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A~tract. The elastodynamic super-Rayleigh/subseismic indentation paradox is examined in this 
paper. Both the Craggs/Roberts steady-state problem and the Robinson/Thompson transient 
problem are reconsidered. Certain features of these solutions are discussed from a new point of view, 
by considering asymptotics at the end of the contact region, the influence of contact inequalities, 
energetics of the process and existence/uniqueness. 

1. Introduction 

A problem of considerable interest in elastodynamics concerns the steady 

motion of a frictionless rigid indenter at velocity V across the surface of an 
elastic half-plane, as shown in Fig. 1. In the case where the indenter is a cylinder 

of radius R, this problem is the elastodynamic counterpart  of the classical 
Hertzian contact problem, but the more general case of an arbitrary indenter 

presents no special additional problems. 
Craggs and Roberts [1] obtained solutions for the sub-Rayleigh case (F < ca) 

and the superseismic case (V > cl), where cl = v/(2 + 2#)/p, C 2 = N~ ~ are the 
dilatational and shear wave speeds respectively, 2,/~ are Lam6's constants, p is 
the density, and ca is the Rayleigh wave speed defined by the equation 

R(CR) = 0, where [2] 

R(V) = (2 - M~) ~ - 4x/(1 - M~Z)(1 - M2~) (1.1) 

and 

V V 
M1 = - - ;  Mz = - - -  (1.2) 

Cl £2 

However, they were unable to find physically acceptable solutions in the 

range c a < 1/<cl, and 26 years later there are still no satisfactory hypotheses as 
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x=b '~ x=a 

Fla. 1. The moving punch problem. 

to what would happen to an indenter driven across a half-plane in this speed 
range. The present paper sets out to clarify certain features of the paradox and to 
demonstrate connections with other problems with similar features. We also 
hope it will lead to a reawakening of interest in this challenging problem, which 
constitutes a major gap in the completeness of classical linear elastodynamics. 

The organization of the paper is as follows. Section 2 contains a discussion of 
the steady-state moving punch problem, using an integral equation formulation, 
with particular reference to the conditi.ons at the end points and the contact 
inequalities. Section 3 presents energy and uniqueness considerations for the 
same problem. Section 4 is devoted to the transient Robinson/Thompson 
indentation problem and common features of all such problems and possible 
resolutions are discussed in Section 5. 

2. The moving punch problem 

If we assume (i) that the problem of Fig. 1 has a steady-state solution in which 
the stress fields are invariant in a frame of reference moving with the indenter 
and (ii) that the contact area is a single connected region defined by b < x < a in 
this frame of reference, we can reduce the problem to a classical elastodynamic 
boundary-value problem. A complex variable formulation is given by Eringen 
and Suhubi [2, §7.13]. 

If the boundaries of the contact region a, b are assumed known, the resulting 
boundary-value problem is well-posed for all V and has a unique solution. 
However, the physical problem demands that a and b be determined as part of 
the solution from the unilateral or Signorini contact conditions which state that 
(i) the contact traction p(x) should be non-tensile throughout the contact region 
and (ii) the gap g(x) between the indenter and the surface of the half-plane should 
be non-negative throughout the non-contact or separation region, i.e. 

p(x) >~ 0; b < x < a, (2.1) 

# ( x ) > ~ 0 ; x < b  and x > a .  (2.2) 
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In static contact problems, these inequalities are sufficient to define a unique 

contact area, the corresponding uniqueness and existence theorems being 

proved by Fichera [3]. However, this result does not carry over to the steady- 
state elastodynamic problem, though, as we shall see below, the evidence of 
particular solutions suggests that corresponding theorems might be provable for 
V < c  R. 

The contact pressure distribution p(x) in the sub-Rayleigh range has the same 
semi-elliptic form as in the static Hertzian problem, being given by [2] 

•/ X2 
2P 1 - a < x < a, (2.3) p(x) = a a 2' 

where P is the total normal force applied to the indenter and a is the semi-width 
of the contact area, given by 

~ 2 P R v / 1 - M 2 ~  
a = M 2 - -  rt#R(V) ' (2.4) 

where we note that R(V) < 0 in the range 0 < V < c R. 
The expression pR(V) decreases monotonically with V showing that the half- 

plane responds to the moving indenter like a static half-plane with a reduced 

modulus. Thus, if we keep P constant and increase V, the contact width will 
increase, becoming unbounded as V-~ CR. 

