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Abstract. A constitutive theory which accounts for scission and cross linking processes in polymers
during deformation is used to analyze the torsion of a circular bar. In each increment of deformation
at a material element of the torsion bar, some volume fraction of material undergoes scission and
then re-cross links to form a new network with a new reference state. The scission process reduces
the ability of the material to transmit stress. The newly formed networks restore the ability of the
material to transmit stress. The total stress is assumed to be the superposition of the stress in the
remainder of the original material, determined by its deformation from its original configuration, and
the stress in each newly formed network, determined by the deformation in that network from the
configuration at which it formed.

The interaction of this material response with the inhomogeneous deformation during torsion is
studied. The analysis shows the evolution of regions of original and modified material, the softening
effects associated with the process of scission and re-cross linking and the occurrence of residual
stress and deformation on removal of load.
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1. Introduction

The general form of the constitutive equation for nonlinear elasticity, used to repre-
sent the mechanical response of rubbery materials, is expressed in terms of a strain
energy function. Although this strain energy function can be discussed using only
phenomenological considerations, it is often related to models which describe the
assumed response of macromolecules in cross linked rubber networks. Han et al.
[2] considered strain energy functions for several such macromolecular models and
compared their implications for uniaxial response with experiment.

Each of these models is associated with a single mechanism of macromolecular
response. Tobolsky [9] showed that another macromolecular mechanism can occur
during the response of rubber which causes a change in the microstructure. This
mechanism consists of scission and subsequent cross linking of macromolecular
networks and leads to substantial softening and permanent set on removal of the
applied load. Fong and Zapas [1] outlined a constitutive theory which is motivated
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by the work of Tobolsky and which allows for continuous recruitment of new cross
links, scission of existing cross links and their reformation or healing.

The implications of this constitutive theory for several homogeneous and non-
homogenous deformations have been explored by Wineman and Rajagopal [10],
Rajagopal and Wineman [7], Huntley [3], Wineman and Huntley [11], Huntley et
al. [4, 5]. For homogeneous simple shear, uniaxial and equal biaxial extension, they
showed that scission can lead to a reduction in the slope of a stress vs. strain graph
(softening) and scission-healing can result in the graph being nonmonotonic. The
reforming of cross-links also leads to permanent set on release of external loads.
For nonhomogeneous deformations of circular shear and spherical inflation, the
interaction of spatial variation of deformation with deformation induced scission
can lead to regions of highly localized deformations, the reduction of load carrying
capacity, and the presence of residual stresses and residual deformations on release
of load.

Although the preceding discussion has been in terms of a scission-healing mi-
cromechanism, the underlying modeling concept can be applied to other micro-
mechanisms, such as de-attachment and subsequent re-attachment of macromole-
cular bonds with inclusions such as filler particles. In this sense, the scission-
healing micromechanism provides a convenient intuitive model for the purpose
of developing a constitutive theory.

The present work explores the implications of the constitutive theory for the
torsion of a rubber cylinder. It extends a previous treatment by Wineman and
Rajagopal [10], in which attention was restricted to a discrete scission process
leading to a two-network theory. Here we consider a process of continuous scission
of existing cross links and their reformation or healing into new networks. The
constitutive theory is outlined in Section 2. The kinematics, stress expressions and
equilibrium considerations for torsion are presented in Section 3. A discussion of
the implications of scission on the softening of the shear stress-shear deformation
response curve is discussed in Section 4. It is shown when there is a sufficient
amount of scission, the shear stress-shear deformation response curve can become
nonmonotonic. The resultant moment and axial force on the cylinder are discussed
in Section 5. It is shown that if the shear stress-shear deformation curve becomes
nonmonotonic, then the moment-twist curve can also become nonmonotonic. Sec-
tions 4 and 5 discussed a process of increasing twist of the cylinder at a fixed length.
The response upon reversal of twist is treated in Section 6. When the moment is
reduced to zero, there is a residual twist and also an axial force. Section 7 discusses
the case when both the moment and axial force are reduced to zero, resulting
in permanent elongation and twist. When the twist is reversed, the shear at each
particle is reversed. It is shown in Section 8 that there is a discontinuity in the
slope of the shear stress-shear plot at each particle where scission has occurred.
This is shown to result in a corresponding discontinuity in the slope of the twisting
moment-twist plot.



TORSION OF AN ELASTOMERIC CYLINDER 219

2. Constitutive Equation

A detailed development of the constitutive equation can be found in the previously
cited references. For the sake of brevity, only the essential details are given here.

Consider a sample of material which is assumed to be homogeneous and in a
stress free configuration, which is taken as a reference configuration. The material
is subjected to a homogeneous deformation described by x = χ(X, t), in which x
is the current position of a particle located at X in the reference configuration. The
associated deformation gradient is F = ∂x/∂X.

It is assumed that there is a regime of deformations from the reference config-
uration in which the mechanical response is that of an incompressible, isotropic,
nonlinear elastic solid. The constitutive equation has the form

T = −pI + 2
[
W

(1)
1 B −W

(1)
2 B−1

]
, (2.1)

where B = FFT and −pI is the isotropic stress associated with incompressibility.
W(1) = W(1)(I1, I2) is the strain energy density function with I1 = tr(B) and
I2 = tr(B−1) being the first two invariants of B. Also,W(1)

α = ∂W(1)/∂Iα, α = 1, 2.
It is assumed that there is a set of deformations at which a new micromechanism

is activated. This event is characterized by introducing an activation criterion, a
scalar-valued function of F. This function vanishes when F corresponds to a config-
uration in the deformed state at which the new micromechanism is activated. Ma-
terial frame indifference, isotropy and incompressibility imply that the activation
criterion can be expressed as A(I1, I2) = 0.

