, then Eqs. (10) and (11) may be written

$$t_x = G(\lambda_x - \frac{1}{\lambda_x^2 \lambda_y^2}) \quad (13)$$

$$t_y = G(\lambda_y - \frac{1}{\lambda_x^2 \lambda_y^2}) \quad (14)$$

A set of equations analogous to Eqs. (1) through (4) may now be written as follows

$$N + n_p \cdot t_y \cdot H = S_y \cdot n_p \cdot h \quad (15)$$

$$N \cdot \tan^{2\alpha'} + n_p \cdot t_x \cdot H = S_x \cdot n_p \cdot h \quad (16)$$

$$t_x = G(\lambda_x - \frac{1}{\lambda_x^2 \lambda_y^2}) \quad (17)$$

$$t_y = G(\lambda_y - \frac{1}{\lambda_x^2 \lambda_y^2}) \quad (18)$$

$$\lambda_x = \frac{\sin \alpha'}{\sin \alpha} \quad (19)$$
Equations (15) through (20) may be combined in a fashion similar to Eqs. (1) through (4). The result of eliminating all unknown cord loads and matrix stresses is again a characteristic equation relating the final cord angle of the symmetric net to the initial cord angle. This takes the form

\[
\lambda_y = \frac{\cos \alpha' \cos \alpha}{\sin \alpha - \sin^3 \alpha \cos^2 \alpha' - \tan^2 \alpha' \left(\frac{\cos \alpha'}{\cos \alpha} - \frac{\sin^2 \alpha \cos^2 \alpha'}{\sin^2 \alpha' \cos^2 \alpha'} \right)} = \frac{S_y \cdot h}{\frac{S_x}{S_y} - \tan^2 \alpha'}
\]

Equation (21) is the characteristic equation governing the deformation of the cord-matrix combination. In general, after solution of Eq. (21) for the final deformed cord angle \(\alpha' \) one may return to Eqs. (19) and (20) in order to determine the extension ratios, and from there to Eqs. (17) and (18) to determine the matrix stresses. These then allow determination of cord loads by means of Eqs. (15) and (16). It should be noted that all shear stresses are still presumed to be taken by the cord network, so that Eqs. (8) and (9) are still valid. This allows all internal characteristics of the network to be determined in terms of the final geometry.

Equation (21) also illustrates the fact that the final deformed shape of the net is dependent upon the shear modulus of the matrix material, so that in the limiting case as the shear modulus increases indefinitely, the cord angle remains unchanged during loading. It may be demonstrated that a zero right-hand side of Eq. (21) results in a unique solution to it, in which the angle \(\alpha' \) is identical to the original angle \(\alpha \). This means that no net deformation will be present for all cases where the ratio of applied stresses \(S_x/S_y \) is equal to \(\tan^2 \alpha' \). Under such conditions the initial and final cord angles will be identical.
For other cases where the right-hand side does not vanish, it is seen that the net deformation is proportional to the magnitude of the applied stress S_y, as well as inversely proportional to the shear modulus G, as previously discussed.

Let the change in angle be small, so that the for a particular case

$$\alpha' = \alpha + \delta$$

where δ is much smaller than α or α'. Then it may be shown that under this condition both Eqs. (7) and (21) reduce to an identical form. This is to be expected, and serves as one check on their validity. In general the more exact Eq. (21) would be preferred as a means of calculating the final net angle α', since both Eqs. (7) and (21) are complex enough so that solutions can only be obtained by numerical trial and error methods.

CONTINUUM ANALYSIS

In this section a thin multi-ply cord-rubber laminate is treated as a plane orthotropic elastic continuum. In this analysis a general plane stress state applied in the principal directions of elasticity is transformed to the directions of the cords and orthogonal to them. If one assumes that the strain in the cord direction vanishes, all of the force in the cord direction is carried by the cord. The stress perpendicular to the cords, as well as the shear stress, is assumed to be carried by the matrix. The matrix stress distribution is then transformed back to the original principal directions so that it can be compared with the distribution obtained directly from the net analysis. In addition, the cord loads from this analysis can be compared with those of the net theory. Again it is assumed that alternate plies carry the same loads, that the laminate
is composed of an even number of plies, and that each ply is geometrically and
materially the same except for the cord angle. As in the net, the continuum is
presumed to be two dimensional only.

