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Abstract. The classical formulation of the 'homogeneous' problem of a curved bar loaded only by 
an end force involves the assumption of an appropriate stress function with four arbitrary 
constants and the determination of these constants from the boundary conditions. Since there are 
five boundary conditions, four on the curved edge and one at the end, the solution is only possible 
because the coefficient matrix of the resulting algebraic equations is singular. This in turn means 
that certain inhomogeneous problems in which the curved edges are loaded by sinusoidally 
varying tractions cannot be solved using apparently appropriate stress functions. 

Additional stress functions which resolve this difficulty are introduced and an example problem 
is solved, which exhibits qualitatively different behavior from that in more general cases of 
loading. The problem is then reconsidered as a limiting case of sinusoidal loading of arbitrary 
wavelength. It is shown that the solution of the latter problem appears to become unbounded as 
the special case is approached, but that when the end conditions have been correctly satisfied by 
superposing an appropriate multiple of the end-loaded solution, the limit can be approached 
regularly and the correct special solution is recovered. The limiting process reveals a general 
procedure for determining the additional stress functions required for the special case. 

Similar relationships between homogeneous and inhomogeneous solutions for other common 
geometries are discussed. 

1. The curved bar problem 

F i g u r e  1 shows  a c lass ical  p r o b l e m  in t w o - d i m e n s i o n a l  l inear  elast ici ty.  A c u r v e d  

bar ,  de f ined  in p o l a r  c o o r d i n a t e s  by a < r < b, 0 < 0 < 1r/2 is bu i l t  in a t  the  end  

0 = ~ / 2  a n d  l o a d e d  by a shear  fo rce  F at  0 = 0, the  c u r v e d  b o u n d a r i e s  r = a, b 

be ing  t r ac t ion- f ree .  

M o s t  t e x t b o o k s  fo l l ow  T i m o s h e n k o  and  G o o d i e r  [1] in a r g u i n g  semi-  

inverse ly  tha t  the  b e n d i n g  m o m e n t  will  va ry  wi th  sin(0) a n d  hence  l o o k  fo r  an  

A i r y  stress f u n c t i o n  o f  the  f o r m  tp - - f ( r )  sin(0), the  a p p r o p r i a t e  f u n c t i o n  1 be ing  

c~ = {Ar 3 + Br - - 1  .71_ Cr log(r)  + Dr} sin(0). (1) 

1 The expression log(r) is strictly not meaningful if r is a linear dimension. However, it is always 
found in such cases that the final expressions for the stresses can be grouped so as to avoid this 
difficulty (see for example [1], Art 29). Alternatively, we can interpret the quantities r, a, b as 
denoting the dimensionless ratios r/L, a/L, b/L between the actual dimensions and a suitable 
length, L, in which case the problem does not arise. Similar considerations apply to the expression 
r ~ in Section 3 below. 
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Fig. 1. The 'homogeneous' problem of a curved bar with an end load. 

We note, incidentally, that one of the terms in (1) is trivial in the sense that 
it defines a null stress field so that it might be more rational to seek a function 
q~ such that the stresses vary with sin(0), the appropriate function being 

q~ = {Ar3+ B r - l +  Cr log(r)} sin(0) + DrO cos(0). (2) 

However, this minor modification does not significantly affect the argument. 
The stress components derived from (2) are 

art = {2Ar - 2Br -3 + Cr -1 - 2Dr-1}  sin(0), 

aro = { -  2Ar + 2Br -3 - Cr -1} cos(0), (3) 

aoo = {6Ar + 2Br -3 + Cr -1} sin(0), 

and we can now determine the constants A, B, C, D by imposing the boundary 
conditions 

arr  : 0 ,  r = a ,  b, (4) 

ffro=O, r = a ,  b, 



and 

f a ~ o d r = F ,  0 = 0 .  

Conditions (4) lead to the set of equations 

2Aa - 2B/a  3 + C/a  - 2D/a  = O, 

2Ab - 2Bib  3 + C/b - 2D/b = O, 

2Aa - 2B/a  3 + C/a = O, 

2Ab - 2B/b  3 + C/b = O, 

and the final solution is obtained as 

A = F/2N,  B = - F a 2 b 2 / 2 N ,  

where 

N = (a 2 - b 2) + (a 2 + b 2) log(b/a). 
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(5) 

(6) 

C =  - F ( a  z + b 2 ) / N ,  D = 0 ,  (7) 

(8) 

The more intelligent graduate students are wont to inquire at this point how 
it is that we are able to satisfy five conditions with only four independent 
solutions. Clearly the four linear algebraic equations (6) are not linearly 
independent, though none of the textbook treatments of  this problem remark 
on the fact, nor do they address the question 'Is it just luck that this is the case 
and that the problem therefore has a solution of  the assumed form, or should 
we have expected the equations derived from conditions (4) not to be linearly 
independent?' 