Microstructural change or transformation of the original network is assumed to
occur continuously with increasing deformation. In order to describe this process,
a scalar parameter s is introduced, called the deformation state parameter, which is
determined by the extent of deformation. It is assumed that it can be expressed in
terms of the invariants of B: s = s(I1, I2). At the reference configuration, F = I
and s = 0. The value of s increases as the deformation increases. As this work
is concerned with torsion, in which a particle deforms in simple shear, it is clear
what is meant by increasing deformation. Microstructural transformation is initi-
ated when the state parameter s first reaches the activation value sa. The activation
criterion can be recast in terms of the state parameter: A(I1, I2) = s(I1, I2)− sa.

For s < sa, no conversion has yet occurred, the material has the original mi-
crostructure and the stress is given by (2.1). Consider a value of the deformation
state parameter ŝ > sa. During an increment of increasing deformation, some
volume fraction of network junctions of the original material is broken. The newly
broken network junctions immediately reform to produce a new network. Its ref-
erence configuration is the configuration of the original material at state ŝ and is
assumed to be an unstressed configuration. Define the deformation gradient for the
material formed at state ŝ as F̂ = ∂x/∂ x̂, where x̂ is the position of a particle in the
configuration corresponding to deformation state ŝ. The associated left Cauchy–
Green tensor is B̂ = F̂F̂

T
. It is assumed, for the sake of simplicity, that there is
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no scission of newly formed networks. During this process, the material is said
to be transforming to new networks. In the remainder of this article, the terminol-
ogy ‘network’ is generalized to refer to either the original material or any newly
transformed material.

The network formed at state ŝ is assumed to be elastic, isotropic and incom-
pressible. The extra Cauchy stress at state s in a network formed at deformation
state ŝ then becomes

T (2) = 2
[
W

(2)
1 B̂ −W

(2)
2 B̂−1]. (2.2)

Here, W(2) = W(2)(Î1, Î2) is the strain energy function for the material formed at
state ŝ and subsequently deformed to state s. Further, Î1 and Î2 are the appropriate
invariants of B̂. The strain energy functions W(1) andW(2) may each have any form.
It is assumed, for convenience, that W(2) governs the strain energy in each newly
formed network.

There is no relative motion between the networks, so that all networks have the
same current configuration. The total stress at each stage of deformation is defined
to be the superposition of contributions from the remaining portion of the original
material and from each network formed at deformation states ŝ ∈ [sa, s]. During
a process of increasing deformation, the Cauchy stress T at the deformation state
corresponding to state parameter s is given by

T = −pI + 2b(s)
[
W

(1)
1 B −W

(1)
2 B−1

]
+2

∫ s

sa

a(ŝ)
[
W

(2)
1 B̂ −W

(2)
2 B̂−1

]
dŝ . (2.3)

In (2.3), a(s) is a scalar-valued function which determines the rate of network
transformation induced by increasing deformation. It is subject to the conditions
a(s) = 0, s < sa and a(s) � 0, s � sa. The latter condition ensures that an in-
crease in deformation is associated with additional microstructural change. The
function b(s) is the volume fraction of the remaining portion of the original mate-
rial at state s, with b(s) = 1, s < sa and b(s) ∈ [0, 1], s � sa. b(s) decreases as
state parameter s increases.

Let C(s) denote the volume fraction of material formed by the new networks at
state s. Then

C(s) =
∫ s

sa

a(ŝ) dŝ. (2.4)

For the sake of simplicity, the rate of decrease of volume fraction of original
material is assumed to equal the rate of increase of volume fraction of new material,

b(s) = 1 − C(s) = 1 −
∫ s

sa

a(ŝ) dŝ. (2.5)

It is further assumed that at a deformation corresponding to s∗ > sa, there
is a sequence of deformations for which the state parameter can decrease, and
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(1) there is no further conversion of original material, (2) there is no reversal of
microstructural deformation. Then, a(s) = 0, and the upper limits of the integrals
in (2.3)–(2.5) are fixed at s∗. According to (2.5), b(s) is fixed at the value b(s∗)
given by

b(s∗) = 1 −
∫ s∗

sa

a
(
ŝ
)

dŝ, (2.6)

and (2.3) becomes

T = −pI + 2b
(
s∗)[W(1)

1 B −W
(1)
2 B−1]

+ 2
∫ s∗

sa

a(ŝ)
[
W

(2)
1 B̂ −W

(2)
2 B̂−1

]
dŝ. (2.7)

Equations (2.3)–(2.7) represent the complete statement of the constitutive equa-
tion.

3. Formulation

3.1. KINEMATICS OF DEFORMATION

Consider a solid circular cylinder of a homogeneous isotropic incompressible elas-
tomeric material which undergoes deformation induced microstructural change.The
undeformed cylinder has length Lo and radius Ro. The Z-axis of a cylindrical polar
coordinate system coincides with the cylinder’s centerline and the origin is located
at one end. The coordinates of a particle in the reference configuration are denoted
by (R,�,Z) and in the current configuration by (r, θ, z).

Twisting moments M are applied to the ends of the cylinder and its curved
surface is traction free. The deformation is assumed to be axisymmetric and is
described by

r = R, θ = �+ ψZ, z = Z, (3.1)

in which there is no length change and ψ denotes the angle of twist per unit length.
The deformation gradient in cylindrical polar coordinates is

F =
[ 1 0 0

0 1 Rψ

0 0 1

]
. (3.2)

It is seen from (3.2) that each material element of the cylinder is in a state of local
simple shear k = k(R) = Rψ . The current left Cauchy–Green tensor and is inverse
are, respectively,

B =
[ 1 0 0

0 1 + k2 k

0 k 1

]
, B−1 =

[ 1 0 0
0 1 −k
0 −k 1 + k2

]
. (3.3)
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The invariants are I1 = I2 = 3 + k2.
Recall the requirement that the deformation state parameter s(I1, I2) increase

with deformation. It can be seen that I1 and I2 increase monotonically with the
shear k, which acts as a parameter for the deformation. Thus the deformation state
parameter reduces to s(k), and is a monotonically increasing function of k. Let ka

denote the shear when s = sa, that is, sa = s(ka). The material particle at radius R
undergoes scission and forms a new network when the local shear k corresponds
to values of the deformation state parameter exceeding the activation value sa.

