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Abstract 

In his study of combined finite extension and torsion of a nonlinear, incompressible, isotropic elastic circular 
cylinder, Rivlin [1] established a relation for the torsional stiffness which depends only on the axial force, the 
axial extension ratio and the radius of the undeformed cylinder, in the case of small twist. The relationship 
did not depend on the structure of the stored energy function and is hence a "universal relation". In this 
paper, we extend Rivlin's result to the case of combined extension and torsion of a cylindrical mixture of a 
nonlinear elastic solid and fluid. 

1. Introduction 

In  his study of  the combined finite extension and torsion of a circular cylinder of a 
nonlinear  elastic, incompressible, isotropic material, Rivlin [1] established a striking 
result in the case of  small twist. He  exhibited a relation for the torsional stiffness 
(twisting moment  per angle of twist) which depends only on the axial force, the axial 
extension ratio and the radius of  the undeformed cylinder, and does not  depend on the 
mathematical  structure of  the stored energy function of  the nonlinearly elastic material. 
This relation has been termed a "Universal  Relat ion" because it is the same for all 
nonlinearly elastic, incompressible, isotropic materials. In  this paper  we extend Rivlin's 
result to the case of  combined extension and torsion of a cylindrical mixture of  a 
nonlinearly elastic solid and fluid. 

The first t reatment  of  the problem of combined extension and torsion of  a rubber  
cylinder containing fluid appears to be due to Treloar [2]. In his analysis, the cylinder is 
assumed to be saturated with the fluid. In  addition, the problem is not  treated within 
the context of  mixture theory. The present work differs f rom Treloar 's  [2] in two 
respects. First, the problem is studied within the context of the theory of interacting 
continua. Second, there is no  restriction on the fluid content  of  the mixture, the state of 
the cylinder could range f rom being completely dry to fully saturated. 

In  the present problem, bo th  the solid and fluid constituents are at rest. However,  
the fluid can be nonhomogeneous ly  dispersed throughout  the mixture region, which 
gives rise to concentra t ion gradients. The physical mechanism for the existence of  such 
gradients is provided by  the presence of  a diffusive b o d y  force which each consti tuent  
exerts on the other. However,  when the twisting is small, it is found that the fluid is 
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dispersed uniformly throughout the mixture (cf. Gandhi, Rajagopal and Wineman [3]). 
A brief review of the notations and basic equations relevant to a mixture of 

interacting continua is provided in Section 2. The general problem of torsion super- 
posed on finite extension is formulated and discussed within the context of mixture 
theory in Section 3. The problem of a "small" twist superposed on a finite extension is 
studied in detail in the final section. 

2. Preliminaries 

In this section, we provide a brief discussion of the basic balance laws and their 
consequences which is pertinent to mixture theory. A detailed exposition of the same 
can be found in Bowen [4] and Atkin and Craine [5]. 

A mixture of two continua, a solid S 1 and a fluid $2, which are in motion relative to 
one another is considered. Let 

x = x I ( X ,  t) and Y=x2(Y ,  t) (1)1.2 

denote the motion of the solid and fluid, respectively. Also, let u, jr and v, g denote 
the velocity and acceleration vectors of S 1 and S 2, respectively. 

The deformation gradient tensor for the solid $1 is given by 

aXl (2) 
F= aX" 

Let Pl and P2 denote the densities of S 1 and S 2 at time t, measured per unit volume of 
the mixture. The mean velocity of the mixture and the total density of the mixture are 
then defined by 

p w  = pllg + p2 v,  P = Pl + P2" (3)1,2 

The appropriate form for the balance of mass for the solid and fluid are 

Pl det F = P l 0 '  (4) 

