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Transonic similarity solution for aligned field MHD nozzle flow 
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S U M M A R Y  
The transonic flow near the throat of a converging-diverging nozzle of a gas with infinite electrical conductivity is 
considered. The magnetic field B is everywhere aligned with the velocity q so that the equations describing the flow are 
reducible to those of ordinary gasdynamics. Thus, it is possible to utilize the transonic similarity solution of Tomotika 
and Tamada [3] to study aligned field magnetohydrodynamic flow near a nozzle throat. Only transonic flows are 
considered, and the structures of sub- and supersonic flows with speeds greater and less than the Alfv6n speed are 
investigated. 

1. Introduction 

Flow through a converging-diverging nozzle is one of the classical problems of gas dynamics. 
As the exit pressure is reduced the nozzle first behaves like a venturi with the maximum velocity 
at the throat. As the exit pressure continues to decrease pockets of supersonic flow develop near 
the walls of the nozzle throat where the flow thus becomes transonic. This type of flow was first 
investigated by Taylor [-1] and is sometimes called Taylor flow. Here we investigate such 
transonic flows for a gas with infinite conductivity and with the magnetic induction B every- 
where parallel to or aligned with, the gas velocity q. As indicated by Grad [2] the equations of 
such "aligned field" magnetohydrodynamic (MHD), flows can always be reduced to the 
equations of ordinary gas dynamics. We have used this property and the well known similarity 
solutions of Tomotika and Tamada [3] for transonic nozzle flow to study the structure of such 
MHD Taylor flows. 

As the exit pressure is reduced further a transition occurs from the Taylor flow which is 
symmetrical with respect to the throat to a continuously accelerating flow, subsonic upstream, 
and supersonic downstream of the throat. Such flows were first studied by Meyer [4] and, 
hence are sometimes called "Meyer" flows. The Tomotika-Tamada solution also describes the 
transonic portion of such Meyer flows ; however, the transition from the Taylor to the Meyer 
type flow involves the formation of shock waves within the nozzle, and so, as shown by Sichel 
[5], cannot be described by a purely inviscid theory. 

Aligned field MHD flows are complicated by the existence of three critical speeds ; the speed 
of sound a, the Alfv6n speed b, and the speed ba/(b2+ a2)  �89 With a sufficiently strong magnetic 
field accelerating flow in a converging-diverging nozzle thus passes through three transitions 
as the velocity q increases for the equations describing the flow are elliptic when Iql < ba/ 
(b2+a2) ~, are hyperbolic for ba/(b2+a2)~< Jql < a, are elliptic when a<  [ql < b, and finally 
become hyperbolic once more when Iql > b. In neutral gas flow the only transition occurs at 
I q[ = a. Series solutions of Meyer type aligned field flows with three transitions have been investi- 
gated by Chu [-6] who examined the character of the flow near each of the above transitions ; 
however, he did not consider the symmetrical Taylor type flow. 

Only the transonic portion of the nozzle is considered in the present paper. The equations 
and properties of aligned field flow are first presented. Then the Tomotika-Tamada solution is 
described and used to investigate the structure of transonic Taylor and Meyer aligned field 
MHD flow. 
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2. Formulation 

When the velocity vector q and the magnetic field B of an inviscid gas with infinite conductivity 
are parallel so that 

2B = pq (1) 

the Lundquist equations of M H D  can be reduced to the two equations [2] : 

div (pq) = 0 (2) 
curl [(1 - A - 2 ) q ]  = 0 .  (3) 

In (3) the Alfv6n number A = q/b, and b is the Alfv6n wave velocity given by b =B/(#p) ~ with # 
the magnetic permeability in a vacuum. In a flow starting from uniform conditions 2 is constant 
throughout the flow. The flow is isentropic and since the electromagnetic body force j x B 
only can act normal to the streamtube direction the stagnation enthalpy remains constant 
so that 

q2 
h + ~- = h 0 = const.  (4) 

In the limit of vanishing magnetic field A ~  oo and Eqs. (2) and (3) reduce to the equations for 
irrotational compressible flow. 

