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S U M M A R Y  

Standard results from matrix theory are used to derive optimal upper and lower bounds for the strain-energy density 
in terms of the norm of the stress tensor in two and three dimensions. The approach also yields directly necessary and 
sufficient conditions for positive-definiteness. 

I. Introduction 

In the course of a recent investigation of Saint-Venant's principle in linear anisotropic plane 
elastostatics [1], the question of finding optimal upper and lower bounds for the strain-energy 
density in terms of the norm of the stress tensor arose naturally. Similar considerations were 
treated by Knowles and Sternberg [2], Toupin [3] and Roseman [4]. In the present note we 
use standard results of matrix analysis to obtain such bounds in two and three dimensions. In 
addition, this approach yields directly necessary and sufficient conditions for positive--definite- 
ness of the strain energy. 

2. Three-dimensional elasticity 

The stress-strain relations for a linear homogeneous anisotropic elastic solid are given by** 

zij = cijkt ekl (i, j, k, 1 = 1, 2, 3), (2.1) 

where the components c~jkt of the constant elasticity tensor c satisfy the symmetry relations 

Cijk I = C iikl = Cklij. (2.2) 

Here %j = zj~ are the Cartesian components of the stress tensor z and e~j the components of the 
strain tensor defined by e i )= l (u i ,  j + u i ,  i), w h e r e  u~ are the components of the displacement 
vector-field. We assume that the determinant [Cqkzl r  so that (2.1) has a unique inverse 

e i j=  SijklZkt, (2.3) 

where the elastic compliances sijg~ also satisfy relations (2.2). The strain-energy density W is 
given by 

2 W  = " c i j e i j  = S i j k l ' g i j T k l  , (2.4) 

a quadratic form in the symmetric stress components zioi. We say that W(z) is positive definite 
if W(~) > 0 for all ~ :p O. 

We introduce the matrix notation 2W = t'St, where t is the column vector 

* Now at School of Mathematics and Physics, University of East Anglia, Norwich, England. 
** See Sokolnikoff [5] for example. Cartesian tensor notation is used throughout, with summation over repeated 
subscripts implied. 
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"T11 
T22 / 

t = T33 / 

_z12x/2J 

t' is the transpose of t and the 6 x 6 symmetric matrix S = [Spq], (p, q = 1, 2,... 6) is defined by 

Spq = sijk, (p, q = 1, 2, 3 ~, 
\ i  =j, k = l] 

=2si,k, { p , q = 4 , 5 , 6 ] ,  (2.6) 
\ir k+I/ 

= s,ak, x/2 ( .p=l,  2 , 3 ; q = 4 , 5 , 6 )  
\i  =j,  k 4= l 

The norm of the stress tensor is given by I~l = (r~ej)~ = (t' t) ~. One of the criteria for positive- 
definiteness of W which we use is provided by the following well known result from matrix 
analysis. (See Bellman [6], for example.) 

Lemma 1. The quadratic form W is positive definite if  and only if  all the eigenvalues 2 orS are 
positive. 

Furthermore, it can be readily shown from the standard diagonalizati0n of real symmetric 
matrices [6] that W satisfies 

2min['~]2 ~ 2W< 2max['C[ 2 , (2.7) 

where 2mi,, )~max a re  the minimum and maximum eigenvalues respectively of S and 1~12= zij r~j = 
t' t. These upper and lower bounds are optimal in the sense that x may be chosen (as the eigen- 
vector corresponding to 2~i,, 2ma x respectively) to yield equality in (2.7). Explicit determination 
of the eigenvalues 2 in the fully anisotropic case is difficult in general; however, the results from 
matrix theory on bounds for eigenvalues (see, for example, Marcus and Minc [7]) may be used 
in (2.7) to yield upper and lower bounds (no longer optimal) for W. 

