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Summary 
Concepts and methods for use in the study of plant community variation across a single landscape, or for the 
comparative analysis of two or more landscapes, are presented. The method is called affinity analysis 
because it produces a sorting and scaling of all the communities in a data set according to degree of 
differentiation in composition away from an objectively identified subset of modal communities. Modal 
communities possess maximum affinity with the whole landscape because they contain a large number of the 
species common throughout the landscape. The modal communities provide a kind of central tendency for 
the landscape and an anchor for depicting the dispersion of all other communities in it. 

To accomplish affinity analysis, the Jaccard similarity coefficient and the Wilcoxon Tstatistic are used in a 
two-step transformation of the primary species-by-site data matrix. From these calculations we obtain both a 
visual image, the S-T  graph, and summary statistics for the landscape-wide diversity described by the data. 
One summary statistic is a high-order diversity measure for the total patchwork of communities. We refer to 
this measure as mosaic diversity. The analytical results are referred to collectively as the "metastructure' 
because they provide a general, abstract, characterization of any set of community data. This abstract 
rendering of the data allows comparison of pattern and variation between taxonomically, geographically, 
and temporally different landscapes. Either presence/absence or abundance data may be used. 

Examples using artificial and field data are presented. All but one of the field data sets showed a 
significantly higher mosaic diversity than would be expected from a randomly constructed landscape. We 
also show how the new methods may be used with ordination to explore intralandscape patterns in more 
detail than was previously possible. 

In addition to statistical matters, ecological and evoutionary interpretations of affinity analysis are 
discussed. Topics included in this discussion involve reasoning about the influences on diversity arising from 
micro- and macroevolution, species packing and association, environmental gradients, differential fitness 
expression among species-populations, continuity in community variation, and the uses of both presence/ 
absence and abundance data in community studies. Among the examples provided, mosaic diversity is 
independent of 13 diversity (Whittaker, 1972). 
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Introduction 

lstock and Scheiner 

Diversity within and among ecological communities continues to provide one of the most 
puzzling and challenging objects of study. For more than a decade one could sense a widespread 
ennui concerning this essential area of community ecology. Uncertainty about what it is we 
should measure and how we should go about collecting, analysing, and interpreting community 
data lies at the root of the difficulty and heightens the challenge of community studies (Eber- 
hardt, 1969; MacArthur, 1972; Whittaker, 1972; Pielou, 1975). Complexities are inherent in the 
hierarchy of spatial scales, temporal scales, taxonomic categories, and physiognomic categories 
(Pielou, 1975). Efforts to develop measures of diversity have concentrated on the lowest levels of 
the hierarchy, the diversity within single communities or the comparison of diversities among 
pairs of communities (Whittaker, 1972; Peet, 1974). Some multivariate techniques have been 
developed which extend the pairwise comparisons to the examination of entire sets of community 
data (Gauch, 1982). However, even these methods are still based solely on pairwise comparisons 
of similarity, and pursue only the investigation of internal pattern. 

A mosaic of communities, spread over a landscape or archipelago, possesses properties at the 
level of the entire mosaic which previously have not been well defined and measured. We present 
here some new ideas and associated measures for the study of overall patterning and diversifica- 
tion within and between mosaics. These ideas and measures provide a logical, conceptual basis 
for characterizing and comparing general properties of the mosaic which exists in any landscape 
of plants or animals. 

Our goal is to explore a space which represents the set of species present at each site in a 
landscape. There are as many axes in the space as there are species. Each axis records the 
presence or absence of a single species. Thus the list of species at a site is described by a single 
point in the space. We will refer to this space as the similarity space and explore the central 
tendency and dispersion of sites within it. The concepts and methods of this paper explicitly 
assess the following properties of landscape data: (1) the central tendency or approximate 'mode' 
or 'modes' of the ensemble of communities (identical with sites) which the data describe, (2) an 
ordering of all community samples according to the deviation in composition of each community 
away from this central tendency, and thus its 'affinity' to the entire ensemble, (3) a single measure 
of diversity for the entire patchwork of community samples analogous to a variance for the 
community ensemble - here referred to as 'mosaic diversity' (~), and (4) the extent of continuity 
and discontinuity in sample variation. The procedures which accomplish these things are collect- 
ively called affinity analysis. Although we present this method in the context of the analysis of 
landscapes of plant communities, any set of objects whicl~ can be arranged as items (columns) and 
attributes (rows) is amenable to analysis by this method. 