Figure 5 shows a general two-dimensional stress state applied to an element
of a symmetric angle-ply structure. In this sketch, y and x again represent
the principal directions, and S_y, S_x, and S_{yx} are the applied stresses. This
element will be analyzed in detail below, and the results will be readily
adaptable to any structure with an even number of plies alternately laid up
such that the cords make an angle of $\pm \alpha$ with the y-axis.

Applying the generalized Hooke's Law to each of the plies, the strain-
stress relations are found to be:

Ply 1 (+ α)

\[
\begin{align*}
\epsilon_y &= a_{11}\sigma_y + a_{12}\sigma_x + a_{13}\sigma_{yx} \\
\epsilon_x &= a_{21}\sigma_y + a_{22}\sigma_x + a_{23}\sigma_{yx} \\
\epsilon_{yx} &= a_{31}\sigma_y + a_{32}\sigma_x + a_{33}\sigma_{yx} \\
\end{align*}
\]

(22)

Ply 2 (- α)

\[
\begin{align*}
\epsilon_y &= a_{11}'\sigma_y + a_{12}'\sigma_x - a_{13}'\sigma_{yx} \\
\epsilon_x &= a_{21}'\sigma_y + a_{22}'\sigma_x - a_{23}'\sigma_{yx} \\
\epsilon_{yx} &= -a_{31}'\sigma_y - a_{32}'\sigma_x + a_{33}'\sigma_{yx} \\
\end{align*}
\]

(23)

Here, the σ and σ' are the individual ply stresses. The ϵ represent the ex-
tensional and shearing strains while the a_{ij} are the elastic constants associated
with the individual plies. The ϵ are the same in each ply since the assembly
deforms as a bonded unit. The a_{ij} have been studied in some detail by Clark
Fig. 5. Loaded element of symmetric laminate
(3), (8), and it has been found that each a_{ij} can be determined by knowing only basic geometric, elastic and constructional properties of the individual ply.

In addition to the strain-stress relations, force equilibrium requires that:

\[
2S_y = \sigma_y + \sigma'_y
\]
\[
2S_x = \sigma_x + \sigma'_x
\]
\[
2S_{yx} = \sigma_{yx} + \sigma'_{yx}
\] \hspace{1cm} (24)

Equations (22), (23), and (24) represent a system of nine equations and nine unknowns (ε_y, ε_x, ε_{yx}, σ_y, σ_x, σ_{yx}, σ'_y, σ'_x, σ'_{yx}). Solving these equations simultaneously gives the following expressions for the stresses:

\[
\sigma_y = \sigma'_y = S_y - \frac{a_{22}a_{13} - a_{23}a_{12}}{a_{11}a_{22} - a_{12}a_{21}} S_{yx}
\]
\[
\sigma_x = \sigma'_x = S_x - \frac{a_{31}a_{23} - a_{33}a_{21}}{a_{11}a_{22} - a_{12}a_{21}} S_{yx}
\]
\[
\sigma_{yx} = - \sigma'_{yx} = - \frac{a_{31}}{a_{33}} \sigma_y - \frac{a_{32}}{a_{33}} \sigma_x + S_{yx}.
\] \hspace{1cm} (25)

The first step in determining the fraction of the applied load carried by the cords and the fraction by the matrix is to transform the stress states of each of the plies in Fig. 5 into directions along the cords and perpendicular to them, as shown in Fig. 6. The transformed stresses can be obtained from the well known equations of a Mohr's circle analysis:

For ply 1:

\[
\sigma_c = \left(\frac{\sigma_y + \sigma_x}{2}\right) + \left(\frac{\sigma_y - \sigma_x}{2}\right) \cos 2\alpha + \sigma_{yx} \sin 2\alpha
\]
\[
\sigma_1 = \left(\frac{\sigma_y + \sigma_x}{2}\right) - \left(\frac{\sigma_y - \sigma_x}{2}\right) \cos 2\alpha - \sigma_{yx} \sin 2\alpha
\]
\[
\tau = - \left(\frac{\sigma_y - \sigma_x}{2}\right) \sin 2\alpha + \sigma_{yx} \cos 2\alpha
\] \hspace{1cm} (26)
Fig. 6. Transformed stress distribution.