2. The inhomogeneous problem 

The fact that the equations (6) are not linearly independent implies that the 
matrix of  coefficients is singular and this in turn means that we shall get into 
difficulties with the corresponding inhornogeneous problem in which one or 
more of the boundary conditions (4) is replaced by one involving a traction of 
the appropriate form. 
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Ssin (e) 

Fig. 2. The inhomogeneous problem; sinusoidally varying function, but no end load. 

For  example, the problem of Fig. 2 has the boundary conditions 

17rr ~ O~ r ~ a m 

art = S sin(0), r = b, (9) 

arO : O, r : a, b, 

and 

a~O'rO dr = 0 ,  0 =0 .  (10) 

The form of the only non-zero traction in (9) leads us to expect stresses of  
the form of equation (3), but the substitution of  (3) into (9) will give a set of  
equations identical to (6) except that the right hand side of  the second 
equation is replaced by S. 
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Since the matrix of  coefficients of  these equations is singular, the equations 

cannot be solved and hence there does not exist a solution to the problem of 

Fig. 2 of  the assumed form. 
In such cases, we must seek a special solution in which the dependence of  

the stress field on 0 differs from that in the boundary conditions. Such special 
solutions are well-known for other geometries. For example, the wedge loaded 
by uniform tractions on its faces has a solution with stresses independent of  
distance from the apex except  for two special values of  the wedge angle. One 
of  these is the case of  the half-plane (a wedge of  180 degrees) loaded by a 
uniform shear traction on one side of  the origin, for which we use the special 
stress function {r 2 log(r) cos(20) - r20 sin(20)}, leading to logarithmic varia- 

tion of  stresses with r. 
For  the curved bar problem, we can generate a suitable special solution by 

expressing the original function (2) in complex variable form and then 

multiplying it by log(z). Thus, (2) consists of  a linear combination of  the 
terms Im{~z2; z 1; z log(z); ~ log(z)}, so we generate a new biharmonic func- 
tion from the terms Im{2z 2 log(z); z-1 log(z);z( log(z))2;  ~(log(z))2} which can 

be written in the form 

4) = A ' { r  3 log(r) sin(O) + r30 sin(O)} + B'{O cos(O) - l o g ( r )  sin(O) }/r 

+ C'r  log(r)O cos(O) + D'{ r  log2(r) sin(O) - rO 2 sin(O)}. ( l l)  

The corresponding stress components are 

arr = {2A 'r  - - 2 B ' r  3 + C , r - 1  _ 4D,r -1}O cos(O) 

+ {2A'r log(r) - A ' r  + 2 B ' r - 3  log(r) - 3B'r  -3 

- 2C'r  - 1 log(r) + 2D'r  -1 log(r) -- 2D'r  - i} sin(0), (12) 

{TrO = {2A ' r  -- 2B ' r  -3 + C 'r -~}O sin(O) + { - 2 A ' r  log(r) - 3A ' r  

- 2B'r - 3 log(r) + 3B'r - 3 _ C'r  - l _ 2D'r  i log(r) } cos(0), (13) 

aoo = {6A 'r  + 2B ' r  -3 + C ' r -1}O cos(0) + {6A'r log(r) + 5A'r 

- 2 B ' r -  3 log(r) + 3 B ' r - 3  + 2D'r  1 log(r) + 2 D ' r - l }  sin(0). (14) 

Notice in particular that these expressions contain some terms of the 
required form for the problem of  Fig. 2, but they also contain terms with 
multipliers of  the form 0 cos(0), 0 sin(0), which are inappropriate. We there- 
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fore get four homogeneous equations for the coefficients A', B', C', D '  from 
the requirement that these inappropriate terms should vanish in the compo- 
nents art, Go on the boundaries r = a, b. i.e. 

