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Abstract. The reasons for the seasonality and annual
changes in the impact of influenza epidemics remain
poorly understood. We investigated the covariations
between a major component of climate, namely the
El Niño Southern Oscillation (ENSO), and indica-
tors of the impact of influenza, as measured by
morbidity, excess mortality and viral subtypes col-

lected in France during the period 1971–2002. We
show that both the circulating subtype and the
magnitude of ENSO are associated with the impact
of influenza epidemics. Recognition of this associa-
tion could lead to better understanding of the
mechanisms of emergence of influenza epidemics.
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Introduction

Influenza epidemics affect human populations world
wide, resulting in significant morbidity, mortality and
economic burden. Overcrowding and disorganization
of health care facilities are due, in part, to explosive
outbreaks of unpredictable impact [1–3]. It is esti-
mated that the disease is responsible for 50 million
illnesses and up to 47,200 all-causes excess deaths in
the United States alone each year [4–6], with similar
figures in Europe [7–9].

Between two influenza pandemics, there is a fre-
quent replacement of new viral strains that emerge
and circulate globally [10]. The determinants of the
emergence and diffusion of these strains are not
well-understood [10]. The circulating (sub)type of
influenza virus is recognized as a determinant of the
epidemic impact [6]. Most importantly, the incidence
of influenza displays a seasonal pattern in temperate
zones of the world which mechanisms remain yet
unexplained [11, 12]. Several authors have suggested
the role of climate as a driving force of seasonality
[13–15].

The El Niño Southern Oscillation (ENSO) repre-
sents the largest quasi-periodic signal in inter-annual
climate variation, affecting global atmospheric and
oceanic circulation patterns [13, 16]. The ENSO

phenomenon undergoes cycles between warm
phases – extreme during El Niño episodes – and re-
verse cold phases – extreme during La Niña episodes.
Several reports have determined that El Niño events
are associated with infectious diseases [13, 17–21],
including dengue fever [22, 23], Rift Valley fever [24],
malaria [25–28], cholera [29–31], and diarrhoeal dis-
eases [32], although the claimed links remain debated
[33]. Recently an association of ENSO with hospi-
talization of women with viral pneumonia and
influenza was evidenced in the region of Sacramento,
California [14]. Here we examine the association be-
tween the impact of influenza epidemics as measured
by morbidity and mortality indicators in France over
the period 1971–2002, and ENSO oscillations,
together with the contemporaneous prevailing circu-
lating viral subtypes.

Material and methods

Data

We used the records of ENSO oscillations over 1971–
2002 and two independent influenza datasets that
quantified the impact of winter epidemics in France
during the same period.
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The Multivariate El Ninõ Southern Oscillation
monthly Index (MEI) is a measure of ENSO oscil-
lations based on sea-level pressure, zonal and
meridional components of the surface wind, sea sur-
face and air temperature, and cloudiness fraction of
the sky over the tropical Pacific [13]. The MEI is the
unrotated first principal component of the six vari-
ables, where all values are standardized with respect
to the 1950–1993 reference period – positive values
indicate warm ENSO phases and negative values cold
phases. The MEI is available on the internet from the
National Oceanic and Atmospheric Administration,
Climate Diagnosis Center: http://www.cdc.noaa.gov.

We studied influenza morbidity data collected by
the French Sentinel Network, a computerized sur-
veillance system of 1790 voluntary and unpaid gen-
eral practitioners (GP) located throughout the entire
country [34, 35]. Each GP reported on a weekly basis
the number of consultations for 10 conditions,
including Influenza-Like Illnesses (ILI), during 1984–
2002. Spatial and temporal incidence series can be
downloaded without access restriction on sentiweb:
http://www.u444.jussieu.fr/sentiweb.

National mortality data collected from death
certificates were used to assess the extent of influenza-
related mortality each winter in France during 1971–
1997. All French death certificates are coded and
computerized at a unique data center, the Institut
National de la Santé et de la Recherche Médicale,
Service Commun 8. We compiled the number of
underlying pneumonia and influenza (P&I) deaths,
codes 470–474, 480–486 for the 8th revision and 480–
487 for the 9th revision of the International Classifi-
cation of Deaths. Partial time series are available on
the web: http://sc8.vesinet.inserm.fr:1080.

