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The angular discllnation 
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ABSTRACT 

Similarly to the angular dislocation introduced by Yoffe, the angular disdination is a basic configuration 
that is suitable for generating polygonal loops by superposition. The displacements in an unbounded 
elastic material are given and the generation of dosed loops discussed. 

R~Str~ 

La disclinaison angulaire est une configuration fondamentale la plus facile ~ construire des disclinaisons en 
polygone, tout comme daus le cas de la dislocation angulaire introduite par Yoffe. Nous donnons ici les 
d6placements dans un milieu ~lastique infini et discutons la m~thode de construction des disclinalsous en 
polygone. 

Introdnetion 

Suppose that an elastic body is cut along a surface Z, the two sides of the cut 
displaced with respect to each other and the material rejoined by welding, gluing or 
similar means. The body is then left in a state of residual stress and is said to contain 

a Somigliana dislocation. If the relative displacement of the two sides of the cut is of 
the same form in position coordinates as the infinitesimal motion of a rigid body, the 

operation is called a Volterra dislocation. A special property of the Volterra 
dislocation is that it leads to a state where all components of stress are continuous at 

the cut ~. Especially in solid state physics, a Volterra dislocation that involves only a 
translational displaoement discontinuity is called simply a dislocation, but one 
containing also rotation a disclination [1]. The separation of Volterra dislocations 
into simple dislocations and disclinations is not  unique because the same infinitesi- 
mal rigid body displacement can be achieved by using different axes of rotation and 
adjusting its translational part. A unique decomposition of a Volterra dislocation 
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into a simple dislocation and a pure disclination has been proposed by Dundurs [2] 
and discussed further by Kr6ner  and Anthony [3]. 

The idea of an angular dislocation was first advanced by Elisabeth Yoffe [4]. The 
importance of this configuration lies in the fact that angular dislocations can be 
superposed to yield a polygonal dislocation loop of arbitrary shape. The purpose of 
this paper is to present the displacement fields of angular disclinations in the 
unbounded elastic solid. Combining these results with the expressions given by Yoffe 
[4], it is possible to construct the elastic fields of closed polygonal disclination loops. 

Approach 

The angular disclination is associated with the two coordinate systems Yl, Y2, Y3 and 
"01, "02, *13, as shown in Figure 1. Thus, 

'0 ~--" Yl ,  

712 = Y2 COS 3' -- Y3 sin 3", (1) 

"03 = Y2 sin 3' + Y3 COS 3". 

The displacement discontinuity is imposed on the plane region £ which is shaded in 
Figure 1. The axis of rotation for the disclination is taken at the vertex of this 
sectorial region, so that the displacement discontinuity in the coordinate system yl, 

Y2, Y3 is 

[Ul] = eijktojyk, (2) 

where toj is the infinitesimal rotation of one side of the cut of £ with respect to the 
other  side. 

The displacement field for the angular disclination in the infinitely extended 

I x 

Figure 1. Angular disclination. 
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material can be generated by means of the Volterra formula [5]: 

urn(y) = ~--~ 

i , j ,k , l ,m = l ,2 ,3 ,  

where 

(") dS(x), (3) ~,ijktO]Xk T il n l  

Ti3' = (1 - o t ) r - 3 [ t ~ i l ( X m  - ym) - -  ~ I m ( X i  - -  yl)  - -  t~ im(Xl  - -  y/ ) ]  

-3ar -S (x i  - yi)(xm - y,.)(xz- Yl), (4) 

r 2 = ( x ,  - y , ) ( x ,  - y , ) ,  ( 5 )  

1 
a = - -  (6) 

2(1 - v) 

with v denoting Poisson's ratio, and the sign convention is the same as used by 
Steketee [5]. 

The integrals that evolve from (3) can be reduced to elementary functions. The 
details involving some changes of variables are straightforward, if tedious, and all 
intermediate steps are suppressed in this article. It might be mentioned, however, 
that apart from rigid body displacements, which are of no consequence, the integrals 
yield also displacements that correspond to homogeneous states of stress. Terms of 
such nature have been discarded because the principal interest in the angular 
disclination arises from its suitability in generating closed polygonal loops by 
superposition. For a closed loop, the stresses must vanish at large distances from the 
loop and, consequently, a final adjustment to enforce the proper boundary condi- 
tions at infinity may have to be made in each case individually. 

The following notation is employed in the subsequent expressions: 

{O(*/2, */3)} [g = 0(*/2, */3)- O(y2, y3), (7) 

R = ( y 2 _  2_ 2,1/2 - I - Y 2 - I - Y 3 )  = ( * / 2 +  */2"$'*/3)2-- 2\1/2 (8)  

Furthermore, the multivalued function 

~b = tan -~ y2_  tan_X '!2+ tan-~ y~R sin 3' (9) 
yl yl y2 cos ~/+ Y2./2 

appears in many components of the displacements. 

Rotation vector (to1, 0, 0) 

The displacement components for this case are 

u ~ -  8~-(1-v)  ( 1 - 2 v ) * / 3 1 n ( R - * / 3 )  R - * / 3 J  ' (10) 
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¢.91 
uz = ~ ys~ 

o1 { 
8~r(1 - v) Yl ( 1 - 2 v )  sin 3' In (R - 73) 

mc°s3'l ~ 
R - ~ 3  . I  ' 

u3 = - ~ yz4~ 8 1 r ( 1 - v )  Yl ( 1 - 2 v ) c o s  3 " l n ( R - ~ l a ) +  m - ~ 3 ~  o 

For  the special case of 3' = ~" or  a straight twist disclination, 

,,>1 [ _y~]  
u ~ = 4 ~ . ( l _ v )  Y3 ( 1 - 2 v ) l n p  #)2j, 

to1 to1 YlY2Y3 
u2 = 2--~ Y3 tan -1 Y2_ 2 

Yl 4 I t ( l - v )  t9 

0) 1 (1 - -  2 V ) t O 1  
u3 = ~ y2 tan -1 Y2_~ Yl In p, 

Yl 4" t r (1-  v) 

where  

o ~ = y~ + y~. 

