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Abstract. The application of geostatistics to spatial interpolation of time-invariant properties in
ground-water studies (such as transmissivity or aquifer thickness) is well documented. The use
of geostatistics on time-variant conditions such as ground-water quality is also becoming more
commonplace.

Unfortunately, the detection of temporal changes in spatial correlation through direct comparison
of experimental semivariograms is difficult due to the uncertainty in sample semivariograms con-
structed from field data. This paper discusses the use of the jackknife approach to estimate confidence
limits of semivariograms of trichloroethane (TC) and other volatile organic compounds (VOC) in
contaminated ground-water in northern Illinois. Examination of the ‘spread’ of the confidence limits
about the semivariograms created from two types of sampling networks are discussed.
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1. Background

Practitioners have particularly appreciated the use of kriging techniques to inter-
polate contaminant concentrations where the number of sampling points is limited
as well to provide information on the spatial correlation of those points. However,
few practitioners are aware of the importance of temporal changes in the spatial
correlation of ground-water quality when they apply these estimation techniques.

1.1. THE JACKKNIFE METHOD OF SEMIVARIOGRAMESTIMATION

An important consideration regarding the design of geostatistically based sam-
pling networks is that hydrogeochemical fields often vary in time as well as space
(Fedorov, 1987). Because of this variation, a set of subregional or regional ground-
water sampling locations that is considered optimum should not be assumed to
be time-invariant without justification. The estimate of the semivariogram,γ̂ (h),
is one means by which the spatial correlation of ground-water contamination can
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be investigated (Cooper and Istok, 1988). Temporal change in spatial correlation
can be identified by comparing semivariograms of geochemical concentrations in
ground-water samples collected during different time periods. However, to do this
effectively, the confidence limits of each estimate should be considered. Unfortu-
nately, because of the presence of correlation in a single realization of a region-
alized variable, classical statistical theory cannot be applied to make inferences
regarding the confidence limits of the semivariogram (Shafer and Varljen, 1990).
The jackknife method of parameters estimation offers a solution to this dilemma.

“The jackknife estimator of the semivariogram for a particular time period
gets its variability (the basis of the confidence limits) from the weighted differ-
ences between the semivariogram estimate computer from the entire sample
data set for the time period of interest and the parameter estimate computed
from all the data for that time period minus a partition of the sample data
set for the time period. Computing this difference by repeatedly removing a
partition results in a set of generated parameter estimates that are indepen-
dent and nearly normally distributed, and therefore a variance can be readily
calculated.”

Let us suppose the entire sample data set of sizen elements is partitioned intog
subgroups of sizemsuch that n = gm. Let̂yall be the parameter estimated by using
the entire data set n. Letŷ be the parameter estimated by using all the data remain-
ing after removing the jth partition, nj = (g – 1)m. Partition-dependent estimates of
the parameter,Jj [ŷ], are then calculated according to:

Jj [ŷ] = g ŷall – (g – l) ŷj j = 1,2, ..., g (1)

The final jackknife estimate,J [ŷ], of the parameter (Quenoille, 1956; Efron, 1982;
Chung, 1984) is:

J [ŷ],= 1

g

g∑
j=1

J − j [ŷ] (2)

Substitutingγ̂ (h) for ŷ results in the jackknife estimator of the semivariogram:

Jj [γ̂ (h)] = g[γ̂ (h)] − (g − 1)[γ̂j (h)] j = 1,2, ..., g

J [γ̂ (h)] = 1

8

g∑
j=1

Jj [γ̂ (h)] (3)

Tukey (1958) extended Quenouille’s work on reducing bias in estimation to the
approximation of confidence limits. The partition jackknife estimates,Jj [ŷ], may
be used to construct confidence bands about the jackknife estimate of the parameter
(Turkey, 1958; Efron and Gong, 1983). The variance,σ 2

J (h), about the jackknife
estimateJ[γ̂ (h)], or simply the jackknife variance, is estimated by (Chung, 1984):

σ 2
J (h) =

1

g(g − 1)

g∑
j=1

(Jj [γ̂ (h)] − J [γ̂ (h)])2 (4)
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Figure 1.Location of study area, Rockford, Illinois.

whereσJ (h), the root mean square error of estimation, can be used to approximate
the confidence limits onJ[γ̂ (h)].