2.1. The Green's function 

This behavior can be predicted from the appropriate Green's function, which 
corresponds to the problem of a point normal load P, moving at speed V across 
the surface of the half-plane (see Fig. 2). This problem was first considered by 

P 
¥ 

t _ L _ _  

Fi#. 2. Force moving over a half-plane. 
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Cole and Hu th  [4] (see also [2, §7.1 1]). The normal  surface displacement for this 

problem can be written in the generalized form ~ 

P 
uy(x, 0) = --  [FI(V)log(r)  + F2(V)H ( -  x)] 

# 
(2.5) 

(omitting an arbitrary rigid body  displacement), where r = Ix[ is the distance 

from the moving load, H is the Heaviside step function and 

F , ( v )  = M 2 2 x / 1 -  M~ ," V < c 2 
~R(v) 

M22(2 - M22)2w/1 - M~ 2 

= xE(2 - M~) 4 + 16(1 - M~)(M2~ - 1)]; cz < V < c,  

= 0 ;  V > c x ,  

Fz(V) = 0 ;  V <  cz 

4M22(1 - M x Z ) x / ~  -- 1 
• 

- (2 -- M22) '~ + 16(1 - M2~)(M22 -- 1)' c2 < V < c~ 

2 2 M2x/ / - -~  - 1 

(2 - M22) 2 + 4x//(M~ 2 - 1)(M22 - 1) 
; V > c l .  

(2.6) 

(2.7) 

In the range V < cR, this expression is of  the same form as the corresponding 

static Green's  function 2, differing only in the multiplying constant,  which can be 

interpreted as a dynamic compliance or inverse modulus.  It follows that any 

static indentat ion solution for the half-plane has a sub-Rayleigh elastodynamic 

counterpar t  of the same form, which can be recovered simply by replacing the 

static modulus  by the equivalent dynamic modulus.  In particular, we note that 

this equivalent modulus  tends to zero at V = cR, which can be seen as a 

resonance of the system. 

The Green's  function preserves the same form in the speed range cR < V < c2, 

but here we notice a surprising r e su l t - - the  Rayleigh polynomial  R(V) changes 
sign so that  an inwardly directed moving load produces an outward displace- 

ment of  the half-plane surface. This proper ty  is preserved in the transonic range 
c2 < V < cl, but  the Green's  function then contains an additional step function 

1Note that the expression for Cole and Huth's original expression for F2(V ) in c 2 < V < c~ is in 
error by a factor of M~/2, this error being also present in the results given in I-2]. The correct 
expression is given here and the full derivation is given in 1"5]. 

2Which of course can be recovered by allowing V to tend to zero. 
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term. The sign change in the Green's function at the Rayleigh wave speed might 
seem less surprising when considered in conjunction with the behaviour of a 

simple one degree of freedom dynamic system which of course vibrates 180 ° out 
of phase with the force when excited above the resonant frequency. 

It is interesting to note that the function FI(V) multiplying the singular 
(logarithmic) term in equation (2.5) is proportional to the instantaneous 
displacement at a distance x from a normal impulse at t = 0, where x = Vt. This 
can be confirmed by comparing equation (2.6) with the corresponding results of 
[2, §7.16]. A curious feature of the function F~(V) is that it touches zero without 
changing sign at the particular speed V = x//~c2 . The Green's function then has 
no singular term implying as we shall see below that the smooth punch problem 
has a very simple well-behaved solution for this speed, even though no such 
solution exists for infinitesimally higher or lower speeds. 

2.2. An integral equation formulation 

The Green's function of equation (2.5) permits a very efficient integral equation 
formulation of the problem. We can write down the normal surface displace- 
ment due to an arbitrary contact pressure, p(x), in the form of a convolution 
integral, i.e. 

u,(x) = ~ [F,(V)loglx - ~l + Fz(V)H(~ - x)]p(~)d~. (2.8) 

If a, b are assumed given, the problem is now defined by the contact condition 

r #'(x) = uy(x) -- i f(x) = 0; b < x < a,  (2.9) 

where f (x )  defines the shape of the punch and the condition is stated in 
differential form to avoid problems with logarithmically unbounded rigid body 
displacements. 

Substituting (2.8) into (2.9), we obtain the classical Cauchy integral equation 

fb ~ p(~)d~ F2(V)p(x ) = #if(x); < x < a F~(V) (x -~ )  b (2.10) 

for the unknown contact pressure distribution p(x). In the special case where the 
indenter is a cylinder of radius R, the function i f(x) = - x / R .  

If neither of the functions FI(V), F2(V ) is zero, this is a singular integral 
equation of the second kind. However, if V < c2, F2(V) is zero and the equation 
reduces to an integral equation of the first kind. Finally, if V > Cl and also at the 
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special value V = x/~c2, FI(V) = 0 and (2.10) reduces to an explicit algebraic 
equation for p(x). 

The solution of the integral equation (2.10) can be written as the sum of a 
particular integral and a homogeneous solution which contains an arbitrary 
constant. A convenient summary of the general solution is given by Johnson 
[6,§2.7]. Both solutions are generally singular at both ends of the range, 
the strength of the singularity being described by the multiplier 
(a - x)-1/2 +a(x - b)-1/2-/~ where the real dimensionless parameter fl is defined 
by the equation 

tan(nil) = Fz(V~). 1 ~Fx(V), 0 < [3 < ~ . (2.11) 

In particular, when the step function term F2(V ) is zero, fl = 0 and we recover 
the classical square-root singularity. 