0p___~2 + div(p2v) = O, (5) 
~t 

where Pl0 is the mass density of the solid before forming the mixture. 
Let o and rr denote the partial stress tensors for $1 and $2, respectively. Let b 

denote the diffusive body force. In the absence of external body forces, the equations of 
motion for $1 and $2 are 

div o - b = Pa jr, (6) 

div ~r + b = P2g, (7) 

and 

o+rr=or +rJ. (8) 
Finally, we discuss briefly the constraint which is introduced on the motion of the 

mixture in virtue of the assumption that both the solid S 1 and the fluid S 2 are 
incompressible in their unmixed reference configuration. If the solid S 1 and the fluid S z 
have constant densities P10 and P20 and volume V 1 and V 2, respectively, in their 
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reference configuration and if one further assumes that the volume of the mixture is 
always constrained to be V 1 + V2, then (cf. Mills [6]), it can be shown that 

P__!I + P2 ~ 1. (9) 
Plo P2o 

We shall assume that the mixture under consideration obeys the constraint expressed 
by (9). 

3. Problem 

Let us consider a solid circular cylinder whose dimensions in the reference configura- 
tion are given by a radius R 0 and a length L o. We shall denote the co-ordinates of a 
material particle in the reference configuration in a cylindrical co-ordinate system by 
(R, 0,  Z). We shall assume that the cylinder is subject to the following deformation 

r = r ( R ) ,  (10)~ 

0 = 0 + ~XZ, (10)2 

and 

z --- x z ,  (10)3 

where (r,/9, z) denote the co-ordinates of the particle at (R, O, Z)  at the current 
instant, h and ~k being constants. The above deformation corresponds to a finite 
elongation (with an associated stretch ratio ~) along the z-co-ordinate direction, 
followed by a rotation of ~ per unit current length. 

The Cauchy-Green strain tensor B which is defined as 

B = F F  r (11) 

takes the following form for the above deformation: 

d R ]  0 0 

B =  0 (R)2+(q~)~r)2  q/h2r , (12) 

0 ~X2r X 2 J 

where h~ = 
respectively. The principal invariants of B are then given as 

~1 = 15 + x~(1+  CR2X2) + 12, 

I2 = Xz(x2~ + kay)+ X2aX2~(1 + ~2RZX2), 

/ ,  = x~x~x ~ . 

0 0 

0 X~+(~RXX~) 2 ¢X2X0R,  (13) 

0 ~2~k0R ~k 2 

d r / d R  and ~'0 = r / R  denote the stretch ratios in the r and 0 directions, 

(14) 

(15) 

(16) 
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We shall find it useful to express the balance of mass equation (for the solid 
constituent) in terms of the stretch ratios. Thus (4) can be expressed as 

0 , _  1 (17) 
Pl0 ~kr)kO)k - -  Us, 

where v, represents the volume fraction of the solid. 
We now proceed to document the equations of equilibrium which are appropriate 

for the deformation being considered. Since the assumed form of deformation implies 
that the stresses depend only on the r co-ordinate, the equations of equilibrium for the 
solid constituent, namely (4), reduces to 

d% O r r -  O00 
4 - - -  b~=O, (18) 

dr  r 

where % and %o denote the appropriate components of o and b r the component of the 
diffusive body force b in the radial direction. The equilibrium equation for the fluid 
constituent, namely (5), reduces to 

d~rrr effrr - -  tlrO0 
+ - -  + b~ = O, (19) 

dr  r 

where "B'rr and %o denote the components of ~r. If T denotes the total stress tensor, i.e., 

T = a + ~ ' ,  

then (18) and (19) imply that 

dTrr Trr- Too 
d~- + - -  = 0, (20) 

r 

which is the equation of equilibrium for the mixture. 
We shall assume that the solid-fluid mixture is such that its specific Helmholtz free 

energy function has the following constitutive structure (cf. [7]) 

A 02). 

Under the assumption of isotropy and material frame indifference, the free energy 
function A can be written in terms of an integrity basis for B as 

A = ~z~(I1, Iz, 13, P2). (21) 

It follows from equations (4), (9) (16) that 

( / 3 )  - 1 / 2  = 1 - P__L, 
P20 

and thus A reduces to 

A =A( I , ,  I2, Oz-). (22) 

The above constitutive assumption seems to be an appropriate one for a mixture of a 
nonlinearly elastic material like rubber in a solvent (cf. Treloar [8]). The restriction 
imposed by thermodynamics and the reductions which can be achieved for the forms of 
the constitutive relations for the stresses have been studied in detail in [7]. We provide 
below the results obtained therein. 