2 A '  a - 2 B ' / a  3 + C ' / a  - 4 D ' / a  = 0 

2 A ' b  - 2 B ' / b  3 + C ' / b  - 4 D ' / b  = 0 

2 A ' a  - 2 B ' / a  3 + C ' / a  = 0 

(15) 

2 A ' b  - 2 B ' / b  3 + C ' / b  = 0 

Clearly these equations are identical with (6) and are not linearly indepen- 
dent. There is therefore a non-trivial solution to (15), which leaves us with a 
stress function which can supplement that of equation (2) to make the 
problem well-posed. From here on, the solution is algebraically complicated 
but routine. Adding the two stress functions (2, 11), we obtain a function with 
8 unknown constants, which is required to satisfy 9 boundary conditions, 
comprising (i) equations (15), (ii) equations (6) modified to include sin(0), 
cos(0) terms from equations (12, 13) respectively and (iii) equation (10). Since 
two of equations (15) are not independent, the system reduces to a set of 8 
equations for 8 constants, whose solution is 

A ' = S b / 4 N ;  B ' = - S a 2 b 3 / 4 N ;  C ' = - S b ( a 2 + b 2 ) / 2 N ;  D ' = 0 ;  

A = 8 ~  2 [2(b 2 - a 2) + (3a 2 + b 2) log(b) + (3b z + a 2) log(a) 

- 2{a 2 log(a) + b 2 log(b)} log(b/a)/  

S a 2 b  3 _ 
B = ~ [ -2 (b  2 - a 2) + (3b 2 + a 2) log(b) - (3a 2 + b 2) log(a) 

- 2{a 2 log(b) + b 2 log(a)} log(b/a)] 

(16) 

C _ S b  
- - ~  [2(b 4 + a 4) log(b/a)  - (b4 - a4)] 

Sb  b2 D = - ~ [ (  - a 2) + 2(b 2 + a 2) log(a)/ 
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Of course, it is not fortuitous that the stress function (11) leads to a set of 

equations (15) identical with (6). When we differentiate the function 

f ( z ,  f) log(z) by parts to determine the stresses, the extra multiplier log(z) is 
only preserved in those terms where it is not differentiated and hence in which 
all the differential operations are performed onf (z ,  ~). But these operations on 
f ( z ,  z-) are precisely those leading to the stresses in the original solution and 
hence to equations (6). The reader will notice a parallel here with the 
procedure for determining the general solution of  a differential equation with 
repeated differential multipliers. 

3. The near-singular problem 

Suppose we next consider a more general version of the problem of  Fig. 2 in 

which the inhomogeneous boundary condition (9) is replaced by 

art = S sin(A0), r = b, (17) 

where 2 is a constant. In the special case where 2 = 1, this problem reduces to 
that of  Section 2. For  all other values (excluding 2 = 0), we can use the stress 
function 

~b = {Ar ~+2 + Br ~ + Cr -~ + Dr -~+ 2} sin(20) (18) 

with stress components 

G, = - {A(2 - 2)(2 + 1)r ~" + B2(2 - 1)r ~- z + (72(2 + 1 ) r -~ -  2 

+ D(2 + 2)(2 - l)r -~} sin(20), 

Go = { -A2(2  + 1)r ) ' -  B2(2 - 1)r)'-2 + C2(2 + 1)r -~ -2  

+ D2(2 - 1)r ~'} cos(20), 

ao0 = {A(2 + 1)(2 + 2)rZ+/ /2(2 -- 1)r ~-2 + C2(2 + 1)r z -2  

(19) 

+ D(2 -- 1)(2 - 2)r-~} sin(20). 
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The boundary  condit ions on the curved edges lead to the four  equations 

A ( 2 - 2 ) ( 2 + l ) a  2 + B 2 ( 2 - 1 ) a  2 2 + C 2 ( 2 + 1 ) a  2 -2  

+ D(2 + 2)(2 - 1)a -~ = 0, 

A(2 - 2 ) ( 2  + 1)b2 + B2(2 - 1)b 2 2 +  (72(2 + 1)b - 2 - 2  

(20) 

+ D(2 + 2)(2 - 1)b - 2 = _ S, 

- A 2 ( 2  + 1)a 2 - B2(2 - l)a 2 -  2 + (72(2 + 1)a -a  - 2 . .~  D2(2 - 1)a -~ = 0, 