For ply 2:

$$
\sigma'_c = \left(\frac{\sigma'_y + \sigma'_x}{2} \right) + \left(\frac{\sigma'_y - \sigma'_x}{2} \right) \cos 2\alpha - \sigma'_{yx} \sin 2\alpha
$$

$$
\sigma'_1 = \left(\frac{\sigma'_y + \sigma'_x}{2} \right) - \left(\frac{\sigma'_y - \sigma'_x}{2} \right) \cos 2\alpha + \sigma'_{yx} \sin 2\alpha
$$

$$
\tau' = \left(\frac{\sigma'_y - \sigma'_x}{2} \right) \sin 2\alpha + \sigma'_{yx} \cos 2\alpha.
$$

(27)

Rewriting Eqs. (26) and (27) in terms of Eq. (25) gives the transformed stresses in terms of known quantities.

$$
\sigma_c = [\cos^2\alpha - 2\sin\alpha \cos\alpha \cdot c_1] \cdot S_y
$$

$$
+ [\sin^2\alpha - 2\sin\alpha \cos\alpha \cdot c_4] \cdot S_x
$$

$$
+ [-\sin^2\alpha \cdot c_1 - \cos^2\alpha \cdot c_2 + 2\sin\alpha \cos\alpha] \cdot S_{yx}
$$

(26)

where:

$$
c_1 = \frac{a_{11}a_{22} - a_{12}a_{21}}{a_{11}a_{22} - a_{12}^2}
$$

$$
c_2 = \frac{a_{22}a_{13} - a_{23}a_{12}}{a_{11}a_{22} - a_{12}^2}
$$

$$
c_3 = \frac{a_{31}}{a_{33}}, \quad c_4 = \frac{a_{32}}{a_{33}}
$$

18
\[c_1 = [\sin^2\alpha + 2\sin\alpha \cos\alpha \cdot c_3] \cdot S_y \]
\[+ [\cos^2\alpha + 2 \sin\alpha \cos\alpha \cdot c_4] \cdot S_x \]
\[+ [- \sin^2\alpha \cdot c_2 - \cos^2\alpha \cdot c_1 - 2\sin\alpha \cos\alpha] \cdot S_{yx} \] \hspace{1cm} (29)

\[\tau = [- \sin\alpha \cos\alpha - (\cos^2\alpha - \sin^2\alpha) \cdot c_3] \cdot S_y \]
\[+ [\sin\alpha \cos\alpha - (\cos^2\alpha - \sin^2\alpha) \cdot c_4] \cdot S_x \]
\[+ [\sin\alpha \cos\alpha \cdot (c_2 - c_1) + \cos^2\alpha - \sin^2\alpha] \cdot S_{yx} \] \hspace{1cm} (30)

\[c'_c = [\cos^2\alpha - 2\sin\alpha \cos\alpha \cdot c_3] \cdot S_y \]
\[+ [\sin^2\alpha - 2\sin\alpha \cos\alpha \cdot c_4] \cdot S_x \]
\[+ [\cos^2\alpha \cdot c_2 + \sin^2\alpha \cdot c_1 - 2 \sin\alpha \cos\alpha] \cdot S_{yx} \] \hspace{1cm} (31)

\[c'_1 = [\sin^2\alpha + 2\sin\alpha \cos\alpha \cdot c_3] \cdot S_y \]
\[+ [\cos^2\alpha + 2\sin\alpha \cos\alpha \cdot c_4] \cdot S_x \]
\[+ [\sin^2\alpha \cdot c_2 + \cos^2\alpha \cdot c_1 + 2\sin\alpha \cos\alpha] \cdot S_{yx} \] \hspace{1cm} (32)

\[\tau' = [\sin\alpha \cos\alpha + (\cos^2\alpha - \sin^2\alpha) \cdot c_3] \cdot S_y \]
\[+ [- \sin\alpha \cos\alpha + (\cos^2\alpha - \sin^2\alpha) \cdot c_4] \cdot S_x \]
\[+ [\sin\alpha \cos\alpha \cdot (c_2 - c_1) + \cos^2\alpha - \sin^2\alpha] \cdot S_{yx} \] \hspace{1cm} (33)