(11) 

(12) 

(13) 

(14) 

(15) 

(16) 

Rotat ion  vector (0,  to2, O) 

In this case we have 

0) 2 002 { 
/'ll = - -  ~ Y 3 ~  "~ 87r(1 - v) Yl ( 1 - 2 v )  sin 3, In (R - n3) 

y2 sin 3, t y3~2. ~ Iv 
R-"03 R(R-113)J o '  

I u2 = -81r (1  - v) ( 1 - 2 v )  cos 2 3'[R + ~13 In (R - ~3)]+ y2 cos 2 3'/ 
R - ~ 3 J  0' 

0) 2 0)2 { 
u3 =4 -~  Yl~b + 8"tr(1 - v) ( 1 - 2 v ) [ R  cos 3' sin V 

- -  ( T ~ 2 -  '~3 coS 3' sin 3') In (R - 7/a)]-  R - '13 0 

For  3, = ~r, 

o2 tan-1 y2_  to2 yly2y3 
u l = - ~ y 3  yl 4 o r ( l - v )  192 ' 

co2 [ 2] 
u 2 = 4 1 r ( ~ _ v  ) ya ( 1 - 2 v ) l n p +  yl  , 1o2.1 

co2 (1 - 2v)to2 
u3 = 4---~ Yl tan -1 Y2+ Y2 In 

(17) 

(18) 

(19) 

(20) 

(21) 

(22) 
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Rotation vedor (0, 0, ~3) 

The results for this case are 

0)3 0)3 { 
Ul ---- ~ Y2(~ ~ 8~r(1 - v) ya (1 - 2v) cos 7 In (R - ~13)- ~2 sin 

R - ~  

tO 3 (O 3 { 
u2 = - ~w Y14~ "~ 8¢r(1 - v) ( 1 - 2 v ) [ R  cos 3, sin 3' 

U 3 = 

~3 o ' 

+ (~/2 + ,/3 cos ~/sin y) In (R - ~3)] + Y2 c°s ~/sin ~/} ] v 
R-~/3 o' 

~--~w(TL- ~ t.1 - 2 v)[R + n3 

For the special case of , /=  w or a straight wedge disclination 

t03 Y2 ( 1 -  2v)to3 
Ut = ~ Y2 tan -1 Yl In p, 

Yl 4~-(1-v)  

t03 Y2 (1 -- 2V)tO3 
U2 = -- ~ Yl tan -1 Y2 In p, 

Yl 4~r(1--'v) 

u3=0.  
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(23) 

(24) 

(25) 

(26) 

(27) 

Generation of dosed loops 

The displacement discontinuity of a Volterra dislocation is of the form 

[Ui] = b i + Ei]ktOj(Xk --  XO), (28) 

where b~ is the translational displacement, to~ the rotation, x~ the position vector, and 
x ° a constant vector on the cut ]£ which establishes the axis of rotation. 

For simplicity consider a triangular loop, such as indicated in Figure 2. The figure 
also shows the three angular Volterra dislocations that upon adding yield the 
triangular loop: They are associated with the exterior angles of the loop, the cuts 
over which the displacements are discontinuous are indicated by shading, and the 
infinite parts of their legs cancel. Consequently, the area over which the displace- 
ment discontinuity appears to be imposed is exterior to the loop. However, the 
discontinuity can be shifted inside the loop by superposing a rigid body displacement 
of the semi-infinite solid above the loop with respect to that below the loop. 

The position vectors of the vertices of the triangular loop are denoted by x~ x), x~ 2), 
x~ 3). The displacement discontinuities of the angular Volterra dislocations shown are 

EqktOj [Xk-- 
[u~ 2)] = b~ 2) + (2)rx X(2)], (29) SilkIJO] L k -  

[u~3)] = b~3)+ (3) x~3)], EijkOJj [3gk-- 
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Figure 2. Triangular disclination loop. 

where the superscripts refer to the three angular configurations. If these discon- 
tinuities are to add to a single rigid body displacement, the obvious requirements are 
that 

o9} 1)= eo} 2)= (o) a)= o~j (30) 

b ~ ' -  ~,i~o~jx(~ " = b~ ~ ) -  (~) ~(~) e ~ , x  (~) ~ijk~OjXk =~,~ -- ijk j k .  (31) 

h (z) and b~ 3) in terms of b~ 1). However, following the Equations (31) thus fix, say vi 
Dundurs suggestion [2] of making the axis of rotation pass through the centroid of 
the loop fixes all translational displacements, and 

b~ ~) = ~,jko)j[X(k ~)-  Xk], (32) 

where X k  is the position vector of the centroid. In addition, (32) is perfectly general 
and holds for a polygon with any number of sides whether plane or not. 

It may also be noted that triangular Volterra dislocation loops may be used to 
approximate by triangulation a general Somigliana dislocation for which the dis- 
placement discontinuity is a general function of position on the cut. Therefore, the 
displacements given here, combined with those derived by Yotte, can be used to 
construct, in a sense, a finite element scheme to treat dislocations of a general nature 
in the unbounded medium. 
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