The activation criterion is met at different material elements at different twistsψ
and different volume fractions of new networks have formed at different material
particles at different ψ . The cylinder consists of three sets of material particles,
those that have not undergone microstructural change, those that are undergoing
microstructural change and those for which the activation criterion is satisfied at the
current ψ . The current configuration of the cylinder is not a natural configuration
associated with every network as different networks have been formed at different
twists ψ . (For a discussion of the notion of a ‘natural configuration’, see [6]).

Consider a particle where the shear is k̂ > ka.This corresponds to a state para-
meter ŝ = s(k̂). A new network is formed at this state. On subsequent deformation
to a value k > k̂, the new network has a relative deformation gradient denoted
as F̂ = F̂(k, k̂). In order to construct this deformation gradient, we follow the
discussion presented by Rajagopal and Wineman [8]. Let a thought experiment be
conducted in which every material particle of a body is in the same state of shear
as the particle of interest and undergoes the same deformation. The configuration
of the body at shear k̂ can be used as a natural configuration and serves as a refer-
ence configuration for use in defining a deformation gradient. Let the deformation
gradient in the original material at this state be denoted by F(k̂). At k > k̂, the
new network has the relative deformation gradient F̂ = F̂(k, k̂), which can be
constructed as

F̂
(
k, k̂) = F(k)F−1

(
k̂
)
. (3.4)

From (3.2) it follows that

F̂ =
[ 1 0 0

0 1 k − k̂

0 0 1

]
. (3.5)

The quantity k̂ is the shear of a particle of original material when a new network
is formed at state ŝ. The quantity k − k̂ is thus the current shear of the new net-
work relative to its reference configuration. For the new network, the relative left
Cauchy–Green tensor and its inverse are, respectively,

B̂ = F̂F̂
T =

[ 1 0 0
0 1 + (k − k̂)2 k − k̂

0 k − k̂ 1

]
, (3.6)
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B̂−1 =
[ 1 0 0

0 1 −(k − k̂)

0 −(k − k̂) 1 + (k − k̂)2

]
. (3.7)

The invariants of B̂ are Î1 = Î2 = 3 + (k − k̂)2.

3.2. STRESSES

When s < sa, the stresses are obtained from (2.1) and (3.3). When s > sa and
twist is increasing, the stress is given by (2.3), (3.3), (3.6) and (3.7). When twist is
decreasing, the stress is given by (2.7), (3.3), (3.6) and (3.7).

First consider the shear stresses. It is seen from (2.1), (2.3), (2.7) and the form
of (3.3), (3.6) and (3.7) that Trθ = Trz = 0. For s < sa,

Tzθ = µ(1)k, (3.8)

where µ(1) = 2(W(1)
1 +W

(1)
2 ), a shear modulus which depends on k2 through the

expressions for the invariants I1, I2. For s � sa, and increasing twist,

Tzθ = b(s)µ(1)k +
∫ s

sa

a(ŝ)µ(2)
(
k − k̂

)
dŝ, (3.9)

where µ(2) = 2(W(2)
1 +W

(2)
2 ), a shear modulus which depends on (k− k̂)2 through

the expressions for the invariants Î1, Î2. For decreasing twist,

Tzθ = b
(
s∗)µ(1)k +

∫ s∗

sa

a(ŝ)µ(2)
(
k − k̂

)
dŝ . (3.10)

Next, consider the normal stresses. These are written in terms of extra stresses,

Trr = −p + Trr , Tθθ = −p + Tθθ , Tzz = −p + Tzz. (3.11)

For the purpose of brevity, the expressions for the extra stresses will be given only
for the case of s � sa and increasing twist. The expressions when s < sa can be
recovered by setting a(ŝ) = 0 and b(s) = 1. The expressions for reversal of twist
can be recovered by setting s = s∗ in the upper limit of the integral and letting
b(s) = b(s∗). Thus,

Trr = 2b(s)
[
W

(1)
1 −W

(1)
2

] + 2
∫ s

sa

a(ŝ)
[
W

(2)
1 −W

(2)
2

]
dŝ, (3.12a)

Tθθ = 2b(s)
[
W

(1)
1

(
1 + k2

) −W
(1)
2

]
+ 2

∫ s

sa

a(ŝ)
[
W

(2)
1

(
1 + (k − k̂)2) −W

(2)
2

]
dŝ, (3.12b)

Tzz = 2b(s)
[
W

(1)
1 −W

(1)
2

(
1 + k2

)]
+ 2

∫ s

sa

a(ŝ)
[
W

(2)
1 −W

(2)
2

(
1 + (k − k̂)2

)]
dŝ . (3.12c)
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3.3. EQUILIBRIUM

Since k = Rψ , the deformation state parameter, the shear stress and the extra
stresses depend on R. When body forces are neglected, the equilibrium equations
in cylindrical polar coordinates reduce to the statements that p = p(R) and

dTrr
dR

+ Trr − Tθθ

R
= 0, (3.13)

where use is made of the relation r = R. Since the surface R = Ro is traction free,
Trr(Ro) = 0 and it follows from (3.13) that

−p = −Trr +
∫ Ro

R

Trr − Tθθ

R
dR. (3.14)

The normal stress distribution on the end of the cylinder becomes

Tzz = Tzz − Trr +
∫ Ro

R

Trr − Tθθ

R
dR. (3.15)

The resultant twisting moment and axial force are, respectively,

M = 2π
∫ Ro

0
TzθR

2
dR, (3.16)

N = 2π
∫ Ro

0
TzzR dR. (3.17)

With (3.15) and an integration by parts, this last expression can be written as

N = 2π
∫ Ro

0

(
Tzz − Trr

)
R dR + 2π

∫ Ro

0

(
Trr − Tθθ

)R
2

dR. (3.18)

4. Stresses – Increasing Twist

As was shown in Section 3, each particle undergoes a simple shear deformation,
with local shear k = Rψ . The deformation state parameter becomes s = s(Rψ).
At fixed twist ψ , the shear increases linearly and s increases monotonically with
radius R. At fixed R, the shear increases linearly and s increases monotonically
with twist ψ . Activation occurs when Rψ = ka.