The solution has to be chosen in such a way that (i) the inequalities (2.1, 2.2) 

are satisfied and (ii) the total load is a prescribed quantity, P, i.e. 

fi 'p(x) dx = P (2.12) 

In the static case, V = 0, a consideration of the asymptotic fields near the end 
points [7] shows that the inequalities require that the contact pressure p(x) be 
bounded at a, b and hence that the multipliers on the two square-root singular 
terms be zero. These conditions and (2.12) then constitute three conditions for 
the arbitrary multiplier on the homogeneous solution of (2.10) and for the 
unknowns a, b. However, in view of what follows, we must emphasise that there 
is no physical objection to square-root singularities per se. The only reason for 
demanding boundedness in p(x) is that otherwise one or other of the inequalities 
(2.1, 2.2) will be violated in the immediate vicinity of the end points. 

2.3. Conditions at the end points 

The asymptotic field near a discontinuity in boundary conditions is usually 
explored using the technique due to Williams [8], in which the fields are referred 
to a system of polar coordinates centered on the discontinuity and the two 
contacting bodies appear as semi-infinite wedges. This method has been 
extensively used by Comninou and Dundurs for thermoelastic contact problems 
[9, 10] and for problems involving Coulomb friction [11]. However, the 
corresponding results in the present problem can conveniently be obtained by 
performing a singular asymptotic analysis on the integral (2.8), making use of 
(2.11). 
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Thus, in the range 0 < V < c2, where F2(V ) = 0, we find fl = 0 and hence the 
solution of equation (2.10) is generally square-root singular at both ends of the 
range. We can therefore define a function which is bounded at x = a, b through 
the relation 

q(x) = p(x) x/(a - x)(x - b), (2.13) 

in which case the derivative of (2.8) can be written in the form 

_ F,(V) ~ q ( ~ ) d ~  U~y(X) (2.14) 
- - b l  

Since the singular behaviour of p(x) has been described by the explicit 
multiplier [ ( a -  ~) (~-  b)] -1/2 in equation (2.14), the function q(~) must be 
capable of a series expansion near ~ = a in the form 

q(O = ~_, q , ( a -  ~)". (2.15) 
n = O  

Substituting this expression into (2.14) and performing the integration, we 
obtain 

u'r(x)-rcF'(V) ~-, q " { ~  ( 2 i - 3 ) " ( ~ - 2 b ) i  1 } 
- - 7 - , = 0  i=1 ~-~1)!  ( a - x ) " - i + ( a - x ) " l °  ' 

(2.16) 

where (2i - 3)!! = 1.3.5... (2i - 3) and 

1 
I o  = - ; x < b  

x/(a - x)(b - x) 

=0; b < x < a (2.17) 

1 
= ; 

v/(x - a)(x - b) x > a. 

2.4. Consequences of  the inequalities 

The discontinuity in (2.16) associated with the term involving I o implies a 
corresponding discontinuity in 9'(x) and will lead to violation of the inequality 
(2.2) unless the first non-zero coefficient in (2.15) is of appropriate sign. The 
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contact condition (2.9) requires 0'(x) = 0 in b < x < a and hence (2.2) requires 
that the discontinuity be such as to give 0'(a +) > 0. 

If qo :~ 0, this implies 

Ft(V), qo > 0, (2.18) 

but if qo = 0, the second order term in (2.16) is dominant, leading to the 
condition 

Ft(V), ql < 0; qo = 0. (2.19) 

However, the definition (2.13) implies that the first non-zero coefficient in 
(2.15) must be positive if the inequality (2.1) is to be satisfied, i.e. 

q o > 0  or q o = 0 ,  q ~ > 0 -  (2.20) 

In the sub-Rayleigh range 0 ~< V < CR, FI(V) < 0 and hence (2.18-2.20) can 
only be satisfied by taking qo = 0, ql > 0. This leads to the familiar bounded 
square-root behaviour in the contact tractions and imposes uniqueness on the 
problem by providing a condition (qo = 0) to determine the boundary of the 
contact area. 

By contrast, in the range CR < V < c2, we find Ft(V) > 0. It is then possible to 
satisfy (2.18-2.20) by taking qo > 0, leading to a square-root singular traction 
distribution at x = a and a discontinuous slope to the deformed surface. 
However, this deprives us of the condition for determining a as well as implying 
the physically unlikely configuration of Fig. 3. 

It is tempting to demand boundedness in the contact tractions for its own 
sake (or for the sake of uniqueness), rather than as a consequence of the 
inequalities, but we then find that, if we set qo = 0, either sign for the next 
coefficient q~ will lead to a violation of one of the two conditions (2.19, 2.20). In 

t 
~ x = b  ~ x = a  
X 

0 

'y 

Fi#. 3. Solution with singular tractions. 
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other words, a smooth transition between contact and separation is impossible 
in the speed range cR < V < c 2. Similar results can be established for the trailing 

edge of the contact region x = b. 
The same argument can be extended to the speed range c2 < V < cl, by 

replacing (2.13) by the more general form 

q(x) = p(x)(a - x)-  ~/2 +a(x - b)- 1/2 -~. 