Mosaic diversity provides a higher-order extension of the ct, [3, and y hierarchy of diversity 
measures defined by Whittaker (1972). Beta diversity is one measure of high-order diversity. For 
[3 diversity Whittaker used two definitions: the turnover of species along a gradient and the mean 
similarity among sites (~). The two definitions are conceptually close, species turnover increases as 

decreases. Affinity analysis presents a new measure of high-order diversity, Ix, which represents 
the variation and degree of structuring around the mean similarity. The new information 
captured by Ix is not available merely by inspection or ordering of specific details within the data 
set or of the derived matrix of similarity coefficients. Further, on empirical grounds, as we will 
show, J and Ix appear to be independent measures of diversity with different biological meanings. 
Lower-order diversity measures such as ct and y, i.e. the number of species per site and the 
number of species in a region, respectively, are less inclusive descriptions of the data matrix. 

We will also examine briefly how the overarching assessment obtained through affinity analysis 
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can be supplemented by and coordinated with depictions of direct, internal, similarities of 
communities through ordination (Gauch, 1982). While ordination provides one or more images 
of the internal patterning of a single data array (for many examples see Gauch, 1982), it does not 
allow general comparisons of patterning and diversification among different landscapes because 
of the incommensurable scales of ordinations for two or more arrays. The graphical results of 
affinity analysis and the associated mosaic diversity measurements, all of which we call the 
'metastructure', do allow a comparative search for regularities and irregularities of patterning 
among taxonomically, geographically, or temporally unrelated landscapes. A subsequent paper 
(Scheiner and Istock, unpublished; see also Appendix) extends the procedures for statistical 
inference used within affinity analysis. Thus it is possible to test the examples presented here for 
overall deviations from random variation. 

Occasionally, it has been recognized that an evolutionary perspective for diversity studies 
exists (Whittaker, 1972; Pielou, 1975). However, few ideas about diversity have been extracted 
from evolutionary thinking. The properties of community mosaics which we explore here have 
explicit connections with reasoning from evolution. First, there is a connection through our 
attempts to discern and order larger-scale patterns of species association, such patterns being the 
present consequence within the community mosaic, or regional vegetation, of many separate 
genetic and evolutionary directions. The community mosaic is then the coming together of many 
separately evolved species, and perhaps also small groups of coevolved species, creating shifting 
patterns of association in space and time among the modern-day representatives of diverse taxa. 
It is highly unlikely that all modes of ecological adaptation are present all the time everywhere on 
earth, or perhaps that all such modes have appeared yet. And it is clear from studies in 
physiological ecology that most species possess quite restricted adaptations to regional environ- 
mental variations. If these ideas are correct, it follows that the species and modes of adaptation 
actually present will engender characteristic patterns of association and exclusion within the 
community mosaic in response to the prevailing abiotic backdrop. Thus, we would predict that 
species association and community composition over a landscape will be non-random (Pielou, 
1975). The procedures we present here allow a limited testing of this conjecture. 

As a second conjecture, related to that just discussed, we might expect that the spread of 
adaptive modes may often be highly incomplete for historical and biogeographical reasons. The 
result is likely to be the creation of patches characterized by evolutionary oddities, so-called relict 
communities in obvious cases. Our procedures allow us to identify less obvious cases of such a 
phenomenon and measure the extent to which discontinuity arises in the landscape-wide spread 
of variation in community composition. We find evidence suggesting that limited discontinuity 
may be a common property of community mosaics, but continuity appears to be the more general 
property of plant community variation. 

A preliminary exploration of these methods for plant ecology appears in Coleman and Istock 
(1980), and a quite different use of the present version of affinity analysis for study of clinat 
variation and diversification of chromosomal variants within one fruit-fly species appears in Etges 
(1984). 