In order to determine the fraction of this stress distribution carried by the cords and the fraction carried by the matrix, it is useful to recall that this continuum analysis is to be compared with the net analysis in which the cords are assumed to be inextensible. Thus, to a first approximation the strain in the cord direction is assumed zero. Therefore, for ply 1, the strain in the cord direction for the matrix is
\(\varepsilon_c = \frac{R}{E} - \frac{\mu \sigma_1}{E} \)

where it is assumed that all of \(\sigma_1 \) and \(\tau \) are carried by the matrix. \(R \) is the matrix stress in the cord direction. However, since \(\varepsilon_c \approx 0 \), \(R \approx \mu \sigma_1 \). Thus, in order for the strain in the cord direction to be approximately zero, there must be an additional stress \(\mu \sigma_1 \) acting in the cord direction of the matrix. This implies that all of \(\sigma_c \) is not carried by the cord. Some of \(\sigma_c \), an amount equal to \(\mu \sigma_1 \), is carried by the matrix. Thus, the total stress carried by the cord is \((\sigma_c - \mu \sigma_1) \). This results in a cord load for ply 1 of

\[
T_c = (\sigma_c - \mu \sigma_1) \cdot h/n_c
\]

and for ply 2

\[
Q_c = (\sigma'_c - \mu \sigma'_1) \cdot h/n_c
\]

These cord loads may be compared with those of the net analysis, Eqs. (9).

Assuming that the load carried by the cords is as given above, the stress distribution of Fig. 6 can be re-examined based on the distribution shown in Fig. 7. However, to compare the matrix stresses of Fig. 7 with those of the net analysis, Eqs. (3) and (4), it is necessary to transform them back to the original principal directions and recombine them into a single stress distribution. Figure 8 illustrates this transformation and recombination.

Again using a Mohr's circle analysis:

\[
(\sigma_y)_M = \sigma_1 [c_5 + c_6 \cdot \cos 2\alpha] - \tau \sin 2\alpha
\]

\[
(\sigma_x)_M = \sigma_1 [c_5 - c_6 \cdot \cos 2\alpha] + \tau \sin 2\alpha
\]

\[
(\tau)_M = \sigma_1 \cdot c_6 \cdot \sin 2\alpha + \tau \cos 2\alpha
\]
Fig. 7. Distribution of stresses carried by cord and matrix.
\((\sigma'_y)_M = \sigma'_1 \left[c_5 + c_6 \cdot \cos2\alpha \right] + \tau' \sin2\alpha \)

\((\sigma'_x)_M = \sigma'_1 \left[c_5 - c_6 \cdot \cos2\alpha \right] - \tau' \sin2\alpha \)

\((\tau')_M = -\sigma'_1 \left[c_5 \cdot \sin2\alpha \right] + \tau' \cos2\alpha \)

\[(35) \]

where the subscript \(M \) refers to matrix stresses in the individual plies, and

where:

\[c_5 = \frac{\mu + 1}{2}, \quad c_6 = \frac{\mu - 1}{2} \]

The combined stresses are thus:

\[2t_y = (\sigma_1 + \sigma'_1) \left[c_5 + c_6 \cdot \cos2\alpha \right] - (\tau - \tau') \sin2\alpha \]

\[2t_x = (\sigma_1 + \sigma'_1) \left[c_5 - c_6 \cdot \cos2\alpha \right] + (\tau - \tau') \sin2\alpha \]

\[2t_\tau = (\sigma_1 - \sigma'_1) \cdot c_6 \cdot \sin2\alpha + (\tau + \tau') \cos2\alpha \, . \]

\[(36) \]

The stresses in Eqs. (36) now represent the stress distribution in the matrix when referred to the original principal directions of the composite structure. Thus a direct comparison can be made between the net and continuum analyses by comparing the results obtained from Eqs. (36) with those obtained from Eqs. (3) and (4). An additional comparison can be made by comparing the cord loads obtained from Eqs. (9) and (34). A detailed study of these comparisons is made in the next section.

ANALYTICAL AND NUMERICAL COMPARISONS

The two theories previously outlined are quite different in their philosophy. Continuum theory treats the net and matrix in its original
Fig. 8. Matrix stresses combined in principal directions.
geometry, but in general allows the cord to be extensible.* Net theory, on the other hand, considers the cord inextensible but allows for changes in the cord angle due to deformation of the structure. Each theory represents one portion of the real physical situation, and from a purely abstract point of view it is not possible to say that one is more accurate than another. A better theory would be one incorporating the features of both approaches. For the present it would be useful to simply compare the two theories quantitatively.