Shaferet al. (1989) discussed the jackknife technique for developing confidence
limits on a sample semivariogram of shallow ground-water nitrate data. The com-
putational aspects of the technique were described in more detail by Shafer and
Varljen (1990). In the following case study, we applied the jackknife technique
using the same number of pairs in each class to ground-water monitoring data
from a large VOC plume to determine if the spatial correlation of VOC concen-
trations varied over time. The most significant aspect of this study is the illus-
tration of the high level of uncertainty in sample experimental semivariograms.
Also, the study sought to evaluate the sensitivity of that uncertainty to sample size
and artificially-introduced variability, such as the variability from sampling and
laboratory protocols.

2. Project Description

The data which form the basis of this study were collected after the discovery
of ground-water contamination in several hundred domestic wells in an unincor-
porated area of southeast Rockford, Illinois (Figure 1). The field site covers an
approximately 2 square mile area (5.2× 106 m2) within what is now known as the
Southeast Rockford Superfund Site, an area of∼4 square miles (10.4× 106 m2) of
mixed residential, commercial, and industrial properties. The site is underlain by an
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Figure 2.Locations of domestic wells (diamond) and monitoring wells (circles) sampled in this study.

extensive glacial outwash sand gravel aquifer and the contaminated domestic wells
were generally less than 75 feet (23 m) deep. Among the principal contaminants is
1,1,1 trichloroethane (TCA).

Ground-water samples were initially collected from over 200 domestic wells in
December 1989 by the Illinois Department of Public Health (IDPH). A follow-up
sampling of these wells and others by the USEPA was conducted in July 1990. The
study employed two networks of wells. The first network consisted of 59 conta-
minated domestic wells concentrated within an area of approximately one square
mile. The second network was a dense but smaller network of 30 monitoring wells,
constructed in locations based on the spatial structure derived from the domestic
well sampling. We used results from the 59 wells which were common to both
mass sampling periods. Shortly after this sampling was completed, the domestic
wells were abandoned as municipal water was extended into the area. A network of
over 40 monitoring wells was then constructed based on the geometry and spatial
correlation of the volatile organic compound (VOC) plume as determined from
the domestic well samplings. Thirty wells within the monitoring well network
were sampled on nearly a quarterly basis for about 1.5 years (in May, August,
December, 1991 and March and september 1992). The locations of the domestic
and monitoring wells are shown on the map in Figure 2. A contour map of TCA
concentrations in the monitoring wells in september 1992 is shown in Figure 3.
TCA concentrations exceeded 250µg/L along the central axis of the plume. The
plume can be seen to extend from east to west which closely follows the direction
of ground-water flow toward to Rock Rivers at the western edge of the site.
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Figure 3.Concentrations of TCA within southeast Rockford study area, contour interval, 25µg/L.

TABLE I

Precision and accuracy of July 1990 private well VOC sampling and analysis, and inter-laboratory
comparison of analytical results for the major contaminant compounds

Contaminant compound Surrogate compound

Statistics DCE DCA C12DCE TCA TCE BCM B2C1PA DCB14

ISWS Analysis

Relative standard 20.0% 6.7% 6.7% 6.4% 7.2% – – –

deviationa

Relative biasb –23.0% +2.0% –5.0% –21.1% –13.0 63.0% 6.3% 67.0%

IDPH Analysis

Relative standard 154% 102% 76% 96% 88% – – –

deviationa

Relative biasc –36.2% –56.7% –60.9% –38.9% –17.5%

a Relative Standard Deviation (RSD) was estimated from the Range (R) and the Mean (M) of the
reported concentration for field duplicate samples, assuming a formula of RSD=0.886*R/M. Average
results on 6 pairs of samples;
b Average results on 7 field surrogate samples;
c Averaged results on 6 sets of samples split between IDPH and ISWS. (DCE-Dichloroethylene, DCA-
Dichloroethane, c12DCE-cis 1,2 Dichloroethylene, TCA-Trichloroethane, TCE-Trchloroethylene,
BCM-bromochloromethane, B2C1PA-Bromodichloropropane, DCB14-1,4 Dichlorobeneze). Both lab-
oratories used purge and trap gas chromatography with Hall electrolytic conductivity detection.
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TABLE II