Once again, we find that, except at the special value V = N~C2, a smooth 
transition from contact to separation violates the inequalities at either end of the 
contact region, whereas a singular transition satisfies them if the multiplier is of 
appropriate sign. 

For  completeness, we also consider the case where V > ca or V = x/~c2, for 
which equation (2.10) reduces to the explicit algebraic equation 

tt f '  (x) 
p(x) = (2.21) 

F2(V) 

The inequality (2.1) then requires if(x)<~ 0 in the contact area, since 
F2(V) > 0, whereas (2.2) demands that 9'(a ÷) >~ 0 and 9'(b-) <~ O. These con- 
ditions will be satisfied near x = a, provided that if(a) <~ O, but at x = b, they 
can only be simultaneously satisfied by choosing b such that i f(b) = 0. Equation 
(2.12) then serves to determine the point a and imposes uniqueness on the 
problem. 

3. Objections to the singular tractions 

The above discussion shows that the contact inequalities (2.1, 2.2) do not 
preclude singular contact tractions at the edges of the contact region when the 
speed is in the ranges cR < V < xf~c2 and x/~c2 < V < c~--indeed, they 
preclude bounded tractions in this range. Should we therefore conclude that the 
resulting singular solutions describe the behaviour of the physical system? 

There are two objections to this conclusion, one concerning the energy flux at 
the singular point and the other uniqueness. 

3.1. Energy considerations 

When a crack in a homogeneous material propagates at a speed V < ca, energy 
is absorbed at the crack tip at a rate dependent on V. This can be demonstrated 
by calculating the energy flux across a contour enclosing the crack tip and then 
letting the dimensions of the enclosed region tend regularly to zero [12]. In the 
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limit as V --, 0, this result reduces to the familiar energy release rate calculation 
used in quasi-static fracture mechanics. It is reasonable to assume that the 
energy in question supplies the surface energy of the newly generated crack faces. 

A similar argument shows that energy will be emitted at the singular point 
when a square-root singular distribution of normal tractions such as that at 
x = a in Fig. 3 moves to the right over the surface of the half-plane--in fact, the 
stress fields in the two cases are identical except for a sign change, since 
symmetry in the fracture problem ensures that the unfractured region of the 
crack plane remains plane. However, it is now less clear what physical 
mechanism is responsible for this energy production. 

Freund [13] uses this argument to cast doubt on the physical occurrence of a 
class of interface waves involving moving separation regions analyzed by 
Comninou and Dundurs [ 14]. Interface waves at unilateral interfaces are known 
to be possible for certain material combinations [15] and if the amplitude of 
such a wave exceeds the mean interface pressure, it seems reasonable to 
anticipate travelling regions of separation and contact. However, Comninou 
and Dundurs showed that steady-state solutions of this form are only possible if 
square-root singular tractions are admitted. In a later paper [16], they also 
showed that a disturbance of a more general form could propagate at a frictional 
interface without slip, under the same assumptions. 

Fracture and wave propagation problems exhibit considerable mathematical 
similarities with dynamic contact problems, but there is one very important 
physical difference--the velocity in a contact problem is an independent 
variable, whereas in fracture or wave propagation it is a dependent variable. 
If we do a fracture experiment, we have to accept the crack propagation rate 
corresponding to the applied stress or displacement conditions, but, in principle 
at least, there is nothing to stop us from conducting a dynamic contact problem 
in which the indenter has any desired speed V. This is why the non-existence of 
acceptable solutions to such problems is such a pressing question. What would 

happen if we tried to drive a massive rigid vehicle over a large body above the 
Rayleigh wave speed? 

Any argument about the strength of acceptable singularities in contact 
problems must accommodate the fact that the contact tractions at the edge of a 
rigid punch with a sharp corner are square-root singular. In their response to 
Freund's objections, Comninou and Dundurs [17] suggest that we might regard 
the sharp punch as the limiting case of a slightly rounded punch as the radius at 
the corner tends to zero. For  a finite corner radius, the contact tractions would 
then be everywhere bounded, but (i) they would have a maximum near the edge 
of the contact region and (ii) contact would extend slightly around the corner, so 
that the tractions in this region would do work on the half-plane as the punch 
moved. It is therefore plausible that the total work done by the tractions in this 
small region would tend to a constant as the corner radius tended to zero. 
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Notice also that work would be done on the punch by the tractions in the 
corresponding region at the trailing edge, which is consistent with the fact that 
the corresponding singularity appears as an energy sink. 

