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Abstract. Higher order gradient continuum theories have often been proposed as models for solids 
that exhibit localization of deformation (in the form of shear bands) at sufficiently high levels of 
strain. These models incorporate a length scale for the localized deformation zone and are either 
postulated or justified from micromechanical considerations. Of interest here is the consistent 
derivation of such models from a given microstructure and the subsequent comparison of the 
solution to a boundary value problem using both the exact microscopic model and the correspond- 
ing approximate higher order gradient macroscopic model. 

In the interest of simplicity the microscopic model is a discrete periodic nonlinear elastic 
structure. The corresponding macroscopic model derived from it is a continuum model involving 
higher order gradients in the displacements. Attention is focused on the simplest such model, 
namely the one whose energy density involves only the second order gradient of the displacement. 
The discrete to continuum comparisons are done for a boundary value problem involving two 
different types of macroscopic material behavior. In addition the issues of stability and imperfec- 
tion sensitivity of the solutions are also investigated. 

1. Introduction 

A c o m m o n  feature among  ductile solids, when sufficiently strained, is the 

transition from a smoothly varying deformat ion field into a highly localized 

deformation pattern in the form of a "shear band".  This local, i.e. appearing at 

any point  whose stress state reaches a critical level, instability phenomenon  is 

modeled within the framework of  con t inuum mechanics as a loss of ellipticity 

in the incremental equilibrium equations.  This approach  has been proposed in 

the context of.elasticity by H a d a m a r d  [,17] and subsequently for rate indepen- 

dent elastoplasticity by Thomas  r311, Hill [18] and Mandel  [24]. The  

characteristic surfaces of  the governing equat ions indicate the position of  the 

localized deformation zones. Considerable  effort has been subsequently de- 
voted to the study of the localization of  deformat ion 's  dependence on the 

assumed constitutive model. Fo r  further  information on this subject, the 

interested reader is referred to Knowles  and Sternberg [20] for elastic materials 

and Rice [29] for inelastic ones. 

The loss of  ellipticity approach  is adequate  for predicting the critical stress 



260 N. Triantafyllidis and S. Bardenhagen 

level and deformation zone direction at the onset of localized deformation. 
However, it can neither predict the size of the localized deformation Zone nor 
can it provide any constitutive information about the evolution of deformation 
inside the zone. Due to these limitations, numerical (usually finite element) 
calculations in related boundary value problems show an undesirable depend- 
ence of results on selected mesh size and orientation (see Tvergaard, Needle- 
man and Lo [35]). 

Motivated by the above physical and numerical shortcomings of the simple 
loss of ellipticity approach, and in view of the increased importance of 
analyzing localized failure phenomena in mechanics, a number of remedies 
have been proposed. In the classical continuum mechanics framework, these 
improvements consist of either the consideration of imperfection sensitivity to 
pre-existing weak zones in the solid (see Marciniak and Kuczynski [25]), or the 
incorporation in the constitutive model of viscous or thermal coupling effects 
(see Molinari and Clifton [28], Clifton 1"12]). The non-classical continuum 
mechanics alternative consists of relaxing the local action hypothesis, accord- 
ing to which the strain depends only on the first gradient of the deformation. 
Continuum models that violate the local action hypothesis are termed non- 
local. They are divided into two categories: The first category consists of 
integral models with strains and stresses at a given point depending on a 
convolution type integral that accounts for the history of displacements in a 
finite neighborhood about the point in question. The second category consists 
of higher order gradient models for which the strains and stresses at a point 
depend on the history of all the gradients of the displacement- up to a certain 
order-at  that particular point. 

Of interest here is the last approach to modeling the localization of 
deformation, namely the incorporation of higher order gradients in the 
constitutive law. Among the attractions of this approach are its simplicity (no 
dependence on unknown "weak zones" in the solid or difficult to determine 
influence functions for the convolution integrals appearing in integral type 
non-local models, no time or temperature effects required) and the inherent 
existence of a characteristic length scale in the model that determines the size 
of the localized deformation zones which appear at adequately large levels of 
strain. More gpecifically, constitutive models that incorporate up to the second 
gradient of deformation are the simplest such models that exhibit the wanted 
localized strain solutions with zone widths that depend on the characteristic 
length scale. The incorporation of a second order gradient term in the material 
law found many applications in the study of localization phenomena, not only 
for solids (see Aifantis [6], Coleman [13], Coleman and Hodgdon [14]) but in 
fluids as well (see Van der Waals [36] classical 1893 paper and also Aifantis 
and Serrin I-4, 5]). 

The above-mentioned constitutive models, although often physically moti- 
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vated, are essentially phenomenological. The coefficients of the second order 
gradient terms are either postulated (as in Triantafyllidis and Aifantis [34]) or 
heuristically derived from the assumption of continuum state equations coup- 
ling macroscopic and microscopic state variables (see Mindlin [26], Eringen 
and Suhubi [15], Suhubi and Eringen [30], Aifantis [7]). With the recent 
considerable growth of higher order gradient models proposed for an ever 
increasing number of material behaviors, e.g. elastoplastic, viscoplastic, ther- 
moviscoplastic, the issues of consistent derivation of the macroscopic model 
from the microscale one and comparison of the solutions to the same boundary 
value problem for the two corresponding models, become increasingly relevant. 

For simplicity, attention will be here restricted only to one-dimensional 
nonlinear elastic media with arbitrary periodic microstructure. Of interest is 
the consistent derivation of the macroscopic higher order gradient continuum 
model from the properties of the discrete microstructure. Also of interest is the 
comparison of solutions to boundary value problems using alternatively the 
exact discrete micro model and the corresponding approximate continuum 
macro model. Although derivations of higher order gradient continuum 
theories based on discrete periodic microstructures are not novel, especially in 
the Physics literature (see for example Askar [9], Kunin [21], Mindlin [27], 
Toupin and Gazis [32]), attention has been focused on linear theories, static 
or dynamic. The derivation of higher order gradient continuum theories from 
the nonlinear periodic microstructures of interest here does not seem to have 
attracted attention so far, to the best of the authors' knowledge. The same 
comment applies to the comparison between the continuum and discrete 
solutions to boundary value problems for the above discussed microstructures. 

The outline of this paper is as follows: Section 2 details the general discrete 
periodic elastic model and briefly outlines the numerical solution procedure. 
Section 3 outlines the derivation, using two different approaches, of the 
continuum macro model from the properties of the discrete periodic micro 
model. The analytical solution to the boundary value problem for the continu- 
um model is also derived. Section 4 presents two particular discrete models and 
the discrete vs. continuum comparisons. The force-displacement diagrams and 
the equilibrium strain profiles for the localized solutions are compared, and the 
stability of th~ solutions is studied. Section 5 concludes the presentation with 
a discussion of the results. 

2. The discrete model 

2.1. Description 

Consider a one-dimensional structure composed of equally spaced nodes 
connected by nonlinear elastic springs. The node spacing is denoted by ~, and 
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the total length of the structure is L = Ne with N + 1 the total number of 
nodes. A typical node, say i, is connected to all the adjacent nodes j with 
i - q  <<.j <<.i+ q where q is an integer indicating the maximum number of 
neighboring nodes to which each node is connected on each side (see Fig. 2.1 
where q = 2). The force (f)-s t ra in (e) relation for a spring of length pe 
(1 <~ p ~< q) is denoted by fp(%), while the corresponding stored energy in the 
spring is p~wp(ep) with w~, = fp. 