In natural coordinates with S parallel to, and r perpendicular to the streamlines the aligned 
field flow equations (2) and (3) become 

60 00 
( 1 - A  2) q~-~ + ( M a + A 2 - 1 ) ~  r = 0 (5) 

( 1 - M  2) oq ~0 
+ q~rr = 0 (6) 

with q and 0 the magnitude and direction of the velocity and with M the Mach number. The 
characteristics of (5) and (6) are real in the regions 

A < I ,  M < I ,  M 2 + A 2 > l  
and 

A > I ,  M > I  

where the equations are hyperbolic, and (5) and (6) are elliptic in the regions 

M < I ,  A > I  

M > I ,  A <  1 
and 

M2+A2 < 1 

These regions are shown on the M-A plane, or Resler diagram in Fig. 1. The isentropes sketched 
in Fig. 1 show that an accelerating flow may pass through three transitions at M 2 +  A2= 1, 
M = 1 and A = 1, and as already mentioned such flows have been studied by Chu [6]. Equations 
(5) and (6) show that for finite Oq/~S, ~O/& = 0 at the sonic transition, M = 1, i.e. the streamtube 
has a throat. At the Alfv6n transition Oq/#r = 0, i.e. the electromagnetic and centrifugal forces 
balance so that there is no velocity or pressure variation normal to the streamlines. At 
M 2 + A 2 = 1, which is called the hypercritical transition, O0/~S = 0, so that the streamline has an 
inflection point. Here the pressure and electromagnetic forces balance causing the streamline 
curvature to vanish. 

The present paper deals with sub-Alfv6nic and super-Alfv6nic transonic flow near the throat 
of a nozzle, and the appropriate regimes are indicated in Fig. 1. For two-dimensional perfect 
gas flow perturbed from sonic conditions, Kogan [7], Seebass [8], and others have shown that 
expanding the velocity and stretching the coordinates according to 
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Figure 1. The M-A plane or Resler diagram. 

- - =  l + ~ t ~ + . . .  ; - - = e ~ + . . .  fi* fi* 
(7) 

leads to the perturbation equations 

+ Uy = 0 (a) 

(1_A.2)o  0 (9) 
Ox 0y 

valid for transonic aligned field MHD flow provided A,v~ 1. The asterisk denotes quantities 
evaluated at the sonic velocity. In (7) barred quantities are dimensional, ~ is a small parameter 
related to the deviation of the flow from the sonic or critical speed fi*, h is a characteristic 
dimension (the nozzle half height in the present case) and A, is the Alfv6n number evaluated at 
critical or sonic conditions. 

To the order of the expansion (7) the velocity magnitude Iql is given by 

[ql = I -~2 + e2] ~ -- a* [1 + e l +  O(e2)] (10) 

so that the flow is supersonic when fi > 0 and subsonic with ~ < 0. The equation for the charac- 
teristics of (8) and (9) are readily shown to be 

@x) = + [ ( 7 + 1 ) 5 ( 1 - A , 2 ) ]  ~ (11) 
r 

Equation (11) now shows that in super-Alfv6nic flow when A, > 1 or A ,  2 < 1 the characteristics 
are real and the flow is hyperbolic in supersonic flow when 5 > 0, as in neutral gas flow. In sub- 
Alfv6nic flow, A ,>  1, and the flow is hyperbolic in subsonic flow when zT< 0. The behavior of 
the perturbation equations (8) and (9) is thus in accord with the Resler diagram (Fig. 1), With 
the transformation 

5 = ( 1 - A , 2 ) U ,  ~=(7+1)~( 1 - A . 2 ) V  (12) 

y= Y,  x = ( T + I ) ~ ( 1 - A , Z ) X .  

Equations (8) and (9) become 
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8U 8V 
- U ~  + ~ = 0  (13) 

8V 8U 
- 0 (14) 

8X 8Y  

Equation s (13)and (14) are a form of the transonic small disturbance equations of ordinary gas 
dynamics, and this reduction of the aligned field equations (8) and (9) has already been indicated 
by Grad [21. Upon eliminating V, Eq. (13) and (14) Can be reduced to the single equation 

8 2 /tI2~ 8 2 U 
8 x  + = 0 (15) 

3. The similarity solution 

Tomotika and Tamada [-3] showed that the transformation 

�89 = Z ( S ) + 2 Y  z (16) 
S = X + y  2 

reduces the transonic equation (15) to the ordinary differential equation 

Z Z " + ( Z ' - 2 ) ( Z ' +  1)= 0 (17) 

with the solution 

( Z -  2S) 2 (Z + S) = 2c~ 3 . (18) 

The form of the solution (18) is determined by the arbitrary parameter e. The flow described by 
transformation (16) is symmetrical about the X-axis and so may be considered as the flow 
through a nozzle, since any streamline can be considered as the nozzle wall. The function 
2Z(S) corresponds to the variation of velocity U along the nozzle axis with Z < 0 and Z > 0 
corresponding to subsonic and supersonic flow respectively. The dimensionless velocity V 
determined from the irrotationality condition (14) and equation (17) is given by 

V = 4 [ Y Z  (S)+ 2X Y+ ~ r 3 ] .  (19) 

In the special case a = 0  Eq. (18) shows that Z has the two solutions 

Z =  2S (20) 

Z = - S  (21) 

the first of which corresponds to continuously accelerating or "Meyer" flow, and the second 
corresponds to continuously decelerating flow. When c~ r 0 determination of Z from (18) in 
explicit form requires solution of a cubic equation with the result : 

z = ; > 0  

2IS [ cos (�89 -a ~/_~3r + {Tz) + S ;  ~3 ~<0, ~>0 (22) Z =  
\ q / 

\ t/ / 

where r = e3 _ 2S 3 and t/= e3 _ S 3. 