For any twist ψ , the maximum shear in the cylinder is Roψ . If Roψ < ka, then
s(Rψ) < s(ka) = sa for 0 � R � Ro and the activation condition is not met at
any particle. Activation occurs initially at the outer radius at a twist ψa which is
such that Roψa = ka. Then, Rψa < ka, s(Rψa) < sa, 0 � R < Ro. If ψ > ψa,
then Roψ > Roψa and activation occurs at an interior radius Ra < Ro where
Raψ = ka = Roψa, or

Ra = ψa

ψ
Ro. (4.1)
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Then

s(Rψ) < s(Raψ) = sa, 0 � R < Ra,

s(Rψ) � s(Raψ) = sa, Ra � R < Ro.
(4.2)

Thus, there is an inner core of original material and an outer layer of material
undergoing microstructural change.

By (3.8), the shear stress in the inner core, 0 � R < Ra, is

Tzθ = µ(1)[(Rψ)2]Rψ. (4.3)

Next consider the particles in the outer layer, Ra � R < Ro. The particle at radius
R has undergone an amount of transformation corresponding to a state parameter
value of s(Rψ). Hence,

Tzθ = b
(
s(Rψ)

)
µ(1)[(Rψ)2]Rψ

+
∫ s(Rψ)

sa

a
(
ŝ
)
µ(2)[(Rψ − k̂

)2](
Rψ − k̂

)
dŝ . (4.4)

A numerical example shows how scission and cross-linking affect the shear
stress. To this end, several assumptions are made about the material response:
(1) the original material and the newly formed material are each neo-Hookean.

Then, µ(1) = 2W(1)
1 = c(1), a constant, µ(2) = 2W(2)

1 = c(2), another constant
and W(1)

2 = W
(2)
2 = 0;

(2) s(k) = k;
(3) the conversion process occurs over a finite interval of shear strains ka � k � kc

and the conversion rate function a(s) = a(k) has the form

a(k) =


0, k < ka

6C

(kc − ka)
3
(kc − k)(k − ka) k ∈ [ka, kc]

0, kc < k

, (4.5)

where C, by (2.5), is the total volume fraction of material converted to new
networks. The function b(s) = b(k) is found using (2.6). These assumptions
were used in by [3–5, 10] and motivation for these choices can be found there.

When these assumptions are used in (4.3) and (4.4), the shear stress in the inner
core, 0 � R < Ra, can be written as

Tzθ

c(1)
= Rψ, (4.6)

and the shear stress in the outer layer, Ra � R < Ro, can be written as

Tzθ

c(1)
= b(Rψ)Rψ +

∫ Rψ

ka

a(ŝ)
c(2)

c(1)

(
Rψ − k̂

)
dŝ. (4.7)
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Figure 1. Tzθ /c
(1) versus shear Rψ for several values of the volume fraction of conversion C.

Figure 1 shows a plot of Tzθ/c(1) versus Rψ for several values of the volume
fraction of conversion C. Calculations were carried out with ka = 0.5, kc = 2.65
and c(2)/c(1) = 1. The plots coincide and are linear for k ∈ [0, ka], since the relation
is given by (4.6). Each value of Rψcan be regarded as the maximum shear in the
cylinder, Roψ at Ro, for some twist ψ . Then, the portion of the plot from the origin
to this value of Rψshows the radial shear stress distribution corresponding to this
twist. When C = 0, there is no conversion, the response is neo-Hookean, and the
plot is the straight line given by (4.6). As C increases, scission reduces the stress
transmitted by the original material (softening), and the curves become shallower.
For shear near ka, the shear stress decreases due to scission of the original material.
As shear increases, the new networks begin to carry more stress and the curves
become steeper (stiffening). When C is small, initial softening occurs slower than
stiffening and the plots are monotonic. As C increases, initial softening occurs
faster than stiffening and the curves become nonmonotonic. Thus, the maximum
shear stress in the cylinder, at radius Ro for small twist, decreases with increas-
ing C. The radial variation of the shear stress may become nonmonotonic and the
maximum shear stress may occur in the interior of the cylinder.

The ratio of the shear modulus of the new material to that of the original ma-
terial, c(2)/c(1), also affects the plot of Tzθ/c(1) vs. Rψ . According to Figure 1, for
the case in which C = 0.75 and c(2)/c(1) = 1, the plot is monotonic but has a
portion with a very small slope. It can be shown that when c(2)/c(1) = 2, the curve
is monotonic, but significantly steeper. When c(2)/c(1) = 0.5, the curve becomes
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nonmonotonic. A detailed discussion of the influence of different properties on the
monotonicity of the plot, using the general equation (4.4), has been presented by
Huntley [3].