Two methods exist for comparison of the net and continuum analysis theories. In the first, the form of each result may be examined to ascertain the possibility of expressing their relative values in some analytical fashion directly. This would be most desirable if it could be accomplished. A less attractive possibility would be to choose selected representative stress states, and to evaluate the results from each of the two theories for these stress states. Both methods will be considered in this section.

Consider first the possibility of analytical evaluation of the two approaches. The results of the continuum approach are rather complicated algebraically. However, they may be substantially simplified by noting that the elastic coefficients a_{ij} take on a greatly reduced form when one uses the physical fact that the extension modulus of a single ply of material with parallel inextensible reinforcing cords is indefinitely large in the cord direction compared to the extension modulus perpendicular to the cords. Although the algebra is lengthy, it may be shown that such an assumption leads to a simple form for two of the constants previously defined, i.e.,

*For purposes of calculating cord loads in this paper, the cord is considered essentially inextensible compared with the matrix.
\[c_1 \approx \tan \alpha \quad c_2 \approx -\cot \alpha \]

Using these in Eqs. (29), (30), (31), and (32) gives

\[\sigma_c = [\cos^2 \alpha - 2\sin \alpha \cos \alpha \cdot c_3] \cdot S_y \]
\[+ [\sin^2 \alpha - 2\sin \alpha \cos \alpha \cdot c_4] \cdot S_x \]
\[+ \frac{\sin^3 \alpha}{\cos \alpha} + \frac{\cos^3 \alpha}{\sin \alpha} + 2\sin \alpha \cos \alpha] \cdot S_yx \] \tag{37}

\[\sigma_1 = \sigma'_1 = [\sin^2 \alpha + 2\sin \alpha \cos \alpha \cdot c_3] \cdot S_y \]
\[+ [\cos^2 \alpha + 2\sin \alpha \cos \alpha \cdot c_4] \cdot S_x \] \tag{38}

\[\tau = -\tau' = [-\sin \alpha \cos \alpha - (\cos^2 \alpha - \sin^2 \alpha) \cdot c_3] \cdot S_y \]
\[+ [\sin \alpha \cos \alpha - (\cos^2 \alpha - \sin^2 \alpha) \cdot c_4] \cdot S_x \] \tag{39}

\[\sigma'_c = [\cos^2 \alpha - 2\sin \alpha \cos \alpha \cdot c_3] \cdot S_y \]
\[+ [\sin^2 \alpha - 2\sin \alpha \cos \alpha \cdot c_4] \cdot S_x \]
\[- \frac{\cos^3 \alpha}{\sin \alpha} + \frac{\sin^3 \alpha}{\cos \alpha} + 2\sin \alpha \cos \alpha] \cdot S_yx \] \tag{40}

If Eqs. (38) and (39) are used with Eq. (36), one may obtain the following expressions for the stress carried by the matrix:

\[t_y = \sigma_1 [c_5 + c_6 \cos 2\alpha] - \tau \sin 2\alpha \]

\[t_x = \sigma_1 [c_5 - c_6 \cos 2\alpha] + \tau \sin 2\alpha \]

\[t_\tau = 0. \] \tag{41}

Thus, the simplification associated with neglecting the small ratio of modulus perpendicular to cords to modulus parallel to cords in a single sheet is sufficient to cause the continuum theory to predict zero shear stress carried by
the matrix. This coincides exactly with the results from net theory, and in this respect the two theories are identical.

As a further check, consider the special case where the cord angle $\alpha = 45^\circ$, $S_{xy} = 0$ and $S = S_x = S_y$. Net analysis, from Eq. (21), predicts no angle change, hence no deformation, so that the matrix stresses t_x and t_y are zero. The resulting cord loads are given by Eq. (9) in the form

$$Q_o = T_o = \frac{2Sh}{n_c}$$

It may readily be shown that for $\alpha = 45^\circ$,

$$c_3 = c_4 = -\frac{1}{2}$$

so that the continuum theory of Eqs. (38) and (39) gives

$$\sigma_1 = \sigma'_1 = 0$$

$$\tau = \tau' = 0.$$

This means that the matrix stresses are zero, from reference to Eq. (41), which again is in agreement with the net theory, as is the cord load. This latter quantity may be evaluated for this case from Eqs. (37) and (40), which give

$$\sigma_c = \sigma'_c = 28$$

Using Eqs. (34) then allows cord loads to be gotten

$$T_o = Q_o = \frac{2Sh}{n_c}$$

as was obtained above for the net.