Unfortunately, this argument fails when cR < V < c2, since, as we have seen in 
Section 2 above, making the punch rounded does not then enable us to dispose 
of the singular tractions. The problem is even more severe in the range 
c 2 < V < cl, since the singularity at the trailing edge x = b is then stronger than 
square-root and the corresponding energy flux across a contour surrounding the 
singular point increases without limit as the contour is shrunk to zero. This 
seems to imply that the singularity constitutes an infinite energy sink, which is 
surely physically unacceptable. However, we should remark that this supposedly 
infinite supply of energy does not come from the half-plane, since the flux across 
all contours of finite length remains bounded at all times, whether or not the 
contour includes the singular point. Another curious result is that we obtain an 
infinite energy flux in the limit, even where the contour does not include the 
singular point, provided that we shrink the contour to zero in a self-similar way 
(e.g. the semi-circle of radius c centered on the point on the surface a distance Ac 
ahead of the singularity, where A is an arbitrary constant). Of course, all such 
points coincide with the singular point in the limit c - ,  0, but they strictly never 
contain the supposed energy sink and hence the energy flux must be associated 
with a corresponding infinite rate of change of the total strain and kinetic energy 

of the material within the contour. 

3.2. Non-uniqueness 

The second criticism of singular traction distributions in smooth contact 
problems centers around the fact that when they are admitted, the solution 
exhibits non-uniqueness. In the problem of Fig. 1, the admission of singular 
tractions at the end of the contact region eliminates the condition required to 
determine the location of these points and infinitely many solutions can be 
obtained with different extents for the contact region. 

Also, in the interface wave problem [14, 16], non-uniqueness is suggested by 
the fact that waves can be found which propagate at any speed within a given 
range, whereas in the absence of separation, there is a unique propagation speed. 
Non-uniqueness of solution is acceptable if it is associated with history- 
dependence of solution and, in this context, Comninou and Dundurs [17] 
suggest that the wave propagation speed depends on conditions at the initiation 
of the disturbance. A similar dependence on initial conditions might be 
suggested for the moving punch problem, but questions of stability must 
inevitably be raised, particularly in view of the fact that the range of multiple 
solutions form a continuous sequence, so that only an infinitesimal disturbance 
would be needed to change the contact region from its initial value. 
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4. The Robinson and Thompson problem 

The difficulties outlined in the previous sections are not restricted to steady-state 
moving contact problems, but seem to arise in any elastodynamic problem in 
which a boundary between contact and separation is forced to move at a speed 
in the super-Rayleigh/subseismic range cR < V < Cr Thus, it is encountered in 
problems where a crack is forced to propagate at a given speed by a wedge 
[18, 19] and in the self-similar dynamic indentation of a half-space by a wedge- 
shaped indenter [20, 21]. 

Robinson and Thompson's solution [21] of the latter problem is of particular 
interest, since they accept the singularities at the edge of the contact region in the 
offending speed range, but succeed in obtaining a unique solution by demanding 
boundedness in the stress and displacement components in other regions of the 
half-plane. Their work is widely considered as classical, being cited in the 
standard elastodynamics texts [2,§7.18] as well as in numerous papers on 
elastodynamic contact. It is therefore the more surprising that their resolution of 
the uniqueness question has received comparatively little critical attention, 
despite the fact that it is the only such resolution in the multitude of special 
problems exhibiting this peculiar difficulty and might therefore seem to hold out 
hope of a more general resolution. However, we shall argue in the present 
section that their procedure for obtaining uniqueness is erroneous. 

4.1. Statement of the problem 

The elastodynamic indentation problem is depicted in Fig. 4. A rigid frictionless 
wedge-shaped indenter of angle 7 is driven into an elastic half-plane at constant 
speed V, first contact occuring at the apex at time t = 0. Dimensional 
considerations lead us to anticipate a self-similar solution in which the stress and 
displacement fields have a spatially invariant form in a dimensionless coordinate 

~ V 

0 _ - ~  
-l-¥ × 

Fig. 4. The Robinson/Thompson problem. 
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system x/Vt, y/Vt  and the contact region expands at uniform velocity a. Many 
authors have investigated self-similar problems in elastodynamics, general 
treatments including extensive additional references being given by Eringen and 
Suhubi [2, §§7.14-7.19], Willis [22] and Georgiadis [23]. 

The boundary conditions for all t > 0 can then be stated in the form 

(n  - ?)  ur(x, O, t) = Vt - Ixl tan ~ ; Ixl < at, 

ayr(x, 0, t) = 0; Ixl > at, 

ayx(x, 0, t) = 0; all x ,  

uy(x,O,t)> V t - l x l t a n ( ~ - ~ - ) ; l x l > a t ,  

art(x, 0, t) < 0; Ixl < at, 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

where a is a constant to be determined. The half-plane is assumed to be at rest 
and stress-free at time t = 0. 

Many authors [20, 24-29] have considered this problem in the sub-Rayleigh 
regime, a < ca, for which the inequalities demand that the traction be bounded 

at Ixl -- at and lead to a unique solution. However, as in Section 2.4, it is found 
that the bounded solution violates the inequalities if ca < a < ci, but that 
infinitely many singular solutions can be found which satisfy them. Notice 
incidentally that it is the velocity of the contact boundary a which determines 
the character of the problem, not the punch velocity V, which will generally be 
much lower than a, since small strain considerations demand that the in- 
clination of the wedge face (r~ - ?)/2 << 1. 