The strain ep in a spring of length pe attached to node i is given by 

i + U i+p  - -  Ui i-  Ui - -  U i - p  ep---- or ep = - - ,  (2.1) 
pe pe 

i -  where e~ + and ep a r e  the strains in the springs at the right of node i and at the 
left of node i respectively. Here uj denotes the total displacement of node j. 

The kinematical definitions in (2.1) are valid for nodes sufficiently far from 
the end nodes of the structure, i.e. for 0 ~< i - q and i + q ~< N. To ensure a 
trivial equilibrium solution ~ of equal relative displacements (i.e. 
0 o i + i -  u i + l -  ui = const), the following kinematical relations for ep and ep are 
adopted: 

i+ 2UN - -  U 2 N - i - P  - -  Ui for i + p > N, ep = 
pe 

i- ui + u p - i -  2Uo 
ep = for i - p < 0. (2.2) 

pe 

The above relations are derived from the tacit assumption of the existence of 
fictitious outside nodes i <  0 and i >  N whose relative displacements with 
respect to the end nodes 0 and N are mirror images of the relative displace- 
ments of the corresponding mirror interior nodes. 

The equilibrium equation for interior node i (0 < i < N), assuming that no 

Fig. 2.1. Schematic diagram of the discrete nonlinear elastic periodic model for q = 2. 
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external forces are applied, is given by 

q 

i + [fp(ev ) _ i- fp(ev )] = 0. (2.3) 
p = l  

The selection of the force-strain relation fp(ep) for each spring of length pe will 
be specified and explained in Section 4. 

2.2. Setting o f  the boundary value problem 

The one-dimensional structure described above with N + 1 nodes is held fixed 
at node 0 (Uo = 0) and is subject to an end displacement A at node N (u N = A). 
The N -  1 equilibrium equations (2.3) (i = 1 . . . . .  N -  1) for the N -  1 un- 
known displacements (Ul,..., us-1) are solved numerically using a straightfor- 
ward incremental Newton-Raphson technique. 

A trivial solution to the problem, which is also termed the principal or the 
0 

prebifurcated solution and is denoted by ui, corresponds to a uniform straining 
0 . 0 

of the structure with ui = lee. As is easily verified from the kinematic relations 
Oi+ 0 i -  ~ (2.1), (2.2) the corresponding strain within each spring is e v = e v ~ A/L 

and thus the equilibrium equation (2.3) is satisfied at all the interior nodes. To 
summarize 

0 . 0 0 . ~ / r  Oi+ O i -  o 
u i= l ee ,  e = a / L ,  ev = e v  = e .  (2.4) 

The above solution is valid for any value of the end displacement A. For 
adequately small values of A the principal solution (2.4) is unique and stable 
through an appropriate choice of the fp(ep). The properties of the nonlinear 
springs in the model will be chosen so that when A exceeds a critical value, the 
(uniform strain) principal solution is no longer unique; other equilibrium 
branches, termed the bifurcated equilibrium branches, emerge from the princi- 
pal solution. The strains in these bifurcated branches are no longer equal for 
each spring, but increase in a small neighborhood of the structure while 
remaining approximately uniform but decreasing in the remaining part of the 
structure. Because of this property, the bifurcated solutions will also be termed 
the localized strain solutions. The localized strain (bifurcated) equilibrium 
solutions are Studied in detail in Section 4. 

3. The continuum approximation 

When the node spacing ~ --* 0 (or equivalently the number of nodes N --* oo) the 
discrete system of algebraic equations (2.1)-(2.3) can be approximated by a 
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differential equation for u(x) where u~ _~ u(x~) and the coordinate x~ = ie. 
Finding the appropriate differential equation whose solution approaches the 
solution for the discrete system is a classical problem that occurs in many 
branches of mathematical physics. Of particular interest here is the consistent 
derivation of the simplest higher order gradient continuum model whose 
energy density per unit length is postulated to be (see Triantafyllidis and 
Aifantis [34]) 

= W(u,~) + ½e2h(u,~)[u~'l z. (3.1) 

To find the relations between W(ux), h(u~) of the continuum model and the 
properties of the discrete model (i.e. f~(ep)), two different approaches are used: 
The first approach uses as a departing point the discrete equilibrium equation 
at node i (2,3) to arrive at a corresponding continuum equation which in turn 
can be identified as the Euler-Lagrange equation of an energy functional of the 
form (3.1). The second approach proceeds directly with the derivation of a 
continuum energy from the energies of all springs attached to node i. Both 
approaches lead to the same Euler-Lagrange (equilibrium) equation. 

It should be noted at this point that the ensuing derivations provide a 
continuum energy density up to any order of e required. Only the lowest order 
correction in the energy, i.e. the O(e 2) term is of interest here, for it brings up 
the effect of the microstructure in the simplest way. In Section 4 the solution 
to the boundary value problem for the discrete model described in Section 2 
will be compared with the solution to the same boundary value problem for 
the corresponding continuum with energy density in the form (3.1). 

3.1. Continuum model derivation via equilibrium 

Consider the equilibrium of an interior node i away from the boundary of the 
discrete model. An adequately smooth continuous function u(x) is assumed that 
coincides with all the equilibrium displacements u~ at nodal points x~ =je. 

i+ i- in all Using the Taylor series expansion about x i to evaluate the strains ep, ep 
the nonlinear springs that affect the equilibrium of node i, one has from (2.1) 

i + Ui+ p - -  U i 

p~ 
1 1 1 

= U x + ~ p~u.xx + -~ (p~)2u .xxx + - ~  (p~)3u.xxxx + ' "  ", 

i -  Ui - -  U i - v  _ 1 1 1 (p,~)3 u x x x x  q -  (3.2) 
ep = pc - u ' x  - 2 P ~ U ' x x  + -6 (P~)2u  . . . .  - 2--4 "" " ' "  

where all derivatives of u(x) are evaluated at x~. 
Substitution of (3.2) into the equilibrium equation (2.3) and subsequent 
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expansion of the result in terms of ascending powers of e yields 

p = l  

where ( )' denotes derivation of a function with respect to its argument. 
By inspection, one finds (3.3) to be the Euler-Lagrange (equilibrium) 

equation of the functional S~ W(u~, u ..... . .  ) dx, where 

W = pw,(u~) +-~ - --~ w~,(ux) (uxx) 2 + O(~ 4) (3.4) 
p = l  p = l  

with wp(ep) the energy density of a spring of length pc (recall w~, = fp). 
Comparison of (3.1) and (3.4) gives 

q ~ p3 
W(ux ) = ~ pwp(u~) and h(u,x ) = -  -~ w~(u.~), 

p = l  p = l  

which are the wanted relations linking the phenomenological macroscopic 
(continuum) energy density (3.1) to the corresponding microscopic (discrete) 
model. 

3.2. Continuum model derivation via energy 

The energy per unit length of the discrete structure, say W, equals half of the 
energy of all springs connected to a sufficiently distant from the boundary 
interior node i, divided by the nodal spacing c, i.e. 

- -  1 x~ i+ W = ~ ~ [p~wp(ep) + p~wr(ep-)], (3.5) 
p = l  

~+ i- in terms of u(x) and its derivatives at Substitution of the strains ep and ep 
xl according to (3.2) gives, after a straightforward expansion in terms of 
ascending powers of 

w = pw.(u~) + -£ - - - T -  
p = l  p = l  

(3.6) 
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Notice that although the O(e °) term in (3.6) coincides with its counterpart in 
(3.4), this is not the case with the O(e 2) term (or any higher order term). This 
discrepancy does not affect equilibrium, since the Euler-Lagrange equation for 
the functional z - -  So W dx coincides with (3.3) as a straightforward calculation can 
verify. The boundary conditions are in general different. For th e displacement 
controlled boundary value problem considered here, one can easily show that 
the boundary conditions are satisfied for either energy density. ,Moreover, the 
same calculation shows that the end force dependence on the displacement field 
is also unaffected by the energy density choice. 