Procedures 

Affinity analysis can be applied to presence/absence data or to absolute or relative abundance 
data. The method, in general form, proceeds by a two-step calculation. First, a site-by-site 
similarity matrix is calculated from primary data in a species-by-site matrix. Second, a site-by-site 
matrix of Wilcoxon T values with signs retained is calculated from the similarity matrix. It is the 
matrix of Wilcoxon T values which relates each site to the landscape as a whole in contrast to the 
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pairwise comparisons embodied in the matrix of similarity values. The statistical assumptions 
being made by this method are more spartan than those of most multivariate analyses. 

Specifically, in the first step, a similarity matrix is generated using the Jaccard (1901) similarity 
coefficient with presence/absence (incidence) data: 

Sq = c/(a + b + c) (1) 

where c is the number of species common between any two samples i and j, and a and b are the 
number of species found only in sites i and j, respectively. If abundances are involved we have 
used analogous quantitative similarity coefficients (Mueller-Dombois and Ellenberg, 1974; 
Goodall, 1973). For each site the mean similarity (S~) is calculated. Our use of presence/absence 
data accords with previous studies (e.g. Avena et al., 1981) which demonstrated that this type of 
data yields a sufficient representation of landscape composition. The Jaccard coefficient has been 
judged one of the best for use with presence/absence data (Mueller-Dombois and Ellenberg, 
1974; Janson and Vegelius, 1981; Faith, 1983). 

A similarity matrix is not sufficient for our goals. What is the pattern of dispersion of sites 
(points) in the similarity space? In a randomly occupied space there will be neither significant 
clusters of sites nor an even distribution of them. To investigate the dispersion of sites in the 
similarity space we use an adaptation of the Wilcoxon T statistic (Siegel, 1956, sample calculation 
on p. 79; Snedecor and Cochran, 1967). Calculation of the Wilcoxon T statistics is the second step 
in affinity analysis. 

The following example shows the calculation of a single Wilcoxon T value for two sites i and j 
using two columns of similarity coefficients. The subscript k denotes the number for any site other 
than i or j. The order of subtraction for the difference is defined as Sik minus Sj,. 

k site i site j difference rank 
1 Sil S]1 dl rl 
2 Si2 Sjz d2 r2 
3 Si3 S j3 d3 r3 

Each d value is positive or negative. Ranks are assigned according to the absolute values of the 
differences, but the sign of the difference is given to the rank. Positive and negative ranks are 
summed separately, and Tq is equal to the sum of ranks with the smaller absolute value. Thus 
each Tq relates sites i and j to all of the remaining samples collectively. The calculation is 
repeated for all pairs of sites thus generating a matrix of Tij. Each Tij equals -Tji, i.e. across the 
diagonal, the matrix is symmetrical in absolute values and opposite in signs. 

Two sites close together in the similarity space will have differences, dk, which average close to 
zero and fluctuate randomly in sign. Hence, their ]T i j] will be close to half the sum of the absolute 
values of all the ranks (Siegel, 1956) and the sign of their Tq will be as often negative as positive. 
Sites farther apart in the similarity space will have smaller ]T i j[ values. If a site is close to the mode 
compared to another, the close one will tend to have the positive T value, the other the negative 
T. 

By taking the algebraic average of all the Tq for any site i, we obtain a general measure of the 
position of site i within the context of the entire similarity space. This average, Ti, becomes then 
the measure of 'affinity' of site i with the entire landscape. Sites with large positive T; lie close to 
the central tendency of the similarity space and those with large negative values are distant from 
it. 
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The average similarity, ~qi, and affinity, ~r i, values for all sites are used to construct the S-T plot 
shown schematically in Fig. t ,  and it is this graph which provides the central image of variation 
and degree of structuring of the landscape as a whole. Whether the graph rises to the right or to 
the left is determined by the convention established for positive and negative orders of subtrac- 
tion in the Wilcoxon T procedure, and is merely an arithmetic detail. On an S-T graph arranged 
like that of Fig. 1, modal communities fall up and to the left because they are particularly rich in 
species which are common all over the landscape and they lack the rarer species. Communities 
which plot progressively downward and to the right are either depauperate or rich in rarer species 
relative to the mode. Thus the S-T plot is a sorting and scaling of communities from the mode out 
to those with increasingly divergent and unusual assemblages of species. The graph will always 
have a weighted average at 7~i=0. 
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Figure 1. Schematic representation of the S-Tgraph of affinity analysis. Mean similarility (Si) for each site 
is on the ordinate and the mean affinity (?~i) for each site is on the abcissa. The S-T graph along with its 
summary statistics are the 'metastructure' of a landscape. 