The variation of Z(S)  is shown in Fig. 2 for several different values of ~. The solutions in 
regions A' and B represent physically unrealizable flows since the acceleration Z' becomes 
infinite where Z=0 .  The solutions in region A correspond to Taylor flow with subsonic 
velocities both upstream and downstream of the nozzle throat. Region B' describes flow which 
is supersonic upstream and downstream of the throat, and which, at least for a neutral gas, can 
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Figure 2. The Tomotika-Tamada nozzle similarity solution. 

be shown to be unstable. In the limit a ~ 0  branch A approaches the limiting Taylor, or sym- 
metric solution 

Z =  2S, S < O  (23) 
Z =  - S ,  S > 0  

in which the velocity on the nozzle axis just attains the sonic value. The limiting solution for 
branch B' is 

Z = - S ,  S<  0 (24) 
Z =  2S, S > 0 .  

Significantly, the Taylor solution does not approach the Meyer solution Z = 2S in the limit 
e--,0, i.e. the transition from the Taylor to Meyer flow cannot be described within the frame- 
work of the purely inviscid theory but requires the introduction of viscous terms or shock 
discontinuities [5]. Nevertheless, many aspects of the structure of transonic nozzle flow can be 
ascertained by a detailed study of the Taylor, Meyer, and limiting solutions [3]. Through the 
transformation (12) the Tomotika-Tamada solution will now be used to study aligned field 
transonic nozzle flow. 

4. Continuously accelerating and decelerating flows 

We now consider the "Meyer" flow corresponding to Z =  2S in detail. From the definition of S 
and the transformation (12) the perturbation velocities 5 and F are found to be 

5 = 4x(?+ 1)-~+ 8 (1 -A .Z)y  2 (25) 
g = 16xy+ (~)(y + 1)~(1 - A . Z ) y  3 

Equation (25) shows tlaat only the variation of 5 with y is affected by the magnetic field strength 
o r  A..- 2 ; the velocity ~/(x, 0) along the nozzle axis is independent of A.. Thus t/, which, to the 
present order of approximation, also corresponds to the fluid speed increases with y for super- 
Alfvhnic flow with A.  2< 1 and decreases with y for sub-Alfvhnic flow with A .  2 > 1. Conse- 
quently lines of constant speed or isovels will as in electrically neutral flow be concave up- 
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stream for super-Alfv6nic flow but will be conveA upstream for sub-Alfv6nic flow. This result is 
in accord with the discussion in Section 2, and reflects the fact that with increasing field strength 
the electromagnetic body force at first provides some of the centrifugal force needed to balance 
the streamline curvature. Once A~=>  1 the electromagnetic force exceeds the centrifugal 
acceleration and so is in part balanced by the pressure which thus increases with increasing y 
rather than decreasing as in neutral or super-Alfv6nic flow. Typical constant velocity contours 
or isovels for Meyer flow are shown qualitatively in Fig. 3 (a) and 3 (b), which are part of a map 
of the various aligned field nozzle flows corresponding to the Tomotika-Tamada solution. The 
structure of nozzle flow which is decelerating from supersonic to subsonic flow, corresponding 
to Z = - S is shown in Fig. 3 (c) and 3 (d). In the neutral case such flows are unstable and always 
are accompanied by the formation of shock waves. 
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Figure 3. Aligned field nozzle flows corresponding to the Tomotika-Tamada solution. 