For a full description of Robinson and Thompson's solution method, the 
reader is referred to [21] or [2, §7.18]. The solution is developed in terms of two 
complex potentials 01, Oz which on the surface plane y = 0 reduce to the 
common real form 0 = 01 = Oz = t/x. We shall only require the expressions for 
the stress and velocity components at this surface, which are written in the form 

~ .  = ~E~*y(0 ) ] ,  ~x ,  = ~E-~*~(0)] ,  

v~ = ~ E ~ * ( 0 ) ] ,  ~x = ~Ev~*(0)] ,  (4.6) 

where ayy*, a~*~, v~*, v~* are complex functions of 0 (see [2, §§7.14-7.19]). 
Further, the shear-traction-free condition (4.3) can be shown to require 

(C~ -2 - -  02)1/2 
*, , t  

Vy (0) - -  #C~ R(02)  o'yy (0 ) ,  (4.7) 
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0 *~ 
v*~'(O) - #c2~R(02 ) t~y(0), (4.8) 

where the transient Rayleigh function R(02) is defined by 

R ( 0 2 )  - -  (c~  -2  - -  2 0 2 )  2 d-  4 0 2 ( c ~  - 2  - -  0 2 ) 1 / 2 ( c ~  2 - -  0 2 )  1/2" (4.9) 

By using these results, the equality boundary conditions (4.1, 4.2) can be 
written as 

, t  ~y~(x, 0, t) = ~t ~ , / 0  = 0; 101 < a - 1 ,  (4.10) 

 (fo ) v~(x, O, t) = v~'dO = V; ]01 > a -~. (4.11) 

Robinson and Thompson [21] (see also [2,§7.18]) established that the 
solution in the subsonic regime a < cs should have the general form 

a~(O) = iAx(a-  2 - -  0 2 )  - 1/2 ..~ iA2(a-2  _ 02) - 3 / 2 ,  (4.12) 

which emerges from the respective mixed boundary value problem of Keldysh- 
Sedov type. In this equation, A~, A 2 a r e  real constants and to satisfy (4.1), we 
must take 

( A~ =--4/~ 1 - tan (4.13) 
n c~/  2 

For a < ca, it is found that the inequalities (4.4, 4.5) can only be satisfied by 
taking A 2 = 0, leading to the contact traction distribution 

. . . .  ;[x[ < at,  ~ c~J tan cosh- a (4.14) 

a result confirmed by other researchers [25-27]. 

4.2. The range cg < a < c2 

We now turn our attention to indentation speeds leading to a contact boundary 
which moves at a speed in the range between cg and c2. In this range, A~ is still 
given by (4.13), but the inequality conditions no longer define a unique value for 

A 2 • 
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However, the Rayleigh function R(02) defined by (4.9) has a zero at 0 = c~ ~ 
, t  and hence the complex functions v r (0), V*x'(O) of (4.7, 4.8) will exhibit a pole at 

, t  this value, unless the function trrr(O ) has a cancelling zero. Robinson and 
Thompson 1-21] argued that such a pole was unacceptable and therefore 

, t  explicitly introduced the factor (c~ 2 _ 02) in their definition of trrr (0). Equation 
(4.12) remains valid for cg < a < c 2, so their procedure is equivalent to choosing 

A 2 = AI(cR 2 - a 2), (4.15) 

~¢; -- 1) which ensures that avv(cR = O. 
The important point to notice here is that Robinson and Thompson impose 

* r  uniqueness on the solution by demanding that the functions vy (0), v~'(O) be 
analytic in [0[ > a -1 and in particular at the Rayleigh points x = +cRt, which 
are the points reached by a disturbance travelling at c R and originating at the 
point of initial contact at t = O. 

However, we shall prove in the next section that this procedure is incorrect, 
since even if the offending pole remains in the complex expressions for 

. ~  , v  v r (0), vx (0), no unacceptable singularities appear in the corresponding real 
expressions for the stress and velocity components. 

4.3. Analysis 

The Robinson/Thompson procedure would be justifiable if the singularity in the 
, r  , r  functions v r (0), vx (0) at the Rayleigh points led to (a) violation of the boundary 

conditions and/or (b) singularities in the physical quantities which are unac- 
ceptable within the context of linear elasticity. In the present section, we shall 
demonstrate that for the regime CR < a < c 2, the general solution (4.12) is 
satisfactory according to these criteria for all values of the constant A2. 