Isotropic case. Here (2.3) becomes (see [5]) 

1 Iz a "aijZkg] (2.8) e,j = ~ ij -- 1 +----~ 

where # is the shear modulus, a is Poisson's ratio and 6ij the Kronecker delta. The matrix S 
is given by 

1 --0" --0" 
0 0 0 

1+o- l + a  l + a  

- a  1 - a  0 
l + a  1 + r  l +~r 

2#S = - a - cr 1 
0 

l + a  l + o  l + a  

0 0 0 1 

0 0 0 0 

0 0 0 0 

0 0 

0 0 

0 0 

1 0 

0 1 
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The eigenvalues 2 are the zeros of 

( ; _  2) 3 ( 2 ; ( 1 2 1  2 

so that 
1 1 - 21 

2 - (2.9/ 
2 . '  

the first occurring with multiplicity five. Application of Lemma 1 immediately yields the result 
that W is positive definite if and only if 

p > 0 ,  - 1 < a < � 8 9  (2.101 

The restrictions (2.101 are the familiar inequalities* invoked in the classical Kirchhoff uniqueness 
theorem of elastostatics. 

The upper and lower bounds (2.7), on using (2.91, lead to the following theorem. 

Theorem 1. Let 

l ( z  a ) (2.111 W(~) = ~ ~ j  l+o . 'c .~  

be the strain-energy density associated with a stress tensor ~ and let W be positive definite. Then 

c(a) b(a) 
2p 1~12 -- 2W < ~ I~l 2 , (2,121 

where 

[ 1 -  a~ [1 1-21~ 2 b(a)=max (2.13) c (a) = min 1, - l ~ - ~  J ' [" 1 + a J 

or, equivalently, 
1 - 21  (2.14) 

c ( a ) =  1, b ( a ) -  l + a  ( - l < a < 0 ) '  

c(a) - 1-211+a ' b(a)= 1 (0<= a <  �89 

The lower bound in (2.12) was derived in Lemma 1 of [2], while for 0 < a < �89 (2.121 also appeared 
in [4]. A similar result was obtained by Toupin in [3]**. The estimate (2.12) is optimal in the 
sense that we obtain equality on the left if we take z ,=0 ,  zij arbitrary when - 1 < a <  0 and if 
we chose vii = za~j when 0 < a < �89 Interchange of these eigenvectors yields equality on the right. 
Finally, we note that for a = 0  we get equality on both sides of(2.12) for any stress tensor ,. 

3. Two-d imens iona l  case  

In the well known theory of plane strain for an isotropic elastic solid [5], the strain-energy 
density is given by 

W = 4~ (%P%P- a%~z~) ,  (3.1) 

where the Greek subscripts range over the integers 1, 2. As before, we write 2 W = t' St, where 
now we have 

t =/ 22 / '  = (3.2) 

kq ,/2j 0 . 

* These are usually derived by other methods in elasticity texts. 
** Note also the footnote on p. 88 of [-3], referring to a remark due to Ericksen. 

Journal of Engineering Math., Vol. 7 (1973) 231-234 



234 C. O. Horgan 

The eigenvalues 2 of S are easily found to be 

2 -  1 1 - 2 ~  (3.3) 
2/~' 2~ 

the first occurring with multiplicity two. Lemma 1 now gives the result that W is positive definite 
if and only if 

I~>0,  ~ < � 8 9  (3.4) 

Notice that the restrictions (3.4) are less severe than the analogous (2.10) in the three-dimension- 
al case. This was also noted by Knops and Payne [8] in their treatment of the analog of Kirch- 
hoffs uniqueness theorem for the basic boundary value problems of plane strain. (See w 5.1 of 
[8].) 

Finally, we use (2.7) and (3.3) to obtain the optimal upper and lower bounds furnished by the 
following theorem. 

Theorem 2. 
strain and let W be positive definite. 

Then 

i j2 < 2w_< b2 1 12 (1 12 = 
2/z = - 

where 

c(~) = rain [1,1 - 2o-], b (a) = max [1, 1 - 2a] 

or, equivalently 

c(~) = 1, b(~) : 1 - 2 ~  (0<  0) 

e (c r )= l -2o ' ,  b(~r)= 1 (0<o '< �89  

Let W be the strain-energy density (3.1) associated with the stress tensor ~ in plane 

(3.5) 

(3.6) 

(3.7) 

Remarks analogous to those at the end of Section 2 can be made in this case also. Finally we 
note that corresponding results for generalized plane stress follow on formally replacing tr by 
cr/(l + ~)in the above (# being unaltered). 
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