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An old elasticity problem in a unilateral setting 
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ABSTRACT 

A limiting case of the Michell problem involving an elastic wedge is the unbounded solid with a 
semi-infinite cut, the tip of which is subjected to a concentrated force. For the limiting case, the classical 
solution leads to overlapping of material whenever the component of the force along the axis of symmetry 
is directed away from the cut, and the problem must be solved anew using unilateral boundary conditions. 
The required mathematics is simple, and the subject is suitable for classroom discussion. Two examples 
are solved explicitly, and additional exercise problems are suggested. 

Introduction 

Elastici ty solutions involving unilateral  b o u n d a r y  condit ions tend to be complicated 

and most  are not  well suited for  c lassroom discussion or  s tudent  exercises. A simple 

si tuat ion illustrating m a n y  aspects of  bounda ry  condit ions with inequalities, and 

part icular ly those associated with frictional slip, evolves, however ,  f rom the Michell 

p rob lem of a wedge  subjected  to a concent ra ted  force at its ver tex [1]. A limiting 

case of  the wedge  is the u n b o u n d e d  solid with a semi-infinite cut  or  crack. The  

simplicity of  this p rob lem in a unilateral  formula t ion  is due  to the fact tha t  it 

contains no characterist ic length independen t  of the applied load P. Consequent ly ,  

since the contact  is receding and therefore  independent  of  the level of the applied 
load [2], it is clear that  the two sides of  the cut  are ei ther  separa ted  or  in contact  

everywhere .  Moreover ,  the two faces must  ei ther  stick or  slip everywhere  in case of  

contact .  

Boundary conditions and form o~ solution 

Consider  the  u n b o u n d e d  solid with a straight semi-infinite cut. The  tip of  the cut  is 
subjected  to a concent ra ted  force o f  magni tud  e P. The  coord ina te  system is placed in 

relat ion to the solid as shown in Fig. 1. 
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Figure 1 
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The quantities entering the boundary conditions on the cut are the normal 
tractions 

N = O-oo(r, ±rr), (1) 

the shearing tractions 

s : o-,o(r, +.,r), (2) 

the gap between the crack faces 

g : uo(r, - T r ) -  Uo(r, 7r), (3) 

and the slip velocity 

d 
v :  Z [~(r, - # ) -  u,(r, 0)]. (4) 

It  should be noted that elasticity problems with friction require that the deformation 
process be followed in time. We refrain, however, from indicating the time depen- 
dence explicitly, unless there is a need to do so. It is assumed in the present 
discussion that the rate at which the applied force changes in magnitude or direction 

is sufficiently small, so that inertia effects can be left out. 
If the faces of the cut are separated, the boundary conditions are 

N = 0, S = 0, (5a,b) 

g > 0. (6) 

The boundary conditions for contact with stick are 

g = 0, V = 0, (7a,b) 

N < 0 ,  IS[<f~ Igl, (8a,b) 

which for contact with slip between the faces 

g = 0 ,  ISl=fk [NI, (9a,b) 

N < 0, sgn S = sgn V, (t0a,b) 

while fs and fk denote respectively the coefficients of static and kinetic friction 

ffk -<fs). 
The  Coulomb law expressed by (8b), (9b) and (10b) makes a distinction between 

static and kinetic friction. It is generally not possible to incorporate this distinction in 
elasticity solutions, and one may have to set fk =f~. The present problem is an 
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exception, because the faces of the cut either stick or slip everywhere. In case the 
distinction between fk and f~ can be maintained, conditions (8b), (9b) and (10b) are 
not enough to derive unique results, and supplementary requirements must be 
injected. Thus it is demanded on physical grounds that the change from slip to stick 
is continuous, whereas a sudden jump in the magnitude (but not sign) of shearing 
stresses is allowed when stick changes to slip. 