- A 2 ( 2  + 1)b 2 - B2(2 - 1)b 2 2 .q_ (72(2 + 1)b -a  -2  + D2(2 - 1)b -2 = 0, 

which have the solution 

Sb 2 
a [(2 + 1) f (2)  - 2b 2f(2 - 1)1, 

2(2 + 1)M 

- S b  ~ 
s = [ 2 f O  + l )  - (it - 1)b 2/( i t ) i ,  

2(it - I ) M  
(21) 

_ S a 2 2 b 2  + 2 
C [2b22 - 2f(1) +f( i t )] ,  

2(2 + 1)M 

S 22 - 2 h " 

D - 2(2 - 1 ~  [it622f(1) + a 2f(it)], 

where 

M = it2f(it - 1)f(it + 1) - (22 - 1)f(it) 2, (22) 

f ( p )  = b 2p - a 2p. (23) 

On casual inspection, it seems that this problem behaves rather remarkably  

as 2 passes through unity. The stress field is sinusoidal for all it # 1 and 

increases wi thout  limit as 2 approaches unity f rom either side, since M = 0 

when it = 1. (Notice that  an additional singularity is introduced through the 
factor  (it - 1) in the denomina tor  o f  the coefficients B, D.) However,  when it 

is exactly equal to unity, the problem has the bounded  solution derived in 

Section 2, in which the stress field is not  sinusoidal. 
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However, we shall demonstrate that solution is not as discontinuous as it 
looks. The stress field obtained by substituting (21) into (18) is not a complete 
solution to the problem since the end condition (10) is not satisfied. The 
solution from (18) will generally involve a non-zero force on the end, given by 

F = O'ro dr 

To restore the no-traction condition on the end (in the weak sense of zero 
force resultant), we must subtract the solution of the homogeneous problem 
of Section 1, with F given by (24). The final solution therefore involves the 
superposition of the stress functions (2) and (18). As 2 approaches unity, both 
components of the solution increase without limit, since (24) contains the 
singular terms (21) but they also tend to assume the same form since, for 
example, r 2+;" sin(20) approaches r 3 sin(O). In the limit, the corresponding 
term takes the form 

lim Al (2)r 2 + ~ sin(20) - A 2 ( J , ) r  3 sin(0) 
;. ~ 1 M(2) 

(25) 

where 

S b  ~. 
A,(2) 2(2 + 1~ [(2 + 1)f(2) - 262f(2 - 1), (26) 

F(2)M(2) 
A2(2) 2N (27) 

Setting 2 = 1 in equations (26, 27), we find 

Sb2(b  2 _ a 2) 
A,(1) = A2(1) - 2 (28) 

The zero in M(2) is therefore cancelled and (25) has a bounded limit which 
can be recovered by using L'Hopital 's rule. The resulting algebra is routine 
but lengthy and will not be reproduced here, but it is clear that in addition to 
a term proportional to r 3 sin(0), the differentiation of the numerator in (25) 
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will generate a term proportional to 

r 2 + ~ sin(20) = r 2 + ~{log(r) sin()~0) + 0 cos(20) }, 
62 

(29) 

which in the limit 2 = 1 reduces to r3{log(r) sin(P) + 0 cos(0)}. The coefficient 
of this term will be 

A1(1) 
A ~ - 

M'(1) 

Sb (30) 
4N 

agreeing with the corresponding coefficient A'  in the special solution of 
Section 2 (see equations (16)). 

A similar limiting process yields the form and coefficients of the remaining 
7 stress functions in the solution of Section 2. In particular, we note that the 
coefficients B, D in equations (21) have a second singular term in the 
denominator, and hence L'Hopital's rule has to be applied twice, leading to 
stress functions of the form of the last two terms in equation (11). 

Thus, we find that the solution to the more general problem of equation 
(17) includes that of Section 2 as a limiting case, and there are no values of 
2 for which the stress field is singular. The limiting process also shows us a 
more general way of obtaining the special stress functions required for the 
problem of Section 2. We simply take the stress function (18), which degener- 
ates when 2 = 1, and differentiate it with respect to the parameter 2. Since the 
last two terms of (2) are already of this differential form, a second differenti- 
ation is required to generate the last two terms of (11). 