The fact that more than one continuum energy density can be found for the 
same discrete model is a known complication in mathematical physics (see for 
example the discussion in Kunin [21]). The various continuous energies differ 
by a null Lagrangian, i.e. a functional whose Euler-Lagrange differential 
equation is identically zero. For the model at hand this means that the 
functional S~(W - W)dx  is a null Lagrangian, which implies that each term 
in e is a null Lagrangian. One can easily verify that the O(e 2) term of the above 
differences in energy (=(1/2)SLY. q 3 ,, 2 , p=l (P /3)[wp(u,x)u,xx + wp(u~,)ux~,~,]) has an 
Euler-Lagrange equation that vanishes identically. This property is also shared 
by all the higher order in e terms in the above-mentioned energy difference, as 
a tedious but straightforward calculation can verify. 

3.3. Setting o f  the boundary value problem 

The one-dimensional continuum model has energy density W given by (3.1) 

and is of length L. This energy density is preferred over W in view of its simpler 
form and also on account o f  its frequent use in previous investigations. In 
accordance with the boundary value problem for the discrete model (see 
Section 2.2) the end displacements of the continuum model are prescribed, i.e. 
u(O) = O, u(L) = A. The model's potential energy, in the absence of body forces, 
is 

+ 1~2 xx] 2} dx. e(u,A)=f;{w(u~) ~h(u.)[u 

The equilibrium equation (3.7) and the natural boundary conditions (3.8)1 
are found by extremizing g over all admissible displacements u(x) (i.e. all 
continuously differentiable functions u(x) that satisfy the above-mentioned 
essential boundary conditions). A standard calculation from g.u6u = 0 gives 

~2 

W'(u,x) -- e2u . . . .  h(u,x) - -~ [u,~]2h'(u,~) = c, (3.7) 
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u x~(O ) = u.x~(L) = 0, (3.8) 1 

u(O) = O, u(L) = A. (3.8) 2 

The constant c in (3.7) is the force exerted at the ends of the structure and is 
constant throughout the structure, in view of the absence of body forces. The 
system of differential equation (3.7) and boundary conditions !3.8 ) is solved 
analytically and the solutions are presented and discussed in detail in Section 
3.4. As previously noted, had W been chosen as the energy density of the 
continuum model, the corresponding equilibrium equation would be (3.7) and 
the boundary conditions would be satisfied by (3.8). 

As expected from the discrete model (compare with (2.4)), the trivial principal 
solution t~(x) to the system (3.7), (3.8) is the uniform strain solution, i.e. 

g( o o o ( 8 )  x) = ex, U x = e = A / L ,  W' = c. (3.9) 

The above solution is valid for any value of A. When A exceeds a certain 
critical value, bifurcated equilibrium branches emerge from the principal 
solution, exactly as in the discrete model. The bifurcated branches have, as 
expected, solutions in which the strain u x is localized around a narrow zone. 
The comparison of the localized strain solutions of the continuum model 
boundary value problem to the localized strain solutions of the discrete model 
boundary value problem is the main task of Section 4. 

3.4. Solution o f  the continuum boundary value problem 

As discussed in Triantafyllidis and Aifantis [-34], the essential features of the 
continuum energy density W, which are responsible for the appearance of 
localized strain solutions, are: 

(i) A macroscopic behavior that presents a maximum in the corresponding 
stress-strain curve, i.e. a twice differentiable, smooth macroscopic energy 
density W(u,x) with the properties 

w ( 0 )  = w ' ( 0 )  = 0 ,  

W " ( u ~ ) > 0  f o r 0 ~ < u . < e , . ,  W"(e, . )=0.  (3.10) 

The physical interpretation of (3.10) is that the macroscopic stress-strain 
relation W ' ( u x  ) - u x attains a maximum at u~ = em. This feature is respon- 
sible for the existence of discontinuous strain gradient solutions in models 
where the effects of microstructure are ignored (i.e. when W = W(Ux)), and 
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hence responsible for the existence of localized strain solutions when the effects 
of microstructure are considered (i.e. when W = W(u,~,) + (e2/2)h(u ,~)[u ~x]2). 

(ii) An always positive contribution ((e2/2)h(u ,~)[u j 2) to the energy density 
W due to the microstructural effects, i.e. 

h(ux) > 0. (3.11) 

The above property ensures the absence of discontinuous sOlutions to the 
equilibrium equation (3.7) and is responsible for the emergence of bifurcated 
(localized strain) solutions to the boundary value problem (3.7), (3.8) for 
average strains larger than e,,, as will be shortly discussed. It also ensures the 
stability of the uniform strain principal solution for strains ranging from zero 
past the strain at the macroscopic maximum load e,. up to the first bifurcation. 
The above condition (3.11) is overly restrictive, for it need not be satisfied for 
all strains Ux; it suffices to be valid for a neighborhood of e,,. However, this 
possibility will not be presently explored any further. 

3.4.1. Stability of principal solution and bifurcation points 

(i) Stability of the principal solution. 
To determine the stability of the principal solution (3.9) one must examine 

the positive definiteness of the functional (g,~(~,A)6u)6u (the second Frechet 
derivative of the structure's energy g) evaluated on the principal branch 
~(x, A) = ~x = Ax/L, 

(g,uu(U, A)6u)au = f ~ [ W"(~)(6U x) 2 + ~2h(~)(aU,xx) 2] dx. (3.12) 

Since all kinematically admissible functions 6u(x) must satisfy the essential 
boundary conditions 6u(O) = 6u(L) = 0 one can without loss of generality take 

f i u ( x ) = x / ~ . = , ~ '  6u, s i n \  L ] .J '  

which upon substitution into (3.12) yields 

(3.13) 

(¢,u~(?,, A)6ulau = W"(~) + ~2 h(~) 6u. . 
n = l  

(3.14) 

For as long as W"(~')+ e2(nn/L)2h(~)> 0, it follows from (3.14) that the 
0 

principal solution is stable. As expected for strains e = A/L < e,. the stability 
condition is always satisfied in view of (3.10), (3.11). 
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Let en be the closest to e,, root of 

W"(en) + e 2 h(en) = 0; n = 1,2 . . . . .  (3.15) 

Without loss of generality one can assume that W"(e)/h(e) is a monotonically 

decreasing function of e, in which case e m < el < e z < ..- < e,~'<-... Conse- 
quently, the first time that an instability is encountered as the displacement A 
increases is at A 1 = e~L. Notice that the longer the structure, the closer e I is 

to e m. 

(ii) Bifurcation points. 
At bifurcation, the critical end displacement Ab, strain eb (Ab = ebL) and 

corresponding eigenmodes t](x) are found from the variational statement 

b b (g uu(U (x, Ab), 0. , Ab)u )6u = (3.16) 

Using (3.9) and taking into account the essential boundary conditions ~(0) = 
6u(O) = ~(L)  = 6u(L) = 0 results in the following eigenvalue problem: find a 
solution ~(x) :~ 0 of 

Pt b 
2 ~ W (eb)u,~x O, (3.17) e. h(eb)U . . . .  x -  = 

~(0) = t~ xx(O) = ~(L) = t~ ~x(L) = O. (3.18) 

The solution to the above eigenvalue problem is easily found to be 

 sin(7); .... ,319, 

where the constants e n are defined in (3.15), and ~ is an arbitrary constant 
(which can be specified if a mode normalization condition is added). 