Comparison of statistical parameters for 59 common sampling points sampled in Fall 1989 (IDPH)
and Summer 1990 (ISWS) (concentrations inµg/L)

% Freq. Of ppb Standard

Compound detectiona Maximuma Minimuma Meana Deviationa

1,1-dichloroethene 80/98 63.4/87.9 0/0 10.4/23.6 16.1/21.8

1,1-dichloroethane 93/100 80.9/556 0/0.44 19.4/74.1 19.8/91.3

Cis-1,2-dichloroethene 1.7/100 108/233 0/056 1.84/57.7 14.1/52.6

1,1,1-trichlorethane 98/100 436/803 0/3.97 120/180 116/173

Trichloroethene 100/100 113/174 0.55/0.72 30.7/35.2 27.0/32.6

a IDPH Fall 1989 data statistics expressed first/ISWS Summer 1990 data statistics expressed
second.

TABLE III

Overall mean concentration, relative standard deviation and percentage of total vari-
ance attributable to lab or field (sampling) error, and natural variability (November
1990–September 1992)

Percent of total variability

Overall mean Relative (std. dev.) Lab Field Natural

COMPOUND µg/L % % % %

TCA 119.5 (36%) 1.29 3.26 95.45

TCE 29.8 (43%) 1.95 12.75 85.30

C12DCE 45.2 (32%) 1.69 4.72 93.59

DCA 44.3 (28%) 1.02 5.22 93.76

DCE 16.3 (31%) 3.61 4.15 92.24

During our investigation we became interested in variations in VOC concentra-
tions both spatially and temporally. Traditional structural analysis (semivariogram
estimation) and kriging are tools to examine spatial variability. We implemented the
jackknife technique to allow us to compare the structural analyses from different
time periods.

“Part of our research objectives were to understand contributions of differ-
ent types of variability (i.e. sampling, laboratory, and natural) to the overall
variability of VOC results and to assess the implications of this variability to
various data analyses. After conducting these analyses, we found that ideneti-
fied sampling and/or laboratory variability contributed significantly to the
uncertainty in estimating the semivariogram.”
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Figure 4. Jackknife confidence intervals on semivariogram of December 1989 kn[TCA] domestic
well data.

3. Results and Discussion

In order to minimize controllable sources of error, the available data were used to
analyze sampling and analytical variability. The methods for evaluating sampling
and analytical contributions to overall variability are described in Barcelonaet al.
(1989).

The effect of less consistent sampling and analytical methods is shown in Tables
I and II comparing the December, 1989 private well data collected by the IDPH
to those collected in July, 1990. The precision (relative standard deviations) of
the ISWS analysis for organic contaminants in samples split between the two labs
demonstrate that the analytical method was in control (i.e. generally within∼ ±
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Figure 5. Jackknifed confidence intervals on semivariogram of July 1990 ln[TCA] domestic well
data.

20% of the mean). The excessive negative bias for these compounds along with the
generally lower detection frequency, mean and maximum concentrations (Table II)
reported by the IDPH laboratory did not support confirmed analytical and sampling
error control.

Given the sensitivity of geostatistical measures of trace organic contaminant va-
riability to uncontrolled sources of error, a strict program of quality assurance/qua-
lity control was observed in the quarterly monitoring effort from November, 1990
through September, 1992 (see Table III). The monitoring wells were equipped
with dedicated bladder pumps for controlled purging and sampling operations. The
details of the sampling and analytical protocols are provided in Barcelonaet al.
(1994).
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Figure 6.Jackknifed confidence intervals on semivariogram of May 1991 ln[TCA] monitoring well
data.

The data in the table show that overall concentration variability across the in-
tensive study areas for two years was≤ 43% over the quarterly datasets. Of this
total variability, lab and field error constituted less than∼15% of the error in the
final concentration result. These results provide strong evidence that our QA/AC
peocedures were in control over the study period. Also, they demonstrate that nat-
ural variability in VOC contaminant concentrations can be reproducibly observed
with the simple sampling protocol used in this work.