5. Moment and Axial Force – Increasing Twist

For sufficiently small twist, Rψ < ka at all radii. The moment–twist relation is
obtained by substituting (4.3) into (3.16). When the twist is large enough that there
is an outer layer of particles undergoing conversion, the integrand of (3.16) is given
by (4.3) for R ∈ [0, Ra] and by (4.4) for R ∈ [Ra, Ro], where Ra is determined
from (4.1). The moment–twist relation becomes

M = 2π
∫ Ra

0

{
µ(1)[(Rψ)2]

Rψ
}
R

2
dR

+ 2π
∫ Ro

Ra

{
b(s(Rψ))µ(1)[(Rψ)2]

Rψ

+
∫ s(Rψ)

sa

a
(
ŝ
)
µ(2)[(Rψ − k̂

)2](
Rψ − k̂

)
dŝ

}
R

2
dR. (5.1)

It was seen in Section 4 that when the twist and/or volume fraction of conversion
become sufficiently large, the shear stress can become nonmonotonic in the radius.
Since this occurs in the outer layer of the cylinder, which contributes more to the
resultant moment than does the inner core, it is possible that the moment–twist
relation can become nonmonotonic. In order to show this more precisely, note that
the derivative of the relation (3.16) with respect to the twist is given by,

dM

dψ
= 2π

∫ Ro

0

dTϑz(k)

dk

∣∣∣∣
k=Rψ

R
3

dR. (5.2)

As Figure 1 suggests, the slope of the Tθz vs. k graph can be negative in the outer
layer of the cylinder where R is largest, in which case it is possible that dM/dψ
< 0.

Let the response be neo-Hookean as in Section 4. When C = 0, the moment–
twist relation can be written as

M

c(1)(Iz/Ro)
= Roψ, (5.3)

where Iz = πR4
o/2. When C > 0, the moment–twist relation is given by (5.3)

when Roψ � ka. When Roψ � ka, the moment–twist relation is given by

M

c(1)
= 2π

∫ Ra

0

(
Rψ

)
R

2
dR

+ 2π
∫ Ro

Ra

{
b
(
s
(
Rψ)

)
Rψ +

∫ s(Rψ)

sa

a
(
ŝ
)c(2)
c(1)

(
Rψ − k̂

)
dŝ

}
R

2
dR. (5.4)



228 A. WINEMAN

Figure 2. M/(c(1)Iz/Ro) versus shear Roψ for several values of the volume fraction of
conversion C.

With the use of (2.6) and introducing x = R/Ro, this can also be written in the
form

M

c(1)(Iz/Ro)
= Roψ + 4

∫ 1

Ra/Ro

{ ∫ s(xRoψ)

sa

a
(
ŝ
)

×
[
c(2)

c(1)

(
xRoψ − k̂

) − xRoψ

]
dŝ

}
x2 dx. (5.5)

Figure 2 shows a plot of M/(c(1)(Iz/Ro)) versus Roψ for the same conditions
as used in the numerical example of Section 4. As C increases, the curve changes
from being a straight line, as in the neo-Hookean case, to one with a flatter portion
at larger twist. As C approaches unity, the curve becomes nonmonotonic, as dis-
cussed above. Thus, the scission and cross-linking process leads to a softening of
the moment–twist response.

Consider next the resultant axial force on the ends of the cylinder. This can be
calculated using (3.18) and the expressions for the extra stresses in (3.12a)–(3.12c)
which are appropriate to the regions R ∈ [0, Ra] and R ∈ [Ra, Ro]. The axial force
is given by

N

2π
= −

∫ Ra

0

[
W

(1)
1 + 2W(1)

2

]
R

(
Rψ

)2
dR
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−
∫ Ro

Ra

{
b
(
s(Rψ)

)[
W

(1)
1 + 2W(1)

2

](
Rψ

)2

+
∫ s(Rψ)

sa

a
(
ŝ
)[
W

(2)
1 + 2W(2)

2

](
Rψ − k̂

)2
dŝ

}
R dR. (5.6)

If both the original and newly formed networks are neo-Hookean, then W
(1)
2 =

W
(2)
2 = 0, and W(1)

1 and W(2)
1 are positive constants. The axial force on the cylinder

is then compressive.

6. Reversal of Twist

Let the twist be increased to ψ∗ and then be reversed. At the maximum twist ψ∗,
the boundary between the inner core of original material and the outer layer of
material having undergone microstructural change has radius R∗

a , where by (4.1),

R∗
a = ψa

ψ∗Ro. (6.1)

As the twist decreases, the deformation is assumed to be given by (3.1). At each
material element of the original material, the deformation gradient is given by
(3.2). The material element is undergoing simple shear, and the shear is decreasing.
The deformation state parameter is then decreasing and there is no microstructural
transformation. For the networks in the outer layer that formed as the twist in-
creased from ψa to ψ∗, the deformation gradient is given by (3.5). As the twist
decreases, there is a reduction and possibly reversal of shear. For simplicity of
discussion, it is assumed that no further transformation occurs. Thus, there is no
change in the radius R∗

a of the boundary between the inner core and the outer layer,
and in the material in the outer layer.

Consider the material element in the inner core at radius R ∈ [0, R∗
a ]. At any

twist ψ during the reversal, the shear stress distribution is still given by (4.3). Next,
consider the material element in the outer layer at radius R ∈ [R∗

a , Ro]. The volume
fraction of original material remains at b(s(Rψ∗)). For the networks formed as the
twist increased from ψa to ψ∗, the transformation rate a(s) = 0. By (3.10) and
(4.4), the shear stress in the outer layer, R∗

a � R < Ro, is

Tzθ = b
(
s
(
Rψ∗))µ(1)

[(
Rψ

)2]
Rψ

+
∫ s(Rψ∗)

sa

a
(
ŝ
)
µ(2)

[(
Rψ − k̂

)2](
Rψ − k̂

)
dŝ . (6.2)

When the original and newly formed networks are neo-Hookean, the shear stress
distribution in the inner core, 0 � R < R∗

a , is given by (4.6). The shear stress in
the outer layer, (6.2), reduces to

Tzθ = b
(
s
(
Rψ∗))c(1)Rψ +

∫ s(Rψ∗)

sa

a
(
ŝ
)
c(2)

(
Rψ − k̂

)
dŝ. (6.3)
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This can be written as

Tzθ = Rψ

[
b
(
s
(
Rψ∗))c(1) + c(2)

∫ s(Rψ∗)

sa

a(ŝ) dŝ

]
− c(2)

∫ s(Rψ∗)

sa

a
(
ŝ
)
k̂ dŝ.