The predominant viral circulating subtypes were
determined for each influenza season by the two
national influenza reference centres for France for
1984–2002 (Laboratoire de Virologie, Université
Claude Bernard, Lyon; Institut Pasteur, Paris; per.
commun.).

Methods

Estimating the morbidity and mortality impact
of influenza epidemics

To define the morbidity impact of the 18 influenza
epidemics spanning 1984–2002, a linear regression
model was fitted to the weekly ILI incidence time
series discarding weeks where influenza incidence
exceeded 300 cases/100,000 population [36]. The
model included a time trend and harmonic coeffi-
cients accounting for seasonality. The model yielded
a baseline non-epidemic level as well as an epidemic
threshold, determined by the upper limit of the 95%
confidence interval. An epidemic was defined when
the observed time series exceeded the threshold, but

only if it exceeded the threshold for more than two
consecutive weeks. The morbidity impact of an
epidemic was the cumulative number of ILI cases
during that epidemic.

A similar approach was used to define epidemic
periods from the weekly P&I mortality time series
over the period 1971–1997. The mortality impact of
an epidemic, or ‘excess mortality’, was the number of
P&I deaths exceeding the seasonal baseline during the
epidemic [6].

Modelling influenza impact with climate
and viral factors

To get an ‘annualized’ climate series, we averaged
MEI values over the months of September to
December preceding each influenza season. We then
compared influenza morbidity and mortality impacts
during cold and warm ENSO conditions, defined by
resp. a negative and positive MEI average.

We tested the correlation between the morbidity
impacts of the 18 influenza seasons under study
(1984/85 to 2001/02) and the MEI annualized climate
time series (September–December 1984 to Septem-
ber–December 2001). To derive a p-value for the
correlation, we generated 1000 permutations of the
morbidity impacts. We computed the correlation of
the 1000 permuted impacts with the original climate
series. This gave the distribution of correlation
coefficients under the null hypothesis of no associa-
tion (no correlation).

An observed (significant) correlation between
influenza morbidity impact and climate could still be
a spurious result due to auto-correlation in these
series. We tested the hypothesis that the 18 epidemics
displayed substantial auto-correlation in their mor-
bidity impact, using the Kolmogoroff–Smirnov test
described by Kulperger and Lockhart [37]. A p-value
for the test was derived by generating 1000 artificial
series by permutation of the morbidity impacts and
calculating the test statistics on the permuted data.
This gave the distribution of the test statistics under
the null hypothesis of no auto-correlation.

Finally, since viral (sub)types are recognized as a
cause of variability of the impact of influenza [6], we
developed a linear regression ‘base model’ to explain
influenza morbidity with the viral (sub)type of the
circulating strain(s). In a second ‘full model’, we
added climate as a covariate, following:

Influenza morbidity impactt ¼ a
_
þ b

€
� strainst

þ c �MEIt þ e
_
t

where impactt is the influenza morbidity impact for
epidemic t (1984/85 £ t £ 2001/02); strainst is a class
variable for the strain (sub)type(s) dominant in epi-
demic t (that can take the value A/H1N1, A/H3N2,
B or any combination of the above); MEIt is the
climate index averaged over September to December
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preceding epidemic t; a, b and c
_
are regression coef-

ficients to be estimated; and e
_
t is iid normally dis-

tributed with mean 0 and variance r, independent
with strainst and MEIt. The improvement in fit of the
full model against the base model was evaluated by
bootstrap [38]. Using the base model, we generated
1000 artificial time series of influenza morbidity im-
pacts by adding a vector of randomized observed
residuals to the vector of predictions. Both the full
and base models were then fitted to the artificial time
series, and the difference in fit (measured by the dif-
ference in r-square, r2) was used to illustrate an
improvement solely due to the larger number of
variables in the full model. The differences in r2 in the
artificial series were compared with the difference in
r2 in the original series to derive a p-value for the
improvement in fit of the climate variable [31].