4. Some general considerations 

Similar examples could be found for other geometries in the two-dimensional 
theory of elasticity. To fix ideas, suppose we consider the body a < ~ < b, 
c < r /<  d in the general system of curvilinear coordinates ~, r/. In general we 
might anticipate a class of separated variable solutions of the form 

=f~(¢)ga(q), (31) 

where 2 is a parameter. An important physical problem is that in which the 
boundaries r /=  c, d are traction free and the tractions on the remaining 
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boundaries have a non-zero force or moment resultant. In such cases, we can 
generally use dimensional and/or equilibrium arguments to determine the 
form of the stress variation in the ~ direction and hence the appropriate 
function f~'(¢). The biharmonic equation will then reduce to a fourth order 
ordinary differential equation for g*(q), with four linearly independent solu- 
tions. Enforcement of the traction free boundary conditions will give a set of 
four homogeneous equations for the unknown multipliers of these four 
solutions. 

If the solution is to be possible, the equations must have a non-trivial 
solution, implying that the matrix of coefficients is singular. It therefore 
follows that the corresponding inhomogeneous problem cannot be solved by 
the stress function of equation (31) if the tractions on t / =  c, d vary withf*(¢)  
- i.e. in the same way as the stresses in the homogeneous (end loaded) 
problem. However, special stress functions appropriate to this limiting case 
can be obtained by differentiating (31) with respect to the parameter 2. 

The special solution for 2 = 2" is not qualitatively different from that at 
more general values of 2, but appears as a regular limit once appropriate 

boundary conditions are imposed on the edges ~ = a, b. 

Other simple examples in the two-dimensional theory of elasticity include 
the curved bar in bending [1, Art 29] and the wedge with traction free faces 
[1, Art 38]. Similar arguments can also be applied to axisymmetric problems 
- e.g. to problems of the cone with traction free surfaces. 

The inhomogeneous problem of the wedge of semi-angle a loaded by 
tractions proportional to r ~ on the faces 0 = ___a can generally be solved using 
the stress function 

(~ = ra+2{A cos(20) + B sin(20) + C cos[(2 + 2)8] + D sin[(2 + 2)8]}. (32) 

However, it is well-known that the wedge has solutions with traction free 
boundary conditions for the cases 2 = -  1 (the Flamant solution), 2 = - 2  
(the concentrated moment solution), and for the Williams eigenvalue solu- 
tions [ 1, Art 46]. In each of these cases, the solution of the-related inhomoge- 
neous problem requires special stress functions which are obtained from (32) 
by differentiation with respect to 2. 

For the special case of the half-plane (~ = re/2), 2 = 0 and 2 = 1 are both 
eigenvalues. The homogeneous solutions in this case correspond to a state of 
uniaxial tension and bending described by axx = So + S~y, axy = ay e = 0 in the 
Cartesian coordinate system in which the half-plane is defined by y > 0. The 
inhomogeneous problem for this case involves uniform or linearly varying 
tractions on the wedge faces (and hence on one or both halves of the surface 
of the half-space). The corresponding special solutions are obtained by 
differentiating (32) with respect to 2 and include the well-known functions 
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{r 2 log(r) sin(20) + r20 cos(20)}, ( r  3 log(r) sin(30) + r30 cos(30)}, etc. (see [1] 

Chapter 4, problems 17, 19, 20, 21). 
As in the curved beam problem, the inhomogeneous wedge problem ap- 

pears to exhibit a discontinuity in behavior at ct = rr/2, the stresses varying 
logarithmically with r in the special case, but being uniform (or linear) for 
wedge semi-angles very close to 7r/2. We anticipate that this difficulty could be 
resolved in the same way, by superposing a solution chosen to satisfy a 
suitable boundary condition on a remote boundary for the wedge (at r = R, 
where R is in some sense large). The appropriate solution to superpose is that 
one of the Williams asymptotic solutions [2] whose variation with r ap- 
proaches r ° (constant) or r I (linear) as ot ~ n / 2 .  However, in this case, the 
multiplier on the added homogeneous solution cannot be determined from an 
equilibrium condition. 

5. Conclusions 

1. Whenever we find a classical solution in which there are two traction-free 
boundaries, we can formulate a related inhomogeneous problem for which 
the equation system resulting from these boundary conditions will be 
singular. 

2. Special solutions for these cases can be obtained by parametric differentia- 
tion of more general solutions for the same geometry. 

3. Alternatively, the special case can be recovered as a limit as the parameter 
tends to its eigenvalue, provided that the remaining boundary conditions 
are satisfied in an appropriate sense (e.g. in the weak sense of  force 
resultants) before the limit is taken. 
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