Empirically, we have discovered that the S-Tplot  is approximately linear, at least over most of 
its extent. Simulations of randomly formed landscapes yield S-T plots with very shallow slopes. 
So, the degree of structuring of the regional patchwork may be defined by the slope of the _graph; 
the greater the structuring the steeper the slope. The slope of a linear regression of Si on Ti fit to 
the points on the S-Tgraph  measures the extent of this tilt. Hence we define the mosaic diversity 
(IX) of the landscape to be this regression slope. This tilt is a function of both the variance in 
similarities among sites, measured by the variance of ~q/, and the pattern or structure of those 
similarities, measured by the variance of 7~i . The affinities are a function of the similarities. 
However, different amounts of structure will produc e different slopes even if the variance in 
similarities is the same (see Table 1, examples 2-4). Conversely, since the Wilcoxon procedure 
uses only the ranked differences in similarity and not the absolute values, different variances in 
similarity can result in the same variance in affinity. 

Now we can obtain a standardized mosaic diversity which allows comparison of high-order 
structure among unrelated regional mosaics. The data matrix for each regional array has three 
dimensions: the number of sites, number of species, and proportion of species-by-site entries 
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Table 1. Summary statistics from affinity analysis and dimensions for examples based on both artificial and 
field data matrices. All  symbols are defined in the text. 

Data set Q R F ,~ E(~) [x×10 "3 E(I.t)×10 -3 ~t 

Artificial data 
1 24 12 0.54 0.35 0.38 4.42 1.25 2.54 
2 22 40 0.38 0.30 0.23 2.52 1.10 1.29 
3 22 30 0.50 0.41 0.34 2.84 1.18 1.42 
4 22 20 0.75 0.63 0.64 3.86 1.13 2.42 

Field data 
5 33 237 0.17 0.24 0.09 5.37 1.50 2.59 
6 21 142 0.21 0.23 0.11 1.61 0.58 1.78 
7 21 142 0.21 0.30 0.12 2.01 0.40 4.06 
8 21 142 0.21 0.40 0.13 4.54 0.72 5.34 
9 25 94 0.34 0.41 0.20 1.61 0.58 1.78 

I0 25 94 0.34 0.57 0.21 1.57 0.45 2.47 
11 13 143 0.19 0.23 0.10 4.97 1.12 3.44 
12 30 19 0.32 0.30 0.18 0.89 0.76 0.18 
13 30 19 0.32 0.36 0.21 0.81 0.61 0.33 
14 47 486 0.15 0.22 0.08 0.25 0.03 6.47 
15 40 405 0.19 0.27 0.10 0.26 0.07 3.03 
16 31 347 0.20 0.23 0.10 0.41 0.14 1.97 
17 29 316 0.22 0.26 0.12 0.40 0.19 0.11 

1. Matrix with 2 different monocultures, as described in the first example in the text. 
2-4. A series which varies in F and R. 
5. North Carolina piedmont upland and bottomland communities, Oosting (1942), presence/absence data. 
6. North Carolina upland old-field and pine communities, Oosting (1942), presence/absence data. 
7-8. Same as 6 with frequency and density data, respectively. 
9. Danube meadows, MueUer-Dombois and Ellenberg (1974), presence/absence data. 

10. Same as 9 with density data. 
11. Hyuck Preserve moss communities, Coleman and Istock (1980), presence/absence data. 
12. Wisconsin tree communities, Peet and Loucks (1977), presence/absence data. 
13. Same as 12 with density data. 
14. Northern lower Michigan plant communities, unpublished data of Istock and Scheiner (see text), presence/absence 
data. 
15. Same as 14 but with the 'tail' communities deleted. 
16. Australian mediterranean-type shrubland communities, Griffin et al. (1983), presence/absence data. 
17. Same as 16 but with the 'tail' communities deleted. 

ac tua l ly  filled. To  co r rec t  for  d i f fer ing  d imens ions ,  a s t a n d a r d i z e d  m e a s u r e  of  mosa ic  d ivers i ty  is 
ca lcu la ted :  

IX = [Obs(ix)-  E(IX)]/E(~t) (2) 

w h e r e  E(IX) is the  e x p e c t a t i o n  o f  Ix o b t a i n e d  by  s imula t ion  of  a r a n d o m  case  (Sche ine r  and  I s tock ,  
unpub l i shed ) .  