The elastic fields suitable for solving the problems considered correspond to the 
Airy stress function 

1{ t U = ~ ArO sin 0 + BrO cos 0 + ~ - - ~  (Cr log r cos 0 + Dr log r sin 0) , 

- T r < 0 < ~ r  (11) 

in which A, B, C and D are coefficients to be determined and the factor ( K -  1)/ 

(K + 1) is included for convenience. The first two of the unknown coefficients follow 
immediately from the requirement  that all closed contours surrounding the origin 
transmit the net force (P cos a, P sin a).  Thus 

A = - P  cos a, B = P sin a. (12) 

Separation versus contact 

Separation 

The boundary conditions (5a,b) yield 

C = D = 0, (13) 

and the gap between the faces of the cut is given by 

21xg = ½P(K - 1) cos a (14) 

where ~ is the shear modulus. The inequality (6) restricts the direction of the 

applied concentrated force to the angles 

-Tr<--a<-~r/2 and -n-/2<o~_<~-. (15) 

Thus the classical solution is valid only if the concentrated force has a negative 
x-component .  

Contact 

The two faces of the cut are in contact for 

- ~ / 2  < a < rr/2. (16) 
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The boundary condition (7a) or (9a) then gives 

C = P cos a,  

and, consequently, 

P K - 1  
N -  cos o~, 

2~-r K + I  

(17) 

(18) 

D K - - 1  
S 27rr K + 1 (19) 

d 
4 ~ V  = (K - 1) -77 (P sin o~ - D) .  

a t  
(20) 

I t  is seen f rom (18) that the inequality (8a) or (10a) is satisfied for all angles a in the 

range given by (16). 

The  remaining free coefficient D must be determined f rom the friction law taking 

into account the change in the applied force with time. 

Force in a fixed direction and with a fluctuating magnitude 

Consider the case when the applied force starts f rom zero, or 

P(O) = 0 (21) 

and acts in a fixed direction. Of interest is only the case with the faces of the cut 

being in contact, and the angle ct can be restricted to the range 

0 <-- a < ~r/2 (22) 

without loss of generality. 

Complete stick 

The boundary condition (7b) together  with (20) gives 

D = P sin ~ (23) 

because the integration constant must vanish on account of (21), (18) and (19). The  
Airy stress function for this case is seen to be identical to that for the unbounded 
solid without the cut [1]. The  inequality (8b) restricts the angle a to 

0 --< tan ol < fs (24) 

for complete stick to take place. 
The  remaining and more  interesting range of a is that of fs < tan 0¢ < oo in which 

slip occurs. We consider in this range a load that at first increases steadily, next is 
allowed to decrease and then increases again, as indicated in Fig. 2. 
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Forward slip upon loading 

The boundary condition (9b) together with (18) and (19) gives 

IDI = Pfk cos (25) 

The choice of negative value for D violates the condition that the directions of 

friction stress and slip velocity be consistent. In contrast, 

D = Pfk cos a (26) 

yields 

S P f k • - i  - -  - -  cos a > O, (27) 
2~-r K + I  

4txV = P(K - 1) cos a ( tan  a - f k )  > 0, (28) 

and (10b) is satisfied as long as lb(t)> 0, or the load is increasing. 

Stick upon unloading 

Suppose that the applied concentrated force, having reached the local maximum 
value P~, starts to decrease. It is anticipated that then the faces of the cut stick. The 

boundary condition (7b) together with (20) gives 

/ )  =/5 sin a, D = P sin a + K. (29a,b) 

The integration constant K must be adjusted.so that there is no jump in stresses as 
the conditions change from forward slip to stick. This means that the value of D 
from (29b) must equal that from (26) for P = P~. Thus 

D = {Plfk - (P1 - P )  tan o~} cos o~. (30) 

The stick condition can endure as long as (8b) is not violated, or 

I Plfk -- (PI - P) tan a l < fsP. (31) 
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For P very near P1, the quantity inside the absolute value signs is positive, and it 
can be deduced that the inequality is satisfied: Hence  the inequality for a decreasing 
load can only be violated when this quantity becomes negative, and it follows that 
stick can persist upon unloading as long as 

tan a - fk (32) 
P >  P2= Pl tan a + f ~ • 

It is interesting to note that, assuming immediate backslip upon unloading, the 
conditions (9b) and (10b) can be satisfied with a value of D that is the negative of 

that given by (26). However,  this value of D gives a jump in stresses, whereas (30) 

yields a continuous change. 