The constitutive relation involving the partial stress components for the solid and 
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fluid constituents are given, respectively, by 

Pl 
oij= ( O-P-~lO )~ij + 2p { ( A1+ A211)Bij- A2BikBkj } 

and 

(23) 

( = -p+ppz-~p 2 6 i j+2p((A l+Af l l )B i j -AzBikBk j  ). (27) 

For the deformation under consideration, it follows from (13) and equations 
(25)-(27) that 

0---!-1 + 2p(A 1 + A211)~2r _ 2p(A2)~4, (28) Orr ~ ~ -- P P10 

Pl 2p(A 1 +Azla)X2(1 + +2R2X2 ) % o = q, - p--~m + 

_ 2pA2 { X4(1 + ~2R2)k 2)2 q- ip2RZ)k4)k40 }, (29) 

azz = q' - P  Pl--~Ol + 2o(A 1 + AzI1)X2_ 2pA2{ ~4(1 + ~2R2XZ0) } , (30) 

Ooz= 2p(A 1 "t- A211)~R)to X2 - 2pA2{ ~bR)to)t2 [ (1 + qj2R2)t2))t2 + X21} 

=20+R{(AI+A211)X2Xo-A2[X2Xo((I++2R X )g+X )] }, (31) 

P2 4- ppz-~p 2 (32) ~% = % 0  = ~rz~  = - P  P2"~ 

The expression for the diffusive body force is quite complicated and for the purposes of 
our analysis here it is sufficient to realize that the diffusive body force takes the 

( P'-!2--pp2~p2)Sij. (24) ~rij= - 0 - P & o  

The constitutive relation for the components of the diffusive body force is given by 

0 ,  p 0p, 0A 202 p2((A1 +A211)8, k_A2B,k ) OB,k (25) 
bi Oxi Pl00Xi F P~P2 ~Xi OXi ' 

where 8q denotes the Kronecker delta and A i, i = 1, 2 is defined through 

0A 
A i= 0--~i, i =  1, 2. (26) 

The scalar p is due to the constraint of volume additivity. The scalar 0 was introduced 
into the theory by Green and Naghdi [9] for thermodynamic considerations. As can be 
seen from equations (6), (7) and (8) 0 drops out of the field equations. It is only of 
interest if partial stresses are to be calculated. Since this is not of interest in the present 
problem, we drop reference to it without loss of generality. Finally, the constitutive 
relation for the total stress takes the form 
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following form: 

d 
b~= -p~r(pl/pao ) q-g(hr, ~kO, R, X'~, X'o, X, +2), (33) 

where the prime denotes differentiation with respect to the variable R. 
It follows from equations (14)-(16) and (28)-(31) that the components of the stress 

o have the following forms: 

Pa +f/i(Xr, X0 ' X, +2R2), no sum on i, (34) Oii  ~ - -  - - p  Plo 
and 

%z =  RI0z(Xr, X0,  2R2). (35) 
Also, the components of the total stress for the mixture T have the following forms: 

Tii= --p"khii(~kr, X0, ~k, ~2R2), nosumon  i, (36) 

and 

Toz=~pRho~(X~, X0, X, q~2R2). (37) 

The equilibrium equation for the solid (18) can then be re-written in the form 

d (£~-f~0)  R + 
d-'7 { -  O--'LP+fr~} q P~r(~m)  

+g(X,,  h 0, R, X',, X~, X, ~k2R2) = 0. (38) 

Thus 

dp Pl + ga(Xr, X 0, R, X' r, X;, h, +2R2)= 0. (39) 
dR P10 

The equation governing the equilibrium of the mixture takes the form 

dp _ dhr~ h ~ -  hoo 
- -  + - - ,  ( 4 0 )  

dr dr  r 

which is of the form 

dp 
dR +gz(X~' h°' R, X'r, X o, X, +2R2)=0. (41) 

Equations (39) and (41) are two highly nonlinear second order ordinary differential 
equations for r(R) and p(R). One boundary condition arises from the assumption that 
the lateral surface of the deformed cylinder is traction free. This requires that the radial 
component of the total stress vanishes, i.e. Tee(R0)= 0. The choice of a second 
boundary condition is unclear. For example, there is almost no physical guidance for 
specifying boundary conditions on the partial stress components. However, for the 
purposes of this work, which is the determination of a "universal relation", the 
boundary condition that T~(Ro)= 0 is adequate. 