(6.4)

Thus, at each fixed radius, the shear stress decreases linearly with twist ψ . If c(1) =
c(2), it follows from (2.6) that

Tzθ

c(1)
= Rψ −

∫ s(Rψ∗)

sa

a
(
ŝ
)
k̂ dŝ. (6.5)

and the stress-twist graph is a straight line parallel to that in the inner core.
The twisting moment is found from (3.16), (4.3) and (6.2) to be

M = 2π
∫ R∗

a

0

{
µ(1)

[(
Rψ

)2](
Rψ

)}
R

2
dR

+ 2π
∫ Ro

R∗
a

{
b
(
s
(
Rψ∗))µ(1)[(Rψ)2]

Rψ

+
∫ s(Rψ∗)

sa

a
(
ŝ
)
µ(2)

[(
Rψ − k̂

)2](
Rψ − k̂

)
dŝ

}
R

2
dR. (6.6)

When the original and newly formed networks are neo-Hookean, this becomes,
using (6.4),

M = c(1)ψ

[
2π

∫ R∗
a

0
R

3
dR

]
+ 2π

∫ Ro

R∗
a

{
Rψ

[
b
(
s
(
Rψ∗))c(1) + c(2)

∫ s(Rψ∗)

sa

a
(
ŝ
)

dŝ

]
− c(2)

∫ s(Rψ∗)

sa

a(ŝ)k̂ dŝ

}
R

2
dR. (6.7)

If c(1) = c(2), it follows from (2.6) that

M

c(1) (Iz/Ro)
= Roψ − 4

R3
o

∫ Ro

R∗
a

{∫ s(Rψ∗)

sa

a
(
ŝ
)
k̂ dŝ

}
R

2
dR. (6.8)

The moment–twist graph is a straight line parallel to that during the increasing
twist, as seen from (5.3). According to (6.8), when M = 0, there is a residual twist
ψres given by

ψres = 2π

Iz

∫ Ro

R∗
a

{∫ s(Rψ∗)

sa

a
(
ŝ
)
k̂ dŝ

}
R

2
dR, (6.9)

and is positive.
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Although M = 0, there can be a nonzero shear stress at each material ele-
ment. Since each original material element and the newly formed networks are in
a sheared state, there will also be normal stresses. A resultant axial force will still
be required to maintain the cylinder at its original lengh. This is given by (5.6),
making use of the discussion preceding (3.12),

N

2π
= −

∫ R∗
a

0

[
2W(1)

2 +W
(1)
1

]
R

(
Rψ

)2
dR

−
∫ Ro

R∗
a

{
b
(
s
(
Rψ∗))[2W(1)

2 +W
(1)
1

](
Rψ

)2

+
∫ s(Rψ∗)

sa

a
(
ŝ
)[

2W(2)
2 +W

(2)
1

](
Rψ − k̂

)2
dŝ

}
R dR. (6.10)

When the original and newly formed networks are neo-Hookean, W(1)
2 = W

(2)
2 = 0

and

N

2π
= −c(1)

∫ R∗
a

0
R

(
Rψ

)2
dR −

∫ Ro

R∗
a

{
c(1)b

(
s
(
Rψ∗))(Rψ)2

+ c(2)
∫ s(Rψ∗)

sa

a
(
ŝ
)(
Rψ − k̂

)2
dŝ

}
R dR. (6.11)

The resultant axial force is compressive.

7. Residual Deformation when Moment and Axial Force are Zero

It was shown in Section 6 that when the cylinder is twisted to ψ∗and then the
moment is reduced to zero, while the length is held fixed, an axial force is required.
In this section, the case is considered when the cylinder is twisted to ψ∗ and then
both the moment and axial force are reduced to zero. It is assumed, for the sake of
simplicity of analysis, that there is no further scission. Then the original network
and all networks which are subsequently formed up to ψ∗ respond elastically. By a
discussion similar to that in Section 6, it can be concluded that the interface radius
R∗

a does not change.
Let (r∗, θ∗, z∗) denote coordinates at the maximum twist ψ∗ of the point at

(R,�,Z) in the reference configuration. By (3.1)

r∗ = R, θ∗ = �+ ψ∗Z, z∗ = Z. (7.1)

Let (r̃, θ̃ , z̃) denote the coordinates of the point in the state in which the moment
and axial force are zero. It is assumed that the cylinder arrives at this state by a
change of length, radius and twist described by

r̃ = 1√
µ
r∗, θ̃ = θ∗ + ψ̃µz∗, z̃ = µz∗. (7.2)
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Then, the point in the reference configuration at (R,�,Z) has coordinates (r̃, θ̃ , z̃)
in the residual configuration given by

r̃ = 1√
µ
R, θ̃ = �+ (

ψ∗ + ψ̃µ
)
Z, z̃ = µZ. (7.3)

The residual length is then µLo, the residual radius is Ro/
√
µ and the residual twist

is (ψ∗ + ψ̃µ)Lo.
For the original material in the inner core and the remaining portion of original

material in the outer layer, the deformation gradient found from (7.3) is denoted by
F(x̃,X). Then

F
(
x̃,X

) =


1√
µ

0 0

0 1√
µ

r̃
(
ψ∗ + ψ̃µ

)
0 0 µ

 , (7.4)

and

B
(
x̃,X

) =


1
µ 0 0

0 1
µ + r̃2

(
ψ∗ + ψ̃µ

)2
r̃µ

(
ψ∗ + ψ̃µ

)
0 r̃µ

(
ψ∗ + ψ̃µ

)
µ2

 . (7.5)