Results of structural analyses for TCA concentrations for several sampling peri-
ods, with accomppanying jackknife confidence bands, are shown in Figures 4–10.
The estimated semivariograms for each sampling interval are somewhat different
(Figure 11), leading one to believe that temporal change in spatial correlation
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Figure 7. Jackknifed confidence intervals on semivariogram of August 1991 ln[TCA] monitoring
well data.

structure had occurred. The confidence bands for each estimated semivariogram are
large enough however to indicate that any differences are not significant. For ex-
ample, Figure 12 shows the results for the December 1989 and July 1990 sampling
events overlaid. Note that the overlap of confidence limits is complete.

The notion that there have been no temporal changes in spatial correlation is
consistent with the hydrogeochemical processes that control the distribution of
contaminants. The contaminant source is thought to be at least 1 mile (1,609 m)
upgradient from the most upgradient monitoring well used for this study, and the
plume is thought to be old (decades) and was apparently quite stable within the
area we were monitoring.
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Figure 8.Jackknifed confidence intervals on semivrariogram of December 1991 ln[TCA] monitoring
well data.

Perhaps the most interesting feature of the sample semivariograms and the
associated jackknife confidence bands is the relative differences in the width of
the confidence bands. Clearly, confidence in semivariogram estimates is extremely
sensitive to sample size. Note the differences in the widths of the confidence bands
for the sampling periods where 59 (December, 1989; July, 1990) wells were used
vs. 30 wells for the remaining sample periods in 1991 and 1992. Doubling the
number of sample points results in approximately a two-fold improvement in the
95% confidence interval.

The effect of sample size is somewhat intuitive and was expected. What was
unexpected, however, was the difference in the confidence bands between the De-
cember 1989 and July 1990 sampling periods (Figures 4 and 5). We did not expect
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Figure 9. Jackknifed confidence intervals on semivrariogram on March 1992 ln[TCA] monitoring
well data.

to see such a difference because the sampling points were used for each period. We
interpret the difference in the confidence band to be due to the effect of sampling
and laboratory variability. Different field personnel, sampling protocol, and labo-
ratories were used for the two periods. We note that stricter protocol implemented
by the July 1990 sampling team resulted in less noise in the data. The data set
with less added variability allowed for more confidence in the estimation of the
semivariogram.

It should be noted that virtually all of the semivariograms showed increasing
uncertainty at longer lag distances, reflecting higher overall variance. Given the
level of noise in the experimental spatial correlations across the entire range, the
use of directional variograms (i.e. censoring the data) with far lower class sizes
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Figure 10.Jackknifed confidence intervals on semivrariogram of September 1992 ln[TCA] monitor-
ing well data.

would be expected to increase the uncertainty associated with their use (e.g. con-
structing contour maps, estimating mass/concentrations distributions, etc.). Rules
of thumb for minimum sample sizes or range selection should be evaluated very
carefully in any specific application.

It may be argued that with known levels of sampling and analytical variabiity,
one may simply remove (i.e. subtract) these errors and minimize the uncertainty
in the spatial analyses. Sampling and analytical errors are essentially random and
often concentration dependent. Therefore, it is not realistic to apply a simple cor-
rection without, in fact, introducing additional artificial variability into the spatial
analyses.
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Figure 11.Jackknifedγ for all sampling periods.

4. Conclusions

It may be concluded from the analysis of jackknife stimates of sample semivari-
ograms (and the associated confidence limits) that the data set could no identify any
significant temporal changes in the spatial correlation of TCA over the three years
that the study spanned. More importantly, however, the demonstrated high level of
uncertainty that is associated with the estimation of semivariograms from field data
sets was evident. Careful control of artificial variability can improve confidence
in estimates of spatial correlation. The fact that sample size had such a profound
effect on uncertainty in estimates of the semivariogram, coupled with the fact that
we did not observe much significant temporal change in the plume, indicates that
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Figure 12.Jackknifed 95% confidence intervals on semivariograms of December 1989 and July 1990
ln[TCA] domestic well data,

the information return for our characterization would have been greater if we had
used more sampling points and fewer sampling events.

It should be recognized that some of these conclusions are specific to this
investigation, we conclude generally that variability and uncertainty in estimated
spatial correlation is quite significant and should be considered in the application of
geostatistics to ground-water contamination problems. Applications such as prob-
ability kriging to define clean-up boundaries or sampling network optimization
based on kriging standard deviations are particularly sensitive to semivariogram
uncertainty. The jackknife technique is an appropriate approach to quantifying this
uncertainty.
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