Once r(R) and p(R) have been found, the partial and total stress components can 
be determined. Thus, the twisting moment M, and the axial force F are given by the 
formulae 

M z = 2~rfor°r2To,dr = 2~&fo°RrZhozdr (42) 
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and 

F= 2~r for°Tzzrdr = 2~f for°r(-p + hzz)dr, (43) 

where r 0 is the outer radius of the cylinder in the deformed swollen state. 
Since the extent of swelling is not known and thus r 0 is not known a priori, it would 

be convenient to express the moment M~ and the axial force F in terms of integrals 
over the known reference configuration. Thus, we can express (42) and (43) as 

M~ = 2~+ fR°)~r2t2oho, R3dR (44) 
Jo 

and 

R o 

F= 2rr fo ?t,.Xo(-p + hzz)RdR. (45) 

4. Small twist superposed on finite extension 

In this section we consider the case when a small twist is superposed on a finite 
extension. Thus we shall assume that + << 1 and that we can expand the relevant 
quantities in a Taylor series expansion in +. Note that in equations (39) and (41), gl 
and g2 depend on +2. The solutions to (39) and (41) will be of the forms 

r=r(R,  +2), p=p(R ,  +2). (46)1, 2 

Thus we can express r and p by their Taylor series expansions as 

r = ~(R)  + O(+2) ,  (47) 

p =~b(R) + O(+2) .  (48) 

Similarly one can expand ~r and ~0 in terms of Taylor series expansions in +2 and the 
Cauchy-Green strain tensor (13) now takes on the form 

[ir0 0 
B= ~kze +X2XoR + O(+2)-= B + O(+2) ,  (49) 

•X2XoR X 2 

where 

L = Xr(R, 0) 

and 

X o = Xo(R, 0). 

Likewise, the principal invariants/1,  I 2 and I 3 and the densities Oa, P2 and P can be 
expanded to be 

/1 = X~r + X~ + X2 = X~ + X~ + V + O ( + 2 ) - - i l  + O(+2) ,  (50) 

1 2 = X2rX~ + h2X~ + X2X20 = ~k~k20 + X2~k2 r + )k2~20 + O( +2 ) 
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=i2+o(+2), 
13 = x2,x v = x 2 r x 2 v  + + + 

Pl = Pl + 0 ( + 2 ) ,  t02 = P2 + 0 ( + 2 ) ,  

(51) 

(52) 

(53),,2 

(53)3 

lbl 1 fi._L = (1-  fi_2_1) (54)1, 2 
OlO XrXOX' 020 P20 ' 

= P1 + P2" (54)3 

Thus, the normal components of the partial and total stress may now be expressed as 

P1 ^+~i(~kr, ~kO, ~)_t_O(+2), n o s u n o n  i, (55) Oil pl---oP 
rii= - P  + hii(}tr, }to, ~k) + 0 ( +  2 ) no sum on i. (56) 

The diffusive body force b may be expressed as 

^ d f/31 lX + ^' X ) +  X'. xo, b, = - P - ~  l -~m ] r g ( }t r , }tO, R ,  0 ( + 2 ) .  (57) 

The equilibrium equations for the solid and the mixture now take the forms 

dlb bl 
"~ gl(Xr,  }t0, R,  }ttr, ~k~, ~k)- t-0(+ 2) = 0, (58)l 

dR Pa0 

dp  ^ 
d---~ + ~2(}t~, }t 0, R,  }ttr, ~ktO, ?k)-t-O(+2) ~--- 0. (58)2 

We now proceed to show that the equations (58)1 and (58)2 in which terms of O(+ a) 
are ignored govern the basic finite uniaxial extension problem wherein the solution is 
homogeneous, i.e., 

}t~ = constant, }to = constant. 