Suppose that the cylinder is at twist ψ̂ , and consider the particle where the acti-
vation condition is satisfied and a new network is formed. If the particle is at radius
R, the shear in the original network is k̂ = Rψ̂ . As discussed in Section 3, let a
thought experiment be conducted in which the configuration of the cylinder at twist
ψ̂ is a natural configuration for every particle of the cylinder. This configuration
serves as a reference cofigutration for use in determining the deformation gradient
for any R when the twist increases to ψ > ψ̂ . Evaluating at the particle of interest
gives the deformation gradient at that particle. Let its deformation gradient in the
residual configuration be denoted by F(x̃, x̂). Then

F
(
x̃, x̂

) =


1√
µ

0 0

0 1√
µ

r̃
(
ψ∗ + ψ̃µ− ψ̂

)
0 0 µ

 , (7.6)

and

B
(
x̃, x̂

) =


1
µ 0 0

0 1
µ + r̃2

(
ψ∗ + ψ̃µ− ψ̂

)2
r̃µ

(
ψ∗ + ψ̃µ− ψ̂

)
0 r̃µ

(
ψ∗ + ψ̃µ− ψ̂

)
µ2

 . (7.7)
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In the residual state, it follows from (7.3) that the radius of the interface is
R̃∗

a = R∗
a/

√
µ and radius of the cylinder is Ro/

√
µ. The resultant moment is

M = 2π
∫ R̃o

0
Tzθ r̃

2 dr̃ , (7.8)

which reduces by (7.3) to

M = 2π

µ
√
µ

∫ Ro

0
TzθR

2
dR. (7.9)

For the sake of simplicity of presentation, both the original and newly formed
networks are assumed to be neo-Hookean. The shear stress distribution Tzθ is given
by:

Residual inner core: 0 � r̃ � R̃∗
a , Tzθ = c(1)r̃µ(ψ∗ + ψ̃µ) or, using (7.3),

0 � R � R∗
a , Tzθ = c(1)

√
µR

(
ψ∗ + ψ̃µ

)
, (7.10)

Outer layer: R∗
a � R � Ro

Tzθ = b
(
Rψ∗)c(1)√µR

(
ψ∗ + ψ̃µ

)
+

∫ Rψ∗

ka

a
(
k̂
)
c(2)

[
µ

√
µRψ̃ + √

µ
(
Rψ∗ − k̂

)]
dk̂. (7.11)

Let (7.10) and (7.11) be substituted into (7.9). On letting M = 0 and simplifying,
the resultant expression becomes∫ R∗

a

0
c(1)R

3(
ψ∗ + ψ̃µ

)
dR

+
∫ Ro

R∗
a

{
b
(
Rψ∗)c(1)R3(

ψ∗ + ψ̃µ
)

+R
2
∫ Rψ∗

ka

a
(
k̂
)
c(2)

[
µRψ̃ + (

Rψ∗ − k̂
)]

dk̂

}
dR = 0. (7.12)

Using (2.6), this can be re-written in the form

(
ψ∗ + ψ̃µ

)[
c(1)

∫ R∗
a

0
R

3
dR + c(2)

∫ Ro

R∗
a

R
3

dR

+ (
c(1) − c(2)

) ∫ Ro

R∗
a

R
3
b
(
Rψ∗) dR

]
= c(2)

∫ Ro

R∗
a

{
R

2
∫ Rψ∗

ka

a
(
k̂
)
k̂ dk̂

}
dR. (7.13)
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If c(1) = c(2), this reduces to(
ψ∗ + ψ̃µ

) = 1

Iz

∫ Ro

R∗
a

{
R

2
∫ Rψ∗

ka

a
(
k̂
)
k̂ dk̂

}
dR. (7.14)

This is an expression for the residual twist, which is seen to be positive.
Now consider the resultant axial force in the residual state. This is given by

N = 2π
∫ R̃o

0
Tzzr̃ dr̃ , (7.15)

which reduces by (7.3) to

N = 2π

µ

∫ Ro

0
TzzR dR. (7.16)

As in Section 3, this can be written in terms of the extra stresses defined in (3.11),

N = 2π

µ

∫ Ro

0

[(
Tzz − Trr

) + 1

2

(
Trr − Tθθ

)]
R dR. (7.17)

When the material is neo-Hookean, the terms in the integrand of (7.17) are as
follows:

Residual inner core: 0 � R � R∗
a ,

Tzz − Trr = c(1)
(
µ2 − 1

µ

)
, (7.18)

Trr − Tθθ = −c(1)

µ
R2

(
ψ∗ + ψ̃µ

)2
. (7.19)

Outer layer: R∗
a � R � Ro

Tzz − Trr = b
(
Rψ∗)c(1)(µ2 − 1

µ

)
+

∫ Rψ∗

ka

a
(
k̂
)
c(2)

(
µ2 − 1

µ

)
dk̂, (7.20)

Trr − Tθθ = −b(Rψ∗)c(1)
µ
R2(ψ∗ + ψ̃µ

)2

+
∫ Rψ∗

ka

a
(
k̂
)(−c(2))[ R√

µ
ψ̃µ+ 1√

µ

(
Rψ∗ − k̂

)]2

dk̂. (7.21)

On using (7.18)–(7.21) in (7.17), making use of (2.6), and then setting N = 0, one
obtains(

µ3 − 1
)[
c(1)

∫ R∗
a

0
R dR + c(2)

∫ Ro

R∗
a

R dR + (
c(1) − c(2)

) ∫ Ro

R∗
a

b
(
Rψ∗)R dR

]
− c(1)

2

(
ψ∗ + ψ̃µ

)2
[∫ R∗

a

0
R

3
dR +

∫ Ro

R∗
a

b
(
Rψ∗)R3

dR

]
− c(2)

2

∫ Ro

R∗
a

R

∫ Rψ∗

ka

a
(
k̂
)[
R

(
ψ∗ + ψ̃µ

) − k̂
]2

dk̄ dR = 0. (7.22)
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The residual twist ψ∗ + ψ̃µ is known from (7.13), the condition that M = 0. The
above is an equation for the residual stretch µ. If c(1) = c(2), (7.22) reduces to

µ3 − 1 = 1

R2
o

(
ψ∗ + ψ̃µ

)2
[∫ R∗

a

0
R

3
dR +

∫ Ro

R∗
a

b
(
Rψ∗)R3

dR

]
+ 1

R2
o

∫ Ro

R∗
a

R

∫ Rψ∗

ka

a
(
k̂
)[
R

(
ψ∗ + ψ̃µ

) − k̂
]2

dk̄ dR, (7.23)

and it is seen that µ > 1.