Backslip 

Backslip starts when the magnitude of the applied force falls below the value P2 

given by (32). For P ( t ) <  0, 

D = - P f k  cos a. (33) 

The drop in the friction stress when stick changes to backslip is 

P1 _K - 1 tan a - fk 
AS 2~rr K + 1 (fs - f k )  tan a +fs cos a. (34) 

Stick and subsequent forward slip upon reloading 

Suppose that the load is allowed to drop to P3 < P2, so that backslip is involved, and 
then the force is increased again. At  first, stick sets in, and 

D = {(P - Pa) tan a - Pffk} cos a (35) 

by the same arguments that led to (30). Stick persists as long as 

tan a + fk (36) 
P < P4 = P3 tan a -f~ 

Forward slip starts when P becomes larger than i°4, and 

D = Pfk cos a. (37) 

It is interesting to note that P1 does not appear in the last three relations, which 
means that the previous backslip has erased any dependence on the history of the 
initial forward slip. The implications of this observation for a force fluctuating 
periodically about a certain level are clear: a steady state is reached in less than one 

cycle. 
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Reloading without previous backslip 

Suppose that the applied force P drops below P1, so that stick is established, but is 
subsequently increased before the backslip condition is reached. The constant D for 
the stick phase under increasing load is given by (30), and stick prevails as long as 
(31) is not violated. For increasing load, the inequality becomes critical for a positive 

value of the quantity inside the absolute value signs, and consequently forward slip 

commences again when 

tan a - fk (38) 
P>P1 tan a - f s  " 

For  the forward slip phase, D is given by (26). The drop in the friction stress as stick 
changes to slip is 

P1 K - 1 tan a - f k  (39) 
AS 2~rr K +~l (fs-f~)~an c o s a  a- f~  

which is much larger than going from stick to backslip. 

R o t a t i n g  f o r c e  w i t h  a c o n s t a n t  m a g n i t u d e  

Consider next a rotating force of constant magnitude P0. Although the same 
conclusions can be reached for any monotonically increasing a(t), or ~i( t )>0,  the 
results will be written for uniform rotation, or a =cot. Equations (18) and (19) 

remain in force, and (20) becomes 

4/xV = (K - 1)(Polo cos a - / ) ) .  (40) 

It is enough to consider one revolution as the process obviously repeats itself. 
For -~r--<a <-~r /2 ,  the faces of the cut are separated, but the gap is closed at 

a =-~- /2 .  It is not immediately clear, however, whether the first phase of contact 

involves slip or stick. Assuming slip, 

D = ±Polk cos a 

from (9b), and 

4/zV = Poo)(~ - 1) cos a(1 ±fk tan a).  

(41) 

(42) 

Choosing the positive sign in (41), S > 0  and V < 0 ,  whereas for the negative sign 
S < 0 and V >  0 in the vicinity of a =-~r /2 .  Consequently (10b) cannot be satisfied, 
and the first phase of contact must involve stick. 

Starting with stick, (7b) gives 

D = Po sin a + K, (43) 

and, since S = 0 for a =-~r /2 ,  

D = P0(1 + sin a).  (44) 
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The two faces of the cut can stick as long as (8b) is satisfied, or 

l + s i n  a <f~ cos a. (45) 

This inequality restricts the angle a to 

- 7r/2 < a < a*,  sin a*  - 1 - fff (46a,b) 
l + f f f "  

At  a = a*,  stick changes to slip, and (41) and (42) must  be used. Choosing the 

positive sign in (41), S > 0 ,  and V > 0  if 

1 
tan a > - - -  (47) £k 

The question is, of course, whether  (47) is satisfied for any a > a*.  From (46b) 

tan a*  = - 1 - fff (48) 

and 

1 1 1 l + f f  1 - f ~  
- - _ > - - >  - -  - - -  ( 4 9 )  

fk fs fs 2fs 2fs 

Consequently the signs of S and V are the same for all a > a*.  

The choice of the negative sign in (41) satisfies (10b) for tan a > 1/fk, and it may 

appear  acceptable for sufficiently large f~ such that  ( f2_  1)/2fs > 1/fk. However ,  the 
change f rom stick to slip involves a reversal in sign of the friction stresses, and this 

choice must  be discarded as a possibility. 

Thus in view of the last four relations, it is clear that positive slip starts at a = a*  

and persists up to a = w/2 when the faces of the cut start  to separate.  

C o n d u s i o n  

The following problems are suitable for student exercises: 
1. Force with a constant magnitude P0 and oscillating direction (a = a0 sin ~ot). 

2. Force with a constant x -componen t  Px, and a fluctuating y -componen t  Py 
possibly involving sign reversals. 
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