Results

For the 18 influenza seasons spanning 1984–2002, the
morbidity impact of influenza averaged 2.9 million
(M) cases per season (�5% of the French population,
60 M in 2002), ranging from 0.7 M (�1%) to 4.8 M
(�8%). There was on average 3.7 M cases during the
10 cold phases of ENSO vs. 1.8 M cases during the
8 warm phases (Wilcoxon test, p ¼ 0.001, Figure 1a).
The correlation between influenza morbidity and the
MEI climate index was 0.65 ( p ¼ 0.012, bootstrap
test). We performed a sensitivity analysis to test var-
ious lags between the climate and the influenza mor-
bidity series. The correlation was of the same order of
magnitude when the climate series preceded by 0 to
6 months the morbidity series (correlation coefficient
>0.60). The correlation declined monotonously
down to negative values when the climate series pre-
ceded by more than 6 months, or followed, the mor-
bidity series. No auto-correlation, which could have
induced a spurious association, was detected in the 18
morbidity impacts ( p ¼ 0.25, Kolmogoroff–Smirnov
test).

Influenza mortality impact, measured by P&I
excess mortality over 26 winter seasons spanning
1971–1997, showed a similar pattern of association.
On average in France, 2500 P&I excess deaths oc-
curred per season (range 0–9500). The mortality im-
pact was significantly higher during the 10 seasons
with cold ENSO conditions (mean ± standard error,
3530 ± 654 P&I excess deaths) than during the 16
seasons with warm ENSO (1856 ± 574 P&I excess
deaths) (Wilcoxon test, p ¼ 0.03; Figure 1b).

The ‘base model’, explaining influenza morbidity
impact over 1984–2002 with the dominant viral
(sub)type only, accounted for 25% of the overall
variance. The variance explained by the ‘full model’
including the MEI climate index increased to 61%.
The 1000 bootstrap simulations consistently showed
improvement in fit by the MEI variable (p ¼ 0.003),

indicative of a highly significant climate predictor.
We computed the predicted 95% confidence intervals
for the morbidity impact of the 18 influenza epi-
demics, as given by the full model. With this model,
the observed morbidity impact fell in the expected
confidence interval for 16 of the 18 epidemic seasons.
Note that there was co-circulation of two or more
influenza dominant (sub)types for 5 of the 18 winter
seasons (28%).

Discussion and conclusion

In this work, we found an association between the
mortality and morbidity impact of influenza epi-
demics in France and a global climate index. This
association is reinforced by the fact that it was
retrieved in two markers of influenza activity col-
lected independently. Previously, a separate analysis
conducted in California, USA, also evidenced an
association between ENSO oscillations and hospi-
talizations for influenza and viral pneumonia [14].

Although at present no biological mechanism is
known to explain the role of climate variations in
influenza epidemics, several arguments can be
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Figure 1. (a) Influenza morbidity and climate: Size of
influenza-like-illness (ILI) winter epidemics (mean ±
standard error) during cold and warm climate conditions,
1984–2002, France. (b) Influenza mortality and climate:

Pneumonia and influenza (P&I) winter excess mortality
(mean ± standard error) during cold and warm climate
conditions, 1971–1997, France. Cold (resp. warm) climate

conditions are defined by a negative (resp. positive) multi-
variate El Niño Southern Oscillations Index averaged over
September–December preceding an influenza epidemic.
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proposed. The emergence of new virus variants re-
mains unclear [10] and may be influenced by ENSO
oscillations. During the past inter-pandemic decade,
new epidemic variants were often first isolated in
China, which is considered as the influenza epicenter
both in pandemic and inter-pandemic periods [10,
39]. Indeed, reports establish that ENSO conditions
have a local effect over South-East Asia [13]. More-
over, changes in local conditions may affect respira-
tory virus survival and/or human indoor crowding
and in turn alter the dynamics of virus transmission
[10, 14, 40]. Strong cold ENSO phases have been
associated with lower temperature and higher
humidity in European winters [13], possibly pro-
moting larger and more severe influenza epidemics in
France.
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