Since we shall assume that the material is isotropic 

}tr = }tO = constant. (59) 

It follows from (54) that the densities ibl, 02 and t5 are constant. Moreover, it follows 
from the definitions of ~i and h ,  that 

)~i = constant, 

h ,  = constant, 

and 

£r=J~0 and h , r=hoo-  

The diffusive body force b vanishes since the gradients of the densities and strain 
tensor components in (25) now vanish. It follows from equations (38), (40), (58)1 and 
(58)2 and the definitions of the functions gl and g2, that 

gl = O, (60)1 

52 = 0, (60)2 
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and 

dp 
dR = O. (60)3 

It then follows from (36), (60) and the boundary condition on the lateral surface, 
Trr = 0, that 

]~,r ( ) , r , ) t  0, X ) = p ( R ) =  constant. (61) 

Finally, from (13) and (59), the deformation is found to be 

r = ~(R)  = )`R, (62) 

where 

)`= )`r= )̀ O (63) 

is a constant. In the absence of a second boundary condition, ), remains arbitrary. 
Hence, the equations (58)1 and (58)2 in which terms of O(q~ 2) are ignored, govern the 
homogeneous finite uniaxial extension problem. Thus the general problem of combined 
uniaxial tension followed by small twist decouples into a uniaxial tension problem in 
which the deformation is homogeneous and a torsion problem in which the twisting is 
small. 

We conclude our analysis by deriving a "universal relation" between the twisting 
moment and axial force under the assumption of small twist. 

The expressions for the twisting moment M z and axial force F in (42) and (43) 
become 

R ^2 
Mz = 2~r~b fo °^2`r2`ohoz()`r, )`0, 2`, 0) R3dR + O(~ 2) (64) 

and 
R~ ^ 

F=2qr fo  2`r2`o[-P(R)-khzz()`r, )`o, 2`, 0 ) ] R d R +  0 ( ~ 2 ) .  (65) 

It follows from (50)-(52), (61)-(66), and the definitions of 2`r, 2`0, hoz, hzx and hrr 
that 

Mz= { ~rR4tb2`2)`4(.~ 1 + A z V ) )  ~ + O(~  2) (66) 

and 

F =  2~rR~)`ztb (.~1 +-~2)`2) (2` 2 - )`2) + O(+2) ,  (67) 

where 

By (66) and (67), 

lim MJq~ _ R 2 2`2)`2 (68) 
~-,0 F 2 2,2-) ,  2. 

Equation (68) expresses a relationship between M~ and F which is independent of 
the particular form of the specific Helmholtz free energy A and can hence be called a 
"universal relation". It is valid for all states in which the elastic solid is swollen with 
fluid. In the absence of fluid, P2 = 0, and thus by (9), (17), and (63), 2`),2 = 1. 
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In  this case, one obtains  f rom (68) that  

l im MJ~p =--R2[ )k 2 ] (69) 
+-~0 F 2 [ h 3 - 1 J '  

which is the classical expression established by  Rivlin [1]. 
We provide  below al ternate forms for the "un iversa l  re la t ion" (68) in terms of other 

pa ramete rs  which are of  physical  interest: 

Volume fraction of the solid 

lim MJq~ = R2o X2 ," (70) 
¢-,o F 2 )t3vs--1 

Solid density 

l im Mz/q~ = R2° 
+-~0 F 2 

X2 

X3pl/PlO - 1 ' 
(71) 

Fluid density 

l im MJ+= R___~ X 2 (72) 
q~--,o F 2 X3(1 _ P2/02o) - 1 

N o t e  that  if the cylinder undergoes free expansion when it swells with fluid, i sot ropy 
of the mater ial  implies )~R = ~0 = X. Then  X = X and the axial force F =  0 by  (67). 
Thus,  the "un iversa l  relat ion" (68) is defined only when X ~ ~, in which case F :~ 0. 
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