From the above analysis the following characteristics of the principal 
solution emerge. As the end displacement A increases from its zero initial value, 
the uniform strain solution is stable (i.e. minimizes locally the potential energy) 
and is devoid of bifurcation points for as long as A < A1 = e lL ,  with el the 
closest to e m and thus the smallest root of (3.15). An infinity of bifurcation 
points A n are encountered after the structure reaches its maximum load (at 
A m = emL ) starting with A 1 > Am. These bifurcation points tend all to cluster 
at A m as the length L of the structure increases. 
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3.4.2. Bi furcated ( local ized strain) solutions 

The bifurcated equilibrium solutions are found by solving the equilibrium 
equation (3.7) subject to the boundary conditions (3.8). First the bifurcated 
solution emerging from e I = At /L ,  the closest to e,, root of (3.15), will be 
presented. A simple modification of this solution procedure generates all other 
bifurcated equilibrium paths, which emerge at higher strains e. = A , / L ,  as will 
be shown subsequently. 

By introducing the notat~0n u,~ ==- e for the strain, (3.7) becomes a first order 
nonlinear ordinary differential equation in x(e), namely 

: [ = 
W ' ( e ) - ~  h(e) \ d e  J "  J c, e=-u,~,  (3.20) 

where c is the end force exerted on the structure. Upon integration of (3.20) 
from e to e o - e ( 0 ) =  u~(0) and taking into account the natural boundary 
condition in (3.8)1, e~(0) = u ~x(0) = 0, one obtains 

~e e° x = ~ {h (e ) /2[W(e)  - W(eo)  - c(e - eo)]} 1/2 de. (3.21) 

A consequence of the remaining natural boundary condition e,x(L ) = u x~(L) = 0 
in (3.8) 1 and (3.7) is the following expression for c: 

c = [W(eo)-W(eL)]/[eoT-el] ;  eL = e (L)=u ,x (L) ,  e o = e(0)=u.x(0). (3.22) 

With the help of (3.21) the wanted displacement u(x) = S~ u , x d x = S ~  e d x =  

~o e(dx/de)  de takes the form 

~e e° 
u(x) = ~ e {h (e ) /2 [W(e )  - W(eo) - c(e - eo)]} 1/z de. (3.23) 

The unknown values of the strain eo, e L at the ends of the structure are found 
from (3.21) and (3.23) by the requirements x(eL) = L, u(L) = u(x(eL)) = A, 

~e "p° 
L = ~ {h (e ) /2[W(e )  - W(eo)  - c(e - %)]} i/2 de, 

L 

(3.24) 

~e '° A = ~ e {h (e ) /2 [W(e )  - W(eo)  - c(e - eo)]} a/2 de. 
L 

(3.25) 
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Hence  the sought  bifurcated solution u(x) is expressed in pa ramet r i c  form 

with respect to the strain e according to (3.21)-(3.23), while the end values of 

the strain e o, e L are calculated by solving the system (3.24), (3.25). 
Several features of  the above  solution meri t  a t tent ion at this point.  It  is 

tacitly assumed here tha t  e varies monotonica l ly  between e o and  e L with 
e o > e > e L. The  a s sumpt ion  e o > e L does not  impair  general i ty for it s imply 

implies that  the highest strain occurs at  x = 0. The  choice e L > eo produces  the 

mi r ror  strain dis t r ibut ion abou t  x = L/2. The  monotonic i ty  of  e in the interval 

[0, L], i.e. e x < 0 for 0 < x < L, implies from (3.20), (3.22) that  

W(e) - W(eo) >>. c(e - eo), 

or equivalently 

W(e) - W(eL) >>.c(e -eL) ,  (3.26) 

where  the equali ty holds  only at  e = e o or  e = e L. A direct consequence  of(3.26) 

which follows by taking the limits e ---, e o and e ---, e L is 

W'(eo) <~ c <~ W'(eL). (3.27) 

The  strain at  bifurcat ion e 1 is the limit of  e o, e L as the principal  solut ion is 

app roached  f rom the bifurcated equil ibrium solution. Recall eo t> el >t eL. 
The  geometr ical  in terpre ta t ion  of the end force c (constant  t h roughou t  the 

structure) and the inequalities (3.26), (3.27) is depicted in the g raph  of the 

macroscopic  stress W'(e)-strain e relation shown in Fig. 3.1. The  force c is 

W/Ce) /~ 

W/(eL)C ~ l l r l l  illl Area___.  

W:( e o ? . . . . .  i_ j . . . . . . . . . . . . .  

> 

e L eme I e 0 e 
Fig. 3.1. Geometric  construction of the end force c acting on a bar with macroscopic s t ress -s t ra in  
relation given by W'(e) and the max imum and min imum strains respectively e o and e~: 
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found by constructing a line parallel to the e axis that cuts equal areas above 
and below the graph of W'(e) between e L and e o. For the curve W'(e) depicted 
in Fig. 3.1 with a monotonically decreasing branch for e > e,, the inequalities 
(3.26) and (3.27) may be satisfied for all e o > el. 

A typical graph for the strain distribution e = u x according to (3.21) as a 

function of x is depicted in Fig. 3.2(a) for e o > e L (and in Fig. 3.2(b) for 
e(O) = eL, e(L) = eo). The localization of the deformation pattern near x = 0 is 
obvious. The corresponding eigenmode at the bifurcation strain e I is also 
shown for comparison. 

e o 

e 1 

% 

e L 

X 

b 

u'~(x) l 

> 

L/2 L x 

(a) 

e o 

e I 

e m 

e L 

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii  
> 

b, l U,x(X 

L x 

j p , 1  I > 
L / 2  L x 

(b) 

Fig. 3.2. Typical strain profile and corresponding bifurcation eigenmode for bifurcated equilibrium 
solutions emerging at A~ = elL: (a) when the maximum strain occurs at x = 0 and (b) when the 
maximum strain occurs at x = L. 
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The generalization of the above results to include the bifurcated equilibrium 

solutions emerging from any other root e, = A,/L of (3.15) does not pre- 

sent any difficulties. As suggested by the corresponding strain eigenmode 
cos(nnx/L), which for n > 1 is no longer monotonically varying with x but 
varies periodically between a maximum and minimum value, the bifurcated 

equilibrium solution is periodic in [0, L] with semi-period L/n. The strain 

e = u x varies between a maximum of e o and a minimum of e L. Within each 
such half period (3.21)-(3.23) still hold while (3.24) and (3.25) are modified to 

e o 

e 2 

ern 

e L 

I > 
L/Z L 

b,x(x)/~ 

L /4  3L /4  L 

(a) 

%  iiiiiiiiiiiiii  ez 
ern 

e L 

' ' I 

L / 2  

U,x(X 

I 
I 

X 
L 

L /4  3L /4  L x 

(b) 
Fig. 3.3. Typical strain profi le and corresponding bifurcation eigenmode for bifurcated equi l ibr ium 
solutions emerging at A 2 = e2L: (a) when the maximum strain occurs at x = 0 and (b) when the 
maximum strain occurs at x = L/2. 
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read 

- = ~ {h(e)/2EW(e) - W(eo) - c(e - %)]} 1/2 de, (3.28) 
n 1. 

f [°  e {h (e ) /2 [W (e) - W(eo) - c(e - eo)]} 1/2 de. 
1, 

A 
- = ~ w . ~  

n 

The bifurcated equilibrium solutions which emerge from A, can be easily 
constructed by matching the equilibrium solution (3.21)-(3.23) and (3.28), 

e o 

e 3 

e m 

e L 

 iiiiiiiiiii  
I I 

L / 3  2 L / 3  

ub,~(x) 1 1 ~  

(a) 

> 
x 

> 
X 

e o 

% 

e m 

e L 
I I > 

X 
L I 3  2L13 L 

L / 6  L / 2  51_/6 L x 

(b) 

Fig. 3.4. Typical  s t ra in  profile and  co r re spond ing  bifurcat ion e igenmode  for bifurcated equ i l ib r ium 
so lu t ions  emerg ing  at  A 3 = e3L: (a) when the m a x i m u m  st ra in  occurs  a t  x = 0 and  (b) when the 
m a x i m u m  st ra in  occurs  a t  x = L/3. 
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(3.29) over  the half  pe r iod  L/n and  its mi r ro r  image  (ob ta ined  when e o < eL) 

at  the poin ts  x = mL/n where  m = 1, 2 . . . . .  n - 1. The  so cons t ruc ted  equi l ib-  

r ium solu t ion  u(x) is C 2 con t inuous  in the interval  [0 ,L] ,  i.e. u, u x u x = are  

con t inuous  funct ions of  x on [0, L] .  