The streamlines of the flow can be determined by solving the differential equation 

d~ /5 ~ 
dff fi 1 + eft (26) 

which in terms of x and y as defined by (7) becomes 

dy = ~2 ~+ 0 (e 3) (27) 
dx 

One of these streamlines can be chosen as the nozzle wall and the location of the nozzle throat 
is then determined by 

dy 
- -  = ~(7+ 1) * (1 - A ; 2 ) y  3] (28) dx 0 = e 2 ~ = 16a 2 [xy + 2 

so that 

x , = - ~ ( 7 +  -~ -2 2 1) ( 1 - A . ) y t  (29) 

and choosing the characteristic length h the nozzle half height, y, = 1.0. If the integration of (27) 
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is started at the throat then t /= (y -1 ) ,  the deviation of the wall streamline from the throat 
value, will be 0 (e z) from (27) so that the equation of the wall streamline can be written in the 
form 

d_~q = 16~2 [x +2(7+ 1)~(1 - A , : ) ]  + O(e'). (30) 
dx 

Integration of (30) then yields 

Yw = 1 + t / =  1 + 16e 2 ~ + ~ (7+ 1)-~(1-A,2)(x-xt)] (31) 

for the ordinate of the nozzle wall. 
The wall curvature at the throat where (dy/dx)= 0 is readily determined from (28) as 

l (dZy'~ 
- e ~ j ,  = 16~ (32) 

where/~ is the nozzle wall radius of curvature at the throat. Hence the wall curvature at the 
throat "is always positive and independent of the magnetic field strength. For nozzle flow the 
small parameter a, which is of the order of the deviation of the velocity from the sonic value, 
thus depends on the throat radius of curvature. 

The characteristics of the flow are the two parabolas 

x/y 2 = 2 ( 7 +  1)~(1 - A .  2) (33) 

x / y  2 = - + (1 - A ;  2) 

which are obtained by substituting z7 from (25) in the characteristic equation (11). The sonic 
line, ~ = 0, is also a parabola described by the equation 

x/y 2 = - 2 ( y +  1)~(1 - A ,  2) (34) 

and the line of zero streamline slope, ~ = 0, is described by 

x/y 2 = - z ( 7  + 1)~(1 - A,  z). (35) 

The characteristics, the sonic line and the zero slope line are shown qualitatively in Fig. 4 for 
super and sub Alfv6nic accelerating nozzle flow. 

Super- 
Alfvffnie 

Sonic Line 

Ai z <1 / Limiting Characteristic 

/ /  Line of "~=0 
l / // l-Charact eristic 

Characteristic A~ z >1 ~ Line '~ = 0 
Sub ~ Urniting Characteristic 

A lfve'nic ~ ,Sonic Line 

Figure 4. The structure of accelerating aligned field nozzle flow. 
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The segment SA of the nozzle wall between the limiting characteristic and the sonic line can 
affect the flow in the upstream elliptic region when A ,  z < 1, even though the flow between the 
sonic line and the limiting characteristic is hyperbolic. When A ,  2 > 1, the segment AS influences 
the downstream elliptic flow even though the flow between the limiting characteristic and the 
sonic line is in this case subsonic and hence hyperbolic. When A ,  2 > 1, the structure of acceler- 
ating flow and the manner in which the boundaries influence the flow thus differ greatly from 
neutral gas flow. With A ,  2 > 1 the Sears-Resler diagram (Fig. 1) shows that there is a low speed 
elliptic region upstream of the subsonic hyperbolic region in Fig. 4. Clearly this region must 
be taken into account in formulating the effect of upstream conditions upon the flow. However, 
the present paper is concerned only with the structure of  the transonic region rather than with 
the overall f low.  

5. Taylor flow 

We first consider the limiting case ct ~ 0. Then the solutions for Z(S) become 

Region A 
Z ~  - S  ; S > 

Z--*-S; S<O0} Region B 
Z ~  2 S ;  S >  

In terms of physical variables the perturbation velocities corresponding to (36) are 

gt=4x(7+1)-~+8(1-A*2)Y2 ~ x 

f) 16xy+~(7+ 1)r  ~ (7+ 1)+( l - A *  2) + y2 < 0 

fi = - 2 x ( y +  1)-~+2(1 - A , 2 ) y  2" 
x 

(~ + 1)~-(1- A ,  2 ) 
4xy-  {(7 + 1) ~ (1 - A ,  2)y2 

velocities corresponding to (37) become 

- 2x(7 + 1)-~ + 2(1 - A ,  2)y 2 
x 

2) 

= 4 y-k(  + -A.2)/ 

while the 

~ =  

+ y 2 > 0  

+ y 2 < 0  

(36) 

(37) 

(38) 

(39) 
f t=4x(7+l)-~+8(1-A*2)y2 [ x 

+ y 2 > 0  
�9 3j (7 + 1)~-(1 -A*2)  

-- 16xy+-~(y + 1)+(1 - A , 2 ) y  

Typical isovels corresponding to (38) are shown in Fig. 3 (e) and 3 (f). With A ,  2< 1 the flow 
behaves as in the neutral case with a pocket of supersonic flow near the wall ; however, when 
A ,  2 > 1 the overall flow becomes supersonic and there are pockets of subsonic flow near the 
nozzle walls. Such flows never occur in the neutral case. Velocity fields corresponding to (39) 
are shown in Fig. 3 (i) and 3 (j). With A ,  2 < 1, the flow is again similar to the neutral case, being 
supersonic with only a single point at the center of the nozzle where the velocity reaches the 
sonic value. With A ,  2 > 1, the flow is subsonic everywhere except for an isolated sonic point 
on the nozzle axis. 