A dis t inct  and  useful  dev i a t i on  f rom s imple  l inear i ty  s o m e t i m e s  occurs  in the  fo rm of  one  o r  
m o r e  s amp le s  which  p lo t  ve ry  low on the  r ight  and  back  t o w a r d  S,.=0 and  7~i=0, as seen  in Fig.  2. 
W e  re fe r  to  this  as an  e x t r a  ' t a i l '  on  the  S - T  graph .  This  ' t a i l '  is o f  eco log ica l  in te res t  because  it 
i n t r oduces  an  add i t i ona l  p r o p e r t y  o f  l andscape  va r i a t i on  which  we def ine  as continuity within  the  
specific con tex t  of  aff ini ty analysis .  A s  long as va r i a t ion  a m o n g  c o m m u n i t i e s  g rades  con t i nuous ly  
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Figure 2. S-Tgraph from affinity analysis for the artificially structured data set with two different terminal 
monocultures (sites 1 and 24) described in the text (example 1 of Table 1). This example illustrates the 
development of a 'tail' of discontinuous sites. 

away from the central tendency, only the linear S-Tgraph arises (Figs 3 and 4), while discontinuity 
produces the tail. This is to say, no matter how many floristically, environmentally, succession- 
ally, or stochastically determined directions of divergence there are in the data, the S-T graph 
remains distinctly linear as long as each direction of divergence is quasi-continuous. Biologically, 
quasi-continuous means that a relatively smooth substitution of rarer for commoner species is 
occurring along the linear portion of the graph down and away from the mode. The 'tail' appears 
because some sites make a rather abrupt shift to a composition which includes both species 
unique to a single site and a group of species characteristic of widely divergent parts of the 
landscape. Thus the relationship of Si and 7"i reverses. The linear nature of the graph remains 
even if the samples at the ends of the various gradients have no species in common. Any samples 
sharing no species with all other samples will plot exactly as Si=0, 7~/=0. The proper measure of 
mosaic diversity in data sets with discontinuity revealed by the 'tail' is the slope of the linear 
regression from a reanalysis with the 'tail' samples deleted. The change in ~t provides an 
approximate measure of the amount of discontinuity. 

Through the analysis of artificial data arrays we have found that affinity analysis is robust to 
non-proportional representation of the communities of the landscape. One must greatly distort a 
sampling procedure away from a random or stratified method before large changes in the S-T 
representation of a landscape structure appears. The method is particularly robust with large 
sample sizes. On the other hand, the method also appears to be rather robust with only a few 
samples, say twenty or so. In our experience 20 samples seem sufficient to provide a reliable, 
initial description of the landscape structure. 

Alternative similarity coefficients and other non-parametric, rank-order, statistical measures 
might be used in affinity analysis, though we have not tried them. A non-parametric procedure 
seems appropriate because the similarity coefficients are not always normally distributed (Wolda, 
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Figure 3. (a)S-T graph and (b) principal-components analysis for Oosting's (1942) data describing upland 
and bottomland piedmont communities in North Carolina (example 5 of Table 1). The various types of 
communities, Oosting's classification, are indicated as follows: (~)  upland pine sites, (El) bottomland pine 
sites, (0 )  bottomland birch sites, (O) bottomtand mixed hardwood sites, (~)  upland climax oak-hickory 
sites, and (*) the bottomland post-climax hardwood site. The model sites are indicated by filled symbols. 
The various extensions away from the mode disclosed in 3b are traced out on the S-T graph. 

1981), and the number of sample sites may be small in some cases. These are the motivations in 
the preliminary development of these methods (Coleman and Istock, 1980). 