The  s t ra in  d i s t r ibu t ions  for the bi furcated so lu t ions  from A2, A3, A4 toge ther  

with their  co r re spond ing  e igenmodes  are  dep ic ted  in Figs. 3.3-3.5. The  con-  

s t ruc t ion  of all o ther  b i furca ted  solut ions  (i.e. for n > 4) follows easily. 

To  each bi furca t ion  po in t  A, co r re spond  two bifurcated equ i l ib r ium sol- 

u t ions  as seen in Figs. 3.2-3.5. Solu t ions  (a) co r r e spond  to the m a x i m u m  st ra in  

era 

eL 

I I I ' 
L/4 L/2 3L/4 L 

(a) 

X 

> 
X 

eo 

era 

eL i 
I I I I ~. 

X L/4 L/2 3L/4 L 

U,x(X) 

(b) 

Fig. 3.5. Typical strain profile and corresponding bifurcation eigenmode for bifurcated equilibrium 
solutions emerging at A~ = e4L: (a) when the maximum strain occurs at x = 0 and (b) when the 
maximum strain occurs at x = L/4. 
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e o occurring at x = 0 while solutions (b) correspond to the minimum strain e L 
occurring at x = 0. Notice that for odd values of n the (a) and (b) equilibrium 
solutions are mirror images of each other with respect to x = L/2 while for 
even values of n the (a) and (b) solutions are different. 

4. Comparison of solutions for discrete and continuum models 

4.1. General remarks 

Two different types of models will be investigated in this section, according to 
their macroscopic behavior, i.e. according to the properties of W(ux) in (3.1). 
The first model, which will also be subsequently referred to as the type A 
model, has a stress-strain behavior W'(e) - e  (e = u,x) that is increasing for 
0 ~< e < e .  and for e > e* > e m with W'(e) --, oo as e ~ 0% while it decreases for 
em< e < e* as shown in Fig. 4.1(a). Such models are typically employed in 
calculations involving phase changes in solids as for example in James [19] and 
modeling dissipative response in elastoplasticity as in Abeyaratne and Knowles 
[2, 3]. The second model, which will also be subsequently referred to as the 
type B model, has a stress-strain behavior W'(e) - e  that is monotonically 
increasing for 0 ~< e < e,. and monotonically decreasing for e > e,, with 
W'(e) ~ 0 as e ~ oo as shown in Fig. 4.1(b). Models of this type have been 

employed in calculations involving progressive loss of load bearing capacity in 
solids past a certain critical strain and are essentially used in the soils- 
geomaterials literature often in association with damage as for example in 
Baz"ant [10] and Lasry and Belytschko [23]. 

A common feature of both the type A and type B models investigated here 
is that they each involve springs of length e and 24, i.e. q = 2 (see discussion in 
Section 2.1). The reason for this choice lies in the requirement (3.11) which 
mandates h(u~) > 0. Had only springs of length ~ been used in the model, i.e. 
q = 1, according to (3.4) W(u~)= w,(u,x) and h(u,~)= -w~(u,x)/12, which are 
in obvious contradiction to the requirements (3.10) and (3.11). 

The stability investigation of the equilibrium solutions is important, for it 
determines when a particular equilibrium branch is stable and thus observable 
in a quasistatic loading experiment. The stability of the principal solution for 
the continuum model has already been presented in Section 3.4. The stability 
calculations for all the equilibrium solutions (principal and bifurcated) of the 
discrete model are done numerically by investigating the positive definiteness 
of the second derivative of the potential energy ~ ...... subject to the displacement 
constraints u o -- 0, u N = A, evaluated at the equilibrium solution in question. 
Note that ~.uu is the stiffness matrix required by the incremental Newton- 
Raphson procedure, whose [L][D][U] = [~,u.] decomposition (EL] is a 



Higher order gradient continuum theories 277 
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Fig. 4.1. Macroscopic stress-strain behavior (a) for the type A model and (b) for the type B model 
based on the actual discrete micromodels employed in all the numerical/analytical calculations (see 
Sections 4.2 and 4.3 for the employed constants respectively). 

lower triangular matrix with unit diagonal elements, [D-I is a diagonal matrix 
and [U] = [L-] r) is automatically performed at every loading step as part 
of the solution procedure. Stability is simply decided by the sign of d = 
min(i= 1 ..... N-1)Dii where Dii are the diagonal elements of [D] (d > 0 ~ o*,,, is 
positive definite and hence the equilibrium solution under investigation is 
stable). 

The issue of imperfection sensitivity also merits attention. As discussed in 
Section 3.4, the perfect continuum structure of length L has bifurcation points 
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at strains en = An~L, and these bifurcations occur just past the strain level em 
corresponding to the maximum stress (e,~ < et < e 2 <.--). As the structure's 
length increases all bifurcation strains approach em. Exactly the same behavior 
is exhibited by the perfect discrete structure as has been verified numerically 
for all the examples considered in this work. Given that the occurrence of 
imperfections is inevitable in practice, the question that naturally arises is 
which will be the (unique) equilibrium branch followed during a loading 
history, starting at rest, of the imperfect structure. 

The answer to this question is simple. For small imperfections (taken here in 
the form of slightly different spring properties) the equilibrium solution remains 
close to the uniform strain solution of the perfect structure as long as all 
springs have strains lower than era. As soon as the weakest spring's strain 
exceeds e m a strongly localized deformation solution develops with a strain 
distribution in the form of Fig. 3.3(b) with the maximum strain occurring at 
the weakest spring. It has been verified numerically that although the location 
of the maximum strain depends on the site of the weakest spring, the bell shape 
of the strain distribution is very close to the bifurcated solution of the perfect 
structure that emerges from A2 (and whose corresponding eigenmode is t~(x)= 
cos(2nx/L)). In addition the force F - e n d  displacement A curves of these 
equilibrium solutions, which are essentially different from each other by a 
translation, are almost identical, as are their elastic energies (for a given strain 
at the weakest spring). 

The above results show that the most interesting, from a practical viewpoint, 
localized strain equilibrium solution is the full bell-shaped one with strains 
decaying on either side of the maximum strain. In order to avoid the 
introduction of imperfections in the model, and in view of the fact that the 
perfect structure's bifurcated branch emerging from A 2 is energetically almost 
neutral to parallel translations (i.e. for ~u(x)= const), the stability of this 
bifurcated equilibrium solution is studied under the additional assumption of 
the prescribed displacement u(L/2) = A/2. This additional kinematic require- 
ment plays the role of an imperfection at L/2, thus pinning the maximum strain 
at this point and stabilizing the solution against parallel translations. It should 
be mentioned at this point that an analytical investigation of the stability of 
the equilibrium solutions in a perfect infinite solid with continuum energy 
density given by (3.1) was presented by Alexiades and Aifantis [81 while Carr, 
Gurtin and slemrod [11] discussed the corresponding finite dimensional case. 
Their results are in agreement with the present investigation's findings that 
only the solutions with monotonically varying strain are stable (assuming no 
intermediate constraints of course). 