8. Discontinuity of Slope on Reversal of Twist

When the twist is reversed at ψ∗, the shear at each particle is reversed. There is
no discontinuity in the slope of the shear stress vs. shear plot in the elastic core. It
is shown here that there is a discontinuity in the slope of the shear stress vs. shear
plot at each particle where new networks have formed, that is, in the outer layer.
This is shown to result in a corresponding discontinuity in the slope of the twisting
moment vs. twist plot.

Since k = Rψ , shear increases as twist increases. At a particle in the outer
layer, the shear stress vs. shear relation during increasing shear is given by (3.9).
Then,

dTzθ
dk

= db(s)

ds

ds(k)

dk
µ(1)k + b(s)

d

dk

[
µ(1)k

] + ds

dk
(k)

[
a
(
ŝ
)
µ(2)(k − k̂

)]∣∣
ŝ=s,k̂=k

+
∫ s

sa

a
(
ŝ
) d

d(k − k̂)

[
µ(2)(k − k̂

)]
dŝ . (8.1)

The third term in (8.1) vanishes. Let (8.1) be evaluated at maximum twist ψ∗,
where k = k∗ and s = s∗. The slope of the shear stress vs. shear plot corresponding
to increasing shear, evaluated at the maximum shear, is then

dTzθ
dk

∣∣∣∣
inc

= db(s∗)
ds

ds(k∗)
dk

[
µ(1)k

]
k=k∗ + b

(
s∗) d

ds

[
µ(1)k

]
k=k∗

+
∫ s

sa

a
(
ŝ
) d

d(k − k̂)

[
µ(2)

(
k − k̂

)]
dŝ

∣∣∣∣
k=k∗

. (8.2)

The slope of the shear stress vs. shear plot corresponding to decreasing shear,
evaluated at the maximum shear, is found by differentiating (3.10) with respect
to the shear, and evaluating at k = k∗ and s = s∗,

dTzθ
dk

∣∣∣∣
dec

= b
(
s∗) d

ds

[
µ(1)k

]
k=k∗ +

∫ s∗

sa

a
(
ŝ
) d

d(k − k̂)

[
µ(2)(k − k̂)

]
dŝ

∣∣∣∣
k=k∗

.

(8.3)
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It then follows that

dTθz
dk

∣∣∣∣
dec

− dTθz
dk

∣∣∣∣
inc

= −db(s∗)
ds

ds(k∗)
dk

[
µ(1)k

]
k=k∗ . (8.4)

The deformation state parameter increases monotonically with the shear and the
volume fraction of original material decreases with increasing deformation. Thus,
db(s∗)/ds < 0 and ds(k∗)/dk > 0. The factor [µ(1)k]k=k∗ is the shear stress at
k = k∗ and is positive. According to (8.4), at reversal of the shear, the slope of the
shear stress vs. shear plot is steeper on decreasing shear than on increasing shear,
as would be expected.

The twisting moment is related to the shear stress by (3.16). The slope of the
twisting moment–twist relation, for increasing or decreasing twist, is given by

d

dψ

(
M

2π

)
= d

dψ

∫ Ro

0
R

2
Tzθ (Rψ) dR =

∫ Ro

0
R

3 dTzθ (Rψ)

dk
dR, (8.5)

where use has been made of the relation k = Rψ . Let this be evaluated at maximum
twist ψ∗ for both increasing and decreasing twist. Then[

d

dψ

(
M

2π

)∣∣∣∣
dec

− d

dψ

(
M

2π

)∣∣∣∣
inc

]∣∣∣∣
ψ=ψ∗

=
∫ Ro

0
R

3
[

dTzθ (Rψ)

dk

∣∣∣∣
dec

− dTzθ (Rψ)

dk

∣∣∣∣
inc

]
dR

∣∣∣∣
ψ=ψ∗

. (8.6)

Since there is no discontinuity in the slope of the shear stress vs. shear plot in the
elastic core,

dTzθ (Rψ)

dk

∣∣∣∣
dec

− dTzθ (Rψ)

dk

∣∣∣∣
inc

= 0, (8.7)

0 � R � Ra. (8.6) then reduces to[
d

dψ

(
M

2π

)∣∣∣∣
dec

− d

dψ

(
M

2π

)∣∣∣∣
inc

]∣∣∣∣
ψ=ψ∗

=
∫ Ro

Ra

R
3
[

dTzθ (Rψ)

dk

∣∣∣∣
dec

− dTzθ (Rψ)

dk

∣∣∣∣
inc

]
dR

∣∣∣∣
ψ=ψ∗

. (8.8)

By (8.4), the integrand is positive for Ra � R̄ � Ro. It follows that[
d

dψ

(
M

2π

)∣∣∣∣
dec

− d

dψ

(
M

2π

)∣∣∣∣
inc

]∣∣∣∣
ψ=ψ∗

> 0. (8.9)

At ψ∗ the slope of the moment vs. twist plot is steeper on decreasing twist than on
increasing twist, as would be expected.
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