Physically it is more meaningful to separate the limiting solutions into subsonic and super- 
sonic flows as in Fig. 5. The subsonic limiting solutions are shown in Fig. 5 (a) and 5 (b), and the 
supersonic limiting solutions in 5 (e) and 5 (f). From Fig. 5 it is easy to visualize the change in the 
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Figure 5. Subsonic and supersonic taylor type flow. 

velocity field with increasing magnetic field (or increasing A.  2). As A.  2 increases the curvature 
of the isovels decreases and then reverses as A.  2 passes through the singular value of unity. In 
subsonic flow the supersonic pocket disappears and is replaced by an isolated sonic point as 
A.  2 increases beyond unity. The reverse transition with the formation of a subsonic pocket 
arises as A.  2 increases through unity in the supersonic case. The transformation (12) is singular 
when A.  2 = 1,  consequently we have been unable to determine the precise nature of the tran- 
sition between super and sub-Alfv6nic flow. Higher order terms in the expansion (7) will" 
probably be needed to establish the details of the flow when A.  2 = 1. It is interesting to observe 
that the subsonic flow with supersonic pockets when A.  z< 1 is mirrored by the supersonic 
flow with subsonic pockets with A.  2 > 1. This mirroring is in accord with Tamada's obser- 
vation [-9] that the streamlines, shocks, and characteristics of a sub-Alfv6nic flow are the same 
as those of a neutral gas flow with direction of the flow reversed. 

In the non-limiting case c~#0, the velocity perturbations u and v are given by 

= 2 (1 -A .z ) [Z (S )+2y  2] 

- 2xy  - =4I + ll (1-A;2)[yz(s)+  y3J 
S x y2 = + 2) 

The streamline of the flow are again defined by the equation 

dy _ e2 ~ 
dx 

(40) 

(27) 
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with the throat where ~ = 0, taken at y = 1. Typical nozzle flow patterns have been computed for 
A , 2 <  1 and A ,  2 > 1 and are shown in Fig. 6, 7, and 8. It is, of course, characteristic of the 
similarity solution presented here that the streamlines cannot be specified a priori but will be 
different for each value of the integration constant 0~ and for each value of the Alfv6n number 
A.. This in no way detracts from the utility of the similarity solution in displaying the structure 
of the flow near the throat. 

Figure 6 shows subsonic symmetric flow of a neutral gas with A .  2= 0. The flow is subsonic 
except for a supersonic pocket near the throat bounded by the isovel u = 0, and is similar to that 
shown qualitatively in Fig. 3 (g) and 5 (c). A subsonic symmetric flow with A ,  2 > 1, similar to 
Fig. 3 (k), and 5 (d) is shown in Fig. 7. Here the region of maximum velocity occurs near the 
center of the nozzle rather than at the nozzle wall. Finally, Fig. 8 shows a supersonic symmetric 
flow with A ,  2 > 1 similar to Fig. 3 (h) and 5 (h) and displays the strange phenomenon of a 
subsonic pocket adjacent to the nozzle wall. As in the limiting case the solutions for super- 
Alfv6nic flow (Fig. 6) and sub-Alfv6nic flow (Fig. 8) mirror each other. 

6. Discussion 

We have used the Tomot ika-Tamada [3] solution to investigate the structure of transonic 
aligned field M H D  nozzle flow. As in neutral flow, many of the transonic phenomena observed 
within nozzles also arise in external flows. 

No attempt has been made to test the stability of all the flow patterns displayed in Fig. 3. 
In all likelihood the flows shown in Fig. 3 (c), 3 (i), and 3 (k) will be unstable as they are very 
similar to the unstable neutral gas flows. Questions such as whether the presence of the magnetic 
field enhances or reduces stability, and what sub-Alfv6nic flows are stable remain to be answered. 

As indicated above, the Tomot ika-Tamada [3] solution fails to describe the transition from 
Taylor- to  Meyer flow, which is always accompanied by the formation of shock waves. The 
nature of this transitional process has been investigated by Watanabe [10] for aligned field 
flows. 

Transonic flows such as those described above may arise in various plasma devices involving 
nozzle expansions or external flows of high density plasmas. 
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