Three sets of graphs will be presented for each model type, comparing the 
results for the discrete and continuum version of each model. The first set of 
graphs will display the end load F - e n d  displacement A curves for the principal 
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and bifurcated equilibrium solutions. For the continuum model the end force 
F = c where c = W'(~) for the principal solution and c = (W(eo) W(eL))/ 
(e o -- eL) for the bifurcated solutions (see (3.7), (3.22)). For the discrete model 
F = Z~=, Y.ff=, fp(e~N-"+). 

The second set of graphs will display bifurcated (localized strain) solution 
strain distributions for the discrete and continuum versions of each model. All 
comparisons presented are taken from stable (and thus observable) parts of the 
bifurcated branches. 

The third set of graphs will display the stability results for the bifurcated 
equilibrium solutions of interest. In view of the close agreement between the 
continuum and discrete models, only the discrete model's stability calculations 
are presented. 

4.2. Type A model 

For this model, whose macroscopic stress W'(e)-strain e behavior has two 
increasing branches for 0 ~< e < e,, and e* < e < ~ and a decreasing one for 
e,, < e < e*, the energies %(e) and w2(e ) are the following sixth order poly- 
nomials 

1 1 1 
wi(e) = ~ Kie 2 - ~ Mi e4 + -6 Nie 6, i = 1, 2, e = u,x. (4.1) 

According to (3.4) the corresponding continuum energy density has the 
following form for W(e) and h(e) where e = u,x: 

1 1 1 
W(e) = ~ (K 1 + 2K2) e2 - ~ (M 1 + 2M2) e4 + ~ (N 1 + 2N2) e6' (4.2) 

1 (K 1 + 8K2) + 3 (M 1 + 8M2)e2 _ 5 (N l + 8N2)e4" (4.3) h(e) = 12 

The monotonicity of W'(e) for e near zero and also for large values of e 
dictates that (K 1 + 2K2) > 0 (I.1) and (N~ + 2N2) > 0 (I.2). The strains e .  and 
e* corresponding to the maximum and minimum stresses respectively, are 

I 3(M l + 2M2)-  [9(M l + 2M2) 2 - 20(K l + 2K2)(N 1 + 2N2)] 1/271/2 
e m ] 
e* = 13(M 1 + 2M2) + [9(M 

10(N 1 + 2N2) 

1 +2M2) 2 -20(K I +2KE)(Nl+2N2)]l/271/2 
] 

(4.4) 

10(N 1 + 2N2) 

For the above values of era, e* to be real, it is tacitly assumed that 
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3(M1 + 2M2) > [20(Kl + 2K2XN1 + 2N2)- I 1/2 (1.3). In addition the requirement 
(3.11) that h(e) > 0 dictates from (4.3) that (K 1 +8K2) < 0 (1.4), (M 1 +8M2) > 0 
(I.5), (N I + 8N2) < 0 (I.6). The constants used in this model are 

K 1 = 1 0 ,  M l = 1 0 ,  N I = 2 0 ,  

K 2 = -2 .5 ,  M 2 = 0, N 2 = -6 .4 .  

which satisfy the above-mentioned inequalities (1.1)-(I.6). According to (4.4)~, 
the local maximum stress of the principal solution (discrete and continuum) 

occurs at em= 0.47992. The corresponding macroscopic stress W'(e)- strain e 
diagram is depicted in Fig. 4.1(a). 

The lengths L = 96~ and e = 1 are used in all subsequent calculations. 

4.2.1. Comparison of  end force- end displacement diagrams 

The end force F-(dimensionless) end displacement A/L diagrams which show 
the equilibrium paths of the type A discrete and continuum models are 
depicted in Fig. 4.2(a), (b). 

The first four bifurcation points e, = An/L (n = 1, 2, 3, 4) for the continuum 
and the discrete models are listed below. 

Continuum Discrete 

e I = 0.480099 e~ = 0.480099 

e 2 = 0.480626 e 2 = 0.480625 

e 3 = 0.481509 e 3 = 0.481505 

e 4 = 0.482761 e 4 = 0.482724 

Recall that the bifurcation points for the continuum model are the appro- 
priate roots of (3.15), where W(e) and h(e) are given by (4.2), (4.3). The 

corresponding bifurcation points for the discrete model are found by inves- 
tigating the positive definiteness of the stability matrix ¢.uu(~,A) subject to 

the constraints 6u(O)= 6u(L)= 0 for the first bifurcation point e, = A1/L, 
6u(O) = 6u(L/2) = 6u(L) = 0 for e2 = A2/L, 6u(O) = 6u(L/3) = 6u(2L/3) = 6u(L) = 0 
for e 3 = A3/f.'and so on, since the corresponding eigenmode must vanish at 
these intermediate nodes. As expected, the accuracy of the continuum model 
decreases for higher eigenmodes, but it is quite remarkable that for the modes 
investigated the disagreement does not exceed 0.008%. Similarly, remarkably 
good agreement is found for the bifurcated (localized strain) equilibrium 
solutions. 

Certain important features of the bifurcated equilibrium solutions depicted 
in Fig. 4.2 are worth discussing. The first such feature is that bifurcation 
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Fig. 4.2. Comparison of the end force F-(dimensionless) end displacement A/L for a type A model 
of length L = 96e based on the continuum (solid line) and discrete (point marks) solutions for the 
first four (n = 1, 2, 3, 4) bifurcated solutions. Fig. 4.2(b) is an enlarged version of Fig. 4.2(a). 

initially occurs at decreasing end displacement.  Indeed at local izat ion one  or a 
few springs experience an increase in strain to a value above  the critical strain, 
whi le  the majority  of  springs experience a reduct ion in strain to a value be low 
the critical strain in order to satisfy the equi l ibrium equat ion for the structure. 
This  reduction in strain in the majority of  springs is responsible for the overall 
decrease  of  the end displacement  A from its critical value. 

As a bifurcation ampl i tude parameter  that increases m o n o t o n i c a l l y  in the 
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bifurcated equilibrium branch, we consider the maximum strain eo (see Section 
3.4.2). As the maximum strain e o increases, one can see from the graphic 
construction in Fig. 3.1 that the minimum strain e L decreases. For a type A 
material, the minimum value of eL that can be achieved without violating 
(3.26), (3.27) is the lower strain ~L, while the peak strain at the localized 
zone approaches ~o, where ~L, ~o are the strains for which the force 

= (W(eo)- w(eL))/(eo- eL) (see equation (3.22)) is the Maxwell line of the 
stress W'(e) -strain e curve (~ = W'(dL) = W'(~o)). See Fig. 4.3: 

Since in the bifurcated solution the force c should exceed ~ (according to 
(3.26), (3.27)), it follows that all the bifurcated equilibrium solutions lie above 
the Maxwell line, exactly as seen in Fig. 4.2. 