Another method of comparison of the two theories is by direct numerical evaluation. Fortunately it is possible to do this in a dimensionless form, but
it is necessary to restrict attention to a few simple but illustrative cases. First, continuum theory is made much easier computationally by assuming that the modulus of a single ply in the cord direction is indefinitely large compared with the modulus in other directions. Second, we restrict attention to two simple stress states, one of pure tension and one of pure shear.

Taking first the case of pure tension, it is possible to compare the angle changes predicted by the small displacement net theory, Eq. (7) with those given by the finite deformation net theory of Eq. (21). The latter should be more exact, and would in general be preferred for computation. Using several different values of a dimensionless applied tension \(S_y/E \), and a range of initial cord angles, the final cord angles may be computed for both forms of net theory and are presented in Table 1. Here, it is seen that the final cord angles are nearly the same for both theories if the applied stresses are small \(S_y/E = 0.01 \), \(S_y/E = 0.05 \) while for larger stresses the differences between small strain and finite deformation theory become greater. Generally speaking the greatest differences seem to appear at large stresses and large cord angles, where the finite deformation net theory predicts somewhat greater angle change.

Cords loads may be predicted by either net or continuum theory for a state of simple tension \(S_y \) as the only nonzero stress component. This may be done by continuum theory methods by letting the modulus \(E_x \) in the cord direction approach infinity, as well as the associated cross-modulus \(F_{xy} \). This simplifies the expressions for the elastic constants in the plane orthotropic case so that

\[
\begin{align*}
a_{13} &= -2 \sin^3 \alpha \cos \alpha/E_y - \cos \alpha \sin \alpha (\cos^2 \alpha - \sin^2 \alpha)/G_{xy} \\
a_{33} &= 4 \sin^2 \alpha \cos^2 \alpha/E_y + (\cos^2 \alpha - \sin^2 \alpha)^2/G_{xy}
\end{align*}
\]
<table>
<thead>
<tr>
<th>INITIAL CORD ANGLE</th>
<th>(S_y/E = 0.01)</th>
<th>(S_y/E = 0.05)</th>
<th>(S_y/E = 0.10)</th>
<th>(S_y/E = 0.30)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Small Strain</td>
<td>Finite Strain</td>
<td>Small Strain</td>
<td>Finite Strain</td>
</tr>
<tr>
<td></td>
<td>Def.</td>
<td>Def.</td>
<td>Def.</td>
<td>Def.</td>
</tr>
<tr>
<td>30°</td>
<td>29.893</td>
<td>29.895</td>
<td>29.492</td>
<td>29.501</td>
</tr>
<tr>
<td>40°</td>
<td>39.684</td>
<td>39.687</td>
<td>38.558</td>
<td>38.567</td>
</tr>
<tr>
<td>50°</td>
<td>49.543</td>
<td>49.543</td>
<td>47.775</td>
<td>47.730</td>
</tr>
<tr>
<td>60°</td>
<td>59.678</td>
<td>59.673</td>
<td>58.371</td>
<td>58.272</td>
</tr>
<tr>
<td>70°</td>
<td>69.821</td>
<td>69.816</td>
<td>69.105</td>
<td>69.051</td>
</tr>
<tr>
<td>80°</td>
<td>79.919</td>
<td>79.919</td>
<td>79.606</td>
<td>79.584</td>
</tr>
</tbody>
</table>

It may be shown by considering the cords to be inextensible that the ratio of shear modulus \(G_{xy} \) to modulus perpendicular to cords \(E_y \) is given by

\[
G_{xy} / E_y = 1/4
\]

With these relations,

\[
c_3 = - \sin \alpha \cos \alpha (\cos^2 \alpha - 0.5 \sin^2 \alpha) / (\cos^4 \alpha - \sin^2 \alpha \cos^2 \alpha + \sin^4 \alpha)
\]

and

\[
\sigma_c = S_y (\cos^2 \alpha - 2c_3 \sin \alpha \cos \alpha)
\]

\[
\sigma_1 = \sigma' = S_y (\sin^2 \alpha + 2c_3 \sin \alpha \cos \alpha)
\]

\[
\tau = - \tau' = -S_y [\sin \alpha \cos \alpha + c_3 (\cos^2 \alpha - \sin^2 \alpha)].
\]