4.3.1. The boundary conditions 
We examine the possible violation of the boundary conditions by evaluating the 
normal surface velocity 

v/x,  O, t) - ~-- ~ [ fo ' (c; 2 - ~ J =- ~c~1 ~(I) (4.16) 

from equations (4.6, 4.7). 
This velocity must be non-singular at every point beneath the punch, since it 

is. in fact equal to the indentation velocity V. We can easily show that vr(x, 0, t) is 
*~ non-singular despite the fact that vy (0) is singular at the Rayleigh points 

0 = +C~ 1. 
Figure 5 shows the half-plane surface in the inverse velocity domain. When 
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c -1 c "1 0 c~1 c-1 ~1 C-R10' -~ -c~  -(z -1 -12 -i1 12 
\ - . k \ 4 . \ \ J  ' ~ k - . , 4 ~ ; . 4 . ,  

Fi9. 5. The domain of integration for 0 (the inverse velocity) in equation (4.16). 

10l > a -  1, the reference position is within the contact length and the integral I in 
(4.16) can be decomposed into 

;~ ,~ 1 fcC; 1 I =- I x + 12 -F I 3 -1- ],¢ ~ F(O)dO + 
~ 

+ F(O)dO + F(O)dO, 
~1 -! 

V(O)dO 

(4.17) 

where 

F(O) = (c72 - 02)1/2[iAx(a- 2 - 02)- I/2 .~_ iA2(a-2 _ 02) -3 /2 -  I 

(C~ "2 -- 202) 2 + 402(C~ -2 --  0 2 ) 1 / 2 ( C ;  2 - -  02)1/2 (4.18) 

The singular point of F(O) occurs at 0 = c~ 1, which falls in the range of the 
i n t eg ra l  I 4. However, it is clear from (4.17, 4.18) that 14 is an imaginary quantity 
and hence it makes no contribution to the expression (4.16) for vy(x,O,t). It 
follows that v~ is not singular at the Rayleigh points and hence that the 
boundary conditions are not violated. 

4.3.2. Inadmissible singularities 
We next examine the other velocity component vx(x, 0, t) to see whether the 
general solution possesses any unacceptable singularities which do not affect the 
satisfaction of the boundary conditions. From (4.6, 4.8), we have 

Vx(X, o, t) = ~c--~ ~ R(O 2) J =- ~( .0 .  (4.19) 

For cR < a < c 2, the domain of integration is again given by Fig. 5 and we can 
decompose J into 

IO 
*~- 1 f~ ~- 1 

J =- Jx + J2 -F J3 + J4 =- H(O)dO + 
71 

- ' 

+ H(O)dO + H(O)dO, 
~l  -1 

H(O)dO 

(4.20) 
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where 

H(O) = O[iA~(a-~ - 02)- ~/z + iAz(a-Z _ OZ)-3/z] 
(c~ 2 _ 202)2 + 40Z(c7 2 _ 02)1/2(c ~ z _ 0 2 ) 1 / 2  • 

(4.21) 

The singular point 0 = __+ c~ ~ is contained in the range of J4, which now is a 
real quantity and which therefore does contribute to the function Vx(X, O, t) (see 
equations (4.20, 4.21)). However, the singularity in the tangential velocity (and 
hence also in the stress component axx(X, O, t)) is logarithmic and is therefore 
acceptable within the context of linear elasticity. 

It might be argued that, even though logarithmic singularities are admissible, 
the occurrence of such a singularity has no obvious physical cause and hence 
that Robinson and Thompson's solution which eliminates it is more physically 
plausible. In this context we note that a disturbance at the Rayleigh points can 
be interpreted as a disturbance originating at the first point of impact (x = 0, 
y = 0, t = 0) and propagating with unchanged form at the Rayleigh wave 
velocity in both directions. Since t = 0 is a point of discontinuity in the history of 
the process, we have no reason to preclude the occurrence of such a disturbance. 

Perhaps a more cogent argument is that the sub-Rayleigh solution, which has 
been independently obtained and discussed by numerous authors [20, 24-29], 
also contains a disturbance of the same form in the vertical velocity v~(x, O, t) at 
the Rayleigh points, which of course are now outside the contact area. However, 
as we have shown in Section 4.3.1, the disturbance does not affect the satisfaction 
of the contact boundary conditions and hence if it is deemed to be unacceptable, 
it must be equally unacceptable when it occurs outside the contact region. 
Furthermore, we cannot eliminate the disturbance in the subsonic case whilst 
still satisfying the inequality condi t ions--notably at the transition from contact 
to separation. 

4.4. The transonic regime 

'An essentially similar argument may be developed for the transonic regime 
c2 < a < c 1. The general solution of the boundary value problem is now more 
complex, but it shares with equation (4.13) and with the solution of the 
Craggs/Roberts problem the characteristic of containing a term related to the 
punch profile which leads to a traction distribution bounded at the ends and a 
second term leading to singular tractions which contains an arbitrary multiplier. 
As before, Robinson and Thompson's procedure leads them to choose this 
second term so as to cancel the pole at the Rayleigh points in v~'(O) and hence 
impose uniqueness on the solution. 

We also note that the strength of the singularity in the contact tractions is less 
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than square root, being of the form ( a  2 - -  x 2)  - 1 /2  + # where fl is given by equation 
(2.11) with V replaced by the velocity of the contact boundary a. 