The evolution of each bifurcated equilibrium solution proceeds as follows. 
As the peak strain e o increases away from the bifurcation strain, the strain 
within the localized deformation zone increases while its size decreases rapidly 
from L/n to a fraction of L/n, attaining its minimum value. Thereafter the 
localized deformation zone size begins to slowly increase. As eo approaches ~o, 
the localized deformation zone increases rapidly in size, and spreads across the 
entire length of the structure. Subsequently, a uniform strain solution develops 
with e > ~o throughout the structure. The above behavior of the onset and 
propagation of the localized deformation zone is similar to the one reported in 
Kyriakides and Chang 1"22] who study the propagation of a bulge in an 
inflatable elastic cylindrical member subjected to internal pressure, although 
their model is an axisymmetric (two-dimensional) nonlinear elastic membrane 

W'(e) 2 '  

: : : :  -x._/'  

" 1:0 e 
0.2 eLeL eL eo eo eo 

Fig. 4.3. Graphic interpretation of the admissibility of solutions with maximum strain e o < to and 
inadmissibility of solutions with eo > to for continuum models of type A, where ~o and el, are the 
maximum and minimum strains corresponding to the Maxwell line. 
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model as opposed to the one-dimensional higher order gradient model em- 
ployed here. 

The most interesting feature in the continuum bifurcated equilibrium sol- 
utions shown in Fig. 4.2 is that they stop as A/L ~ eo. This is a limitation of 
the analytical model considered in (3.1), (3.7). For as long as the maximum 
strain e o < eo, a constant c can be found from (3.22) that satisfies the 
inequalities (3.26), (3.27). Any solution with e o > eo violates (3,'27) as one can 
see graphically from Fig. 4.3. The discrete solution does not suffer any such 
limitation. Notice the excellent agreement between the discrete and continuum 
bifurcated solutions at the initial part of the formation of the localized strain 
zone for n = l, 2, 3, 4, as seen in Fig. 4.2(b). 

4.2.2. Comparison of  strain profiles 

In addition to the comparison of the force F-(dimensionless) end displace- 
ment A/L diagrams, the strain profiles of the localized equilibrium solutions 
are compared in Fig. 4.4(a), (b), (c). The above strain distributions correspond 
to the first bifurcated solution of a structure of length L = 96e subject to 
u(L/2) = A/2 or equivalently, as discussed in Section 4.1, to the second 
bifurcation of the same structure without the above constraint. (The 
solution also coincides with the first bifurcated solution of a structure with 
L = 48e.) This equilibrium solution has a bell-shaped strain profile sym- 
metric about x = L/2 as discussed in Section 3.4.2 (see Fig. 3.3(b)) and 
thus only the right half is partially shown in Fig. 4.4. For the discrete 
model the strains in the springs of length e, el- = (u i - ui_ 1)/~, are plotted 
against node numbers i (for i >  N/2 = 48). For the continuum model the 
corresponding quantities are the average strains between nodes i and i - 1, 
ei = (1/e)~{~_l~edx = u( i ) -  u ( i -  1) (recall ~ = 1), and are plotted for the 
same range of node numbers. 

The above strain distributions have been calculated for force levels 
c a = 1.377, (a) c b = 1.369, (b) and c c = 1.365, (c) all of which are stable, and 
therefore observable, points along the bifurcated equilibrium path. Notice the 
excellent agreement between the discrete and continuum model strain distribu- 
tions at load points away from the Maxwell line load (d = 1.364), Fig. 4.4(a), 
(b). As the Maxwell line is approached and the localized strain zone begins to 
propagate through the model, the discrepancies between the discrete and 
continuum strain profiles become noticeable, Fig. 4.4(c), in view of the 
limitations of the continuum model in describing the propagation phase of the 
localized deformation. 

4.2.3. Discussion of  stability 

Finally our attention is turned to the discussion of stability for the bifurcated 
equilibrium solutions. For the reasons explained in Section 4.1, we investigate 
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Fig. 4.4. Comparison of strain profiles of discrete (solid bars) and continuum (shaded bars) 
solutions at three different load levels for the type A model with length L = 96e. All comparisons 
are within the stable range of the bifurcated equilibrium branch emerging from A2 = e2L. Only 
the right halves of the "bell-shaped" localized strain solutions are partially depicted here. 
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the stability of the symmetric bifurcated equilibrium solution with the.10calized 
strain zone centered at x = L/2 (the bifurcated equilibrium path emerging from 
A2), subject to u(L/2) = A/2. For comparison the stability of the asymmetric 
bifurcated equilibrium solution with the localized strain zone centered at x = 0 
(or x = L), i.e. the bifurcated equilibrium path emerging from A 1, is also 
presented. The results are depicted in Fig. 4.5. Solid lines represent stable 
equilibrium configurations while dashed lines represent unstable ones. 

Notice that the localized deformation solutions change stability at the point 
where the end displacement A stops decreasing, i.e. at dF/dA = oo. The 
mechanism which stops the decrease in end displacement and causes the end 
displacement to increase is both the growth of the maximum strain eo, and the 
growth of the localized strain zone size. The importance of these stability 
results lies in the fact that they show stability of the localized strain solutions 
after 'a minimum value of the applied displacement has been reached (at 
dF/dA = oo) during the localization process. Stability of the localized deforma- 
tion branch means observability in a quasistatic loading experiment. The 
stability results presented here are based on the discrete model. 

4.3. Type B model 

For this model, whose macroscopic stress W'(e) - strain e behavior increases 
monotonically to a maximum stress at e,, and then monotonically decreases to 
zero stress as e --* oo, the energies wl(e ) and w2(e ) respectively, are 

w~(e) = - 7  + e + 6In(1 + e) + ~ +  e l  

w2(e) _ ~  ( _ 1  + e +  l _ ~ e  ) je=-u=. (4.5) 
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0 , 2  0 .4  0 .6  0 ,8  1 .0  

A l L  

Fig. 4.5, Stable (solid line) and unstable (dashed line) regions of the principal and the first two 
(.n =-1,2) bifurcated equilibrium paths for the type A model of length L = 96~, 
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According to (3.4) the corresponding continuum energy density has the 
following form for W(e) and h(e) 

I e J (4.6) W(e)=6 In(1 + e )  l + e  ' 

1 e 
h(e) = 2 (1 + e) 3" (4.7) 

Attention is restricted here to tensile deformation e > 0. 
The requirement (3.11) that h(e)> 0 is automatically satisfied. Moreover 

(3.10) also holds and the maximum stress in the principal solution occurs for 

e,~ = 1. (4.8) 

The corresponding macroscopic stress W'(e)- strain e diagram is depicted in 
Fig. 4.1(b). 

As for the type A models, the lengths L = 96e and e = I arc uscd in all 

subsequent calculations. 

4.3.1. Comparison of end force- end displacement diagrams 

The end force F-(dimensionless) end displacement AlL diagrams which show 
the equilibrium paths of the type B discrete and continuum models are 
depicted in Fig. 4.6(a), (b). 

The first four bifurcation points e, = AJL (n = 1, 2, 3, 4) for the continuum 
and the discrete model are listed below. 

Continuum 

el = 1.000089 

e 2 = 1.000357 

e 3 = 1.000804 

e4 = 1.001430 

Discrete 

el = 1.000089 

e 2 = 1.000357 

e 3 = 1.000802 

e4 = 1.001412 

The procedures used to obtain the above results for the continuum and 
discrete models are identical to the ones followed for the type A model. The 
accuracy of the continuum models is even more remarkable since the maxi- 
mum discrepancy, which is observed for the fourth eigenvalue, is 0.0016%. 

For the same reasons given for the type A model, each bifurcated equilib- 
rium solution occurs initially at decreasing end displacement A. 