This may be used to obtain

\[
T_0 \cdot n_c / h = \sigma_c - 0.5\sigma_1
\]
\[t_y = \sigma_1 (0.75 - 0.25 \cos 2\alpha) - \tau \sin 2\alpha \]
\[t_x = \sigma_1 (0.75 + 0.25 \cos 2\alpha) + \tau \sin 2\alpha \]
\[t_r = 0 . \]

For finite deformation net theory, Eq. (21) must first be used to obtain a final deformed cord angle. Then the following quantities can be gotten:

\[t_x = \frac{E}{2} \left(\lambda_x - \frac{1}{\lambda_x^2} \right) \]
\[t_y = \frac{E}{2} \left(\lambda_y - \frac{1}{\lambda_y^2} \right) \]
\[\frac{N}{n_p} = S_y \cdot h - t_y \cdot H \]
\[T_o = Q_o = \frac{N}{n_p} n_c \cos^2 \alpha . \]

For these calculations we assume that the cord diameter is negligible, so that

\[H = h \]

This conforms to the assumption used in the continuum theory, where the influence of cord area is neglected.

Cord loads are calculated on this basis for a range of cord angles, using continuum theory as one form and two different stress levels in net theory as the other form. These results are given in Fig. 9, where it is seen that very little difference exists between the two forms over most of the range of cord angles. Only at angles in excess of about 65° do the net theory cord loads for small stresses differ substantially from the continuum theory and the net theory for \(S_y/E = 0.1 \). The latter two are almost identical over the entire range of cord angles.

Similar results are obtained for the matrix stresses \(t_y \), in the applied stress direction, and \(t_x \) in the direction perpendicular to the applied stresses.
These are plotted in Figs. 10 and 11. Again it is seen that continuum theory and net theory for $S_y/E = 0.01$ and $S_y/E = 0.1$ are essentially identical.

For an applied shear stress S_{xy}, with no applied normal stresses S_x and S_y, it may be shown that finite deformation net theory gives

$$
T_0 = -q_0 = S_{xy} \cdot h/n_c \cdot \sin \alpha \cos \alpha ,
$$

$$
t_x = t_y = 0 .
$$

For continuum theory, one must calculate the following quantities:

$$
a_{11} = \sin^4 \alpha/4 + \sin^2 \alpha \cos^2 \alpha
$$

$$
a_{12} = -0.75 \sin^2 \alpha \cos^2 \alpha
$$

$$
a_{22} = 0.25 \cos^4 \alpha + \sin^2 \alpha \cos^2 \alpha .
$$

$$
a_{23} = -\sin \alpha \cos^3 \alpha/2 + \sin \alpha \cos \alpha (\cos^2 \alpha - \sin^2 \alpha)
$$

$$
a_{13} = -\sin^3 \alpha \cos \alpha/2 - \sin \alpha \cos \alpha (\cos^2 \alpha - \sin^2 \alpha)
$$

$$
a_{33} = \sin^2 \alpha \cos^2 \alpha + (\cos^2 \alpha - \sin^2 \alpha)^2 .
$$

From these, one obtains

$$
c_1 = (a_{11}a_{23} - a_{12}a_{13})/(a_{11}a_{22} - a_{12}^2)
$$

$$
c_2 = (a_{22}a_{13} - a_{23}a_{12})/(a_{11}a_{22} - a_{12}^2)
$$

from which

$$
\sigma_c = S_{xy} (c_1 \sin^2 \alpha + c_2 \cos^2 \alpha - 2\sin \alpha \cos \alpha)
$$

and the cord load is

$$
T'_0 = \frac{\sigma_c h}{n_c}
$$

30
Fig. 9. Dimensionless cord load caused by pure tension vs. cord angle.
Fig. 10. Dimensionless matrix stresses due to pure tension S_y vs. cord angle.
Fig. 11. Dimensionless matrix stresses due to pure tension S_y vs. cord angle.
Values of cord tension T_0 and T'_0 for net and continuum theories were calculated for this condition of shear stress, and were found to be identical for all cord angles. They are shown in Fig. 12. Values of shear stress carried by the matrix for continuum theory were calculated and found to be zero, as is the matrix shear stress from net theory. Thus, for shear stresses applied to a body net and continuum theory give identical results.
Fig. 12. Dimensionless cord load due to applied shear stress S_{xy} vs. cord angle.
LITERATURE CITED