5. Discussion 

We must conclude from the preceding arguments that the Robinson/Thompson 
procedure of enforcing uniqueness by requiring that the complex function v~*'(0) 
be analytic at the Rayleigh points is unjustified. This conclusion imposes some 
consistency on the existing body of analytical solutions to elastodynamic 
contact problems, all of which share the following features: 

• If the velocity V of the transition point from contact to separation lies in 
the range V< c R, V> cl or V = x//~2, the Signorini inequalities are 
necessary and sufficient to determine a unique solution to the problem, 
including the determination of the extent of the contact region. The 
elastodynamic problem is then well posed. 

• If singular contact tractions at the edge of the contact region are ruled out a 
priori, no solutions exist in which this edge moves at a speed V in the range 

cR < V < x/~c2 or x/~c2 < V < c,. 

• If, on the other hand, such singular tractions are admitted, the correspond- 
ing contact problem will have multiple solutions satisfying the inequalities 

for cR < V < x/~c2 or x/~c2 < V < c,. 

• If the edge of the contact region is advancin O at speed V into a region which 
was previously separated, the strength of the singularity will be equal to or 
weaker than square-root, being described by the multiplier (a - x)-1/2 ÷a, 
where fl is given by (2.11). However, if the edge is recedin9 at speed V -  i.e. if 
contact is giving way to separation--the strength of the singularity will be 
equal to or stronger than square-root, being described by the multiplier 
(x - b)-1/2-~. We note that an expanding crack [30, 31] is equivalent to a 
receding contact region and therefore has the same asymptotic behaviour 3. 

In the offending speed range, both alternatives seem equally unacceptable. 

5.1. Some speculations 

As we remarked earlier, indentation problems present the paradox more starkly 
than applications involving fracture or interface waves, since the punch velocity 
is an independent variable. However, we should remark that we cannot control 

3It is worth noting that the error in Cole and Huth's results demonstrated in [5] was discovered 
as a result of an apparent lack of consistency between the predictions of equation (2.11) and the 
asymptotic behaviour observable in other elastodynamic contact and fracture problems. 
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the velocity of the transition from contact to separation directly. We only appear 
to control it with the velocity of the punch when we make the assumption that 
the Craggs/Roberts problem has a solution which is invariant in a moving frame 
of reference or that the Robinson/Thompson problem has a self-similar solution. 

What are the alternatives to these assumptions? There are precedents in other 
branches of mechanics for nominally steady systems to have unsteady 
solut ions--for  example, the frictional vibrations which can arise when the 
friction coefficient between two sliding bodies is a decreasing function of sliding 
velocity. 

A conceivable unsteady scenario for the Craggs/Roberts problem would be 
for the contact area to move more slowly than the punch, so that it would tend 
towards the trailing edge. If the applied force was constant, this would permit 
the punch to move towards the half-plane until a new, disconnected contact area 
formed near the center of the punch. In effect the punch might appear to ride on 
a series of corrugations on the half-plane. In the same way, a non-self-similar 
solution to the Robinson/Thompson problem might be envisaged involving 
several disconnected contact areas. Such unsteady solutions would permit the 
systems to evolve, without requiring a transition from contact to separation ever 
to move at a velocity greater than c R. The resulting behaviour may be quasi- 
periodic or chaotic in nature. It is perhaps not irrelevant to note that chaotic 
behaviour can occur in extremely simple one-dimensional systems when 
dynamic systems involve unilateral interfaces [32]. 

These arguments suggest that the paradox might be resolved by solving an 
appropriate transient p rob lem-- fo r  example, an initially static Hertzian contact 
between a rigid cylinder and a plane, which starts to move at time t = 0. 
Unfortunately, such problems are generally not tractable by analytical methods 
unless some fairly simple assumption can be made about the evolution of the 
contact area, which would destroy the purpose of the solution in the present 
instance. Numerical solutions are also very challenging in such problems, since 
waves will be generated by the discontinuities due to the discretization. 

Aboudi [33] gives a finite difference formulation appropriate for problems of 
this type and gives some results for the wedge indentation problem, including 
one case in the transonic regime. His results for the extent of the contact area are 
fairly close to those of Robinson and Thompson and therefore cast some doubt 
on the arguments of Section 4 above. However, the results cannot be regarded as 
conclusive, since the true solution may involve features on a scale smaller than 
the discretization used. In particular, we note that violations of the inequalities 
associated with the asymptotic fields at the edge of the contact region (see 
Section 2.4) might occur in a very small region and hence require a very fine 
mesh for their resolution. It is also worth noting that the variational principle 
used in most numerical methods will tend to favour solutions without singular- 
ities when extra degrees of freedom are present. 
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6. Conclusions 

The present paper clearly raises many more questions than it solves, but these 
questions are very pressing and are apparently being neglected by the elasto- 
dynamic community. We shall have achieved our objective if we succeed in 
generating sufficient interest in this challenging problem to ensure that some 
progress will be made in the next 26 years. 
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