Again the monotonically increasing parameter along the bifurcated equilib- 
rium branch is the maximum strain e o. Unlike the previous model, there is 
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Fig. 4.6. Comparison of the end force F-(dimensionless),end displacement A/L for the type B 
model of length L = 965 based on the continuum (solid line) and discrete (point marks) solutions 
for the first four (n = 1, 2, 3, 4) bifurcated solutions. Fig. 4.6(b) is an enlarged version of Fig. 4.6(a). 

always the possibility of an analytical solution of the continuum model for any 
level of maximum strain e o. According to the graphic construction of the force 
c in Fig. 3.1, one can always find e L such that the inequalities (3.26), (3.27) are 
satisfied. 

The evolution of the bifurcated equilibrium solution proceeds as follows. As 
the peak strain e o increases away from the bifurcation strain, the strain within 
the localized deformation zone increases while its size decreases rapidly from 
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L/n to a fraction of L/n, attaining its minimum value. Thereafter the localized 
zone size increases very slowly while the peak strain e o grows without bound. 
No propagation is observed. A similar behavior for an infinite medium was 
found in Triantafyllidis and Aifantis 1"34]. 

Notice that the force-displacement diagram of the continuum model is in 
very good agreement with the results of the discrete model for n = 2, 3, 4. For 
n -- 1 no analytical solution was calculated due to numerical accuracy limits 
of the hardware. 

4.3.2. Comparison of strain profiles 

In addition to the comparison of the force F-(dimensionless) end displace- 
ment A/L diagrams, the strain profiles of the localized equilibrium solutions 
are compared in Fig. 4.7(a), (b), (c). The above strain distributions correspond 
to the first bifurcated solution of a structure of length L = 96e subject to 
u(L/2) = A/2 (same conditions as the ones mentioned in Section 4.2.2). Again 
this equilibrium solution has a bell-shaped strain profile symmetric about 
x = L/2 (see Section 3.4.2; see Fig. 3.3(b)) and thus only the right half is 
partially shown in Fig. 4.7. The discrete model length e spring strains are 
compared to the continuum model average strains between nodes for node 
numbers i > 48. (See Section 4.2.2 for details concerning the construction of the 
diagrams.) 

The above strain distributions have been calculated for force levels 
c a = 0.667, (a) c b = 0.590, (b) and c c = 0.506, (c) all of which are stable 
equilibrium configurations. The agreement between the discrete and continu- 
um model strain distributions is good. 

4.3.3. Discussion of stability 

Finally our attention is turned to the discussion of stability for the bifurcated 
equilibrium solutions. For the reasons explained in Section 4.1, we investigate 
the stability of the symmetric bifurcated equilibrium solution with the localized 
strain zone centered at x = L/2 (the bifurcated equilibrium path emerging from 
A2), subject to u(L/2) = A/2. For comparison the stability of the asymmetric 
bifurcated equilibrium solution with the localized strain zone centered at x = 0 
(or x = L), i.e. the bifurcated equilibrium path emerging from A 2, is also 
presented. The results are depicted in Fig. 4.8. Solid lines represent stable 
equilibrium configurations while dashed lines represent unstable ones. 

As for the type A models, the localized deformation solutions change 
stability at the point where the end displacement A stops decreasing, i.e. at 
dF/dA = ~ .  The mechanism which stops the decrease in end displacement and 
causes the end displacement to increase is the growth without bound of the 
maximum strain e o, and the slow growth of the localized strain zone size. As 
for the type A models the localized strain solutions are stable after a minimum 
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Fig. 4.7. Comparison of strain profiles of discrete (solid bars) and continuum (shaded bars) 
solutions at three different load levels for the type B model with length L = 96c,. All comparisons 
are within the stable range of the bifurcated equilibrium branch emerging from A 2 = e2L. Only the 
right halves of the "bell-shaped" localized strain solutions are partially depicted here. 
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Fig. 4.8. Stable (solid line) and unstable (dashed line) regions of the principal and the first two 
(n = 1,2) bifurcated equilibrium paths for the type B model of length L = 96~. 

value of the applied displacement is reached during the localization process, 
and thus are observable in a quasistatic loading experiment. 

5. Discussion and concluding remarks 

The present study provides a consistent methodology for deriving higher order 
gradient continuum macroscopic models from the properties of discrete, 
periodic microstructures. The work is done in the context of one-dimensional 
nonlinear elastic media, but the methodology can be generalized to planar and 
space models, as will be shown in a forthcoming paper. Moreover, the accuracy 
of the continuum models is evaluated via examples where the boundary value 
problem of stretching a finite length bar is solved twice, once using the discrete 
model, considered the exact model, and once using the corresponding continu- 
um model, considered the approximate one. It is found that the continuum 
models that fflcorporate only up to the second order displacement gradient 
give very accurate predictions of the end force-end displacement behavior as 
well as the shape of the localized deformation zone from the onset of 
localization up to the full development of the zone. For materials that exhibit 
a local maximum and a subsequent local minimum in their macroscopic 
stress-strain behavior (referred to in the text as type A materials), the 
continuum model fails to describe the propagation of the localized deformation 
zone. Whether the even higher order gradient continuum models-which are 
easily produced by the proposed method but do not have an analytical 
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solution-can correct this shortcoming remains to be investigated. Th~s defi- 
ciency is absent in materials whose macroscopic stress-strain curves decay to 
zero stress after reaching a maximum stress (referred to in the text as type B 
materials), since the maximum strain in the localization zone grows without 
bound and there is virtually no propagation stage. 

The issues of stability and imperfection sensitivity of the localized strain 
solutions-which are bifurcated solutions away from the uniform strain sol- 
ution of the bar, occurring slightly after the maximum force is reached-have 
also been investigated. Of interest are the localized strain equilibrium solutions 
with a "bell-shaped" strain profile. The reason for our attention to these 
particular bifurcated solutions lies in the problem's sensitivity to imperfections. 
It is found that a "belt-shaped" localized strain solution always appears at the 
weakest point of the structure, irrespective of the exact shape of the imperfec- 
tion. In addition, the imperfect structure's end force-end displacement and the 
corresponding strain profiles are essentially the same as the ones of the 

"bell-shaped" bifurcated solution of the perfect structure. Moreover these 
solutions are stable once the corresponding end displacement starts increasing 

(after an initial snap back). Stability implies observability of the "bell-shaped" 
localized strain equilibrium solutions in a quasistatic loading experiment and 
thus physical relevance. 

The present study is part of a number of recent studies on the relations 
between the microscopic failure mechanisms and their corresponding macro- 
scopic manifestations in solids with microstructure. In the interest of simplicity 
as well as mathematical consistency-disordered microstructures present sub- 
stantial mathematical difficulties once nonlinear phenomena are modeled and 
require a number of intuitive assumptions which are often difficult to prove- 
efforts are focused on periodic microstructures and mechanical failure modes 
during a quasistatic loading process in absence of rate, inertial or thermal 
effects. Although these studies are more fundamental in nature, they are hoped 
to lead to better understanding through more accurate modeling of a simple, 
yet quite useful, class of composites, namely those with periodic (or almost) 
microstructures, such as certain foam type materials, honeycombs etc. One part 
of these studies aims at relating macro and micro instability mechanisms at the 
onset of faildte (see Abeyaratne and Triantafyllidis [1], Triantafyllidis and 
Maker [331 Geymonant, Miiller and Triantafyllidis [16]) where the failure 
mechanism at the micro level is bifurcation buckling and the corresponding 
failure at the macro level is shear band localization. The present work is the 
first similar effort in the post failure range, where an effort is made to find 
continuum theories that are capable of describing the composite's behavior 
after the onset of the initial instability. Results from the one-dimensional model 
are very encouraging but more work is needed in studying the problem in two 
and three dimensions, an investigation that is currently under way. 
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