Listings of computer programs for affinity analysis written in FORTRAN and Microsoft 
BASIC are available from the authors. The programs provide: a matrix of joint species occur- 
rences, a matrix of pairwise similar!ty values, a matrix of Tij values, Si and its variance for each 
site, Ti and its variance for each site, the number of species and mean number of species shared 
by each site, S, the among site variances of Si and Ti, and ~ and the random expectations of S, 
V(Sij), V(Si), V(Ti/), V(Ti), and ~t. 
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Figure 4. S-T graphs for the Danube meadows data of Mueller-Dombois and Ellenberg (1974), examples 
9 and 10 of Table 1. The S-T graphs show presence/absence (upper) and density (lower) versions of the 
data. Site numbers as in original data. 

Examples 

Next we present a number of examples of affinity analysis. For each: Q is the number of sites or 
community samples, R is the number of species, and F is the fraction of all cells in the site by 
species matrix Containing a value for presence (1) or a value for abundance. 

The first example uses an artificial presence/absence matrix where Q=24, R=12, and F=0.54 
(example 1 in Table 1) having the following shape and with two central sites containing all species 
(not all species and sites are shown): 

sites 
1 1 1 1 1 .  1 1  0 0 0 0 0  
O 1 1 1 1  1 1 .  0 0 0 0 0  
0 0 1 1 1  1 1 .  0 0 0 0 0  

species . . . . . . . . . . . . . .  

0 0 0 0 0  1 1 .  1 1 1 0 0  
0 0 0 0 0  1 1 .  1 1 1 1 0  
0 0 0 0 0  1 1 .  1 1 1 1 1  

Fig. 2 presents the S-T graph for this matrix. The richest central communities in the matrix 
share species with all other communities and they plot as the modal communities in the S-T 
graph. The linear and 'tail' parts of the graph are also clear, although there is not complete 
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discontinuity and the 'tail' ending in monocultures does not reach completely back to S;=0, Ti=0. 
The original symmetry of the data is revealed by the fact that the pairs of sites at equal distance 
from the modal communities plot in exactly the same places. Mosaic diversity as well as other 
statistics for this and other artificial and natural examples are summarized in Table 1. Mosaic 
diversity is a complex phenomenon as artificial examples 1-4 of Table 1 illustrate. The increased 
species richness in examples 2 and 3 actually lowers mosaic diversity. 

We have evaluated many other simple and complex artificial data structures representing many 
kinds of imaginable landscapes (e.g., examples 1-4 in Table 1). All of them lead to the central 
interpretation depicted in Fig. 1, namely that the S-T graph is controlled by a gradient in 
representation of common species, that the Wilcoxon T expresses the extent of variation in 
species composition among communities in a landscape, and that ~t diversity measures the degree 
of structuring among species associations. 

North Carolina piedmont 

The analysis of Oosting's (1942) data of the North Carolina piedmont appears in the S-Tgraph of 
Fig. 3 (example 5 in Table 1), where Q=33, R=237, and F=0.17. The data consist of sites of 
various ages from both upland and bottomland forests. We used only the presence/absence aspect 
of the data. The youngest and the oldest sites plot at the extreme right end of the S-Tgraph while 
the modal communities are of intermediate age. 

Using ordination, in this case a principal-components analysis (Fig. 3b), one can trace arms of 
relatedness or divergence relative to the mode, as we have done on Fig. 3a. This analysis 
indicates that the upland climax oak-hickory sites are closely allied with each other, forming the 
end of one arm. They are related to the younger upland pine sites which, presumably, precede 
the oak-hickory sites during succession. Two of the older pine sites, 31 ,and 75 years old, are 
modal communities. Similarly, the bottomland sites proceed from the youngest mixed hardwood 
and birch sites at the end of one arm, through mixed hardwoods of intermediate age at the mode 
and back to a very old, >300 years, post-climax bottomland forest. The bottomland pine sites are 
in a somewhat anomalous position being more related to the upland pine sites than the other 
bottomland sites. Thus the arms trace a pair of presumed successional sequences. Any method of 
ordination or classification describing internal structure can be used in concert with affinity 
analysis in this manner to augment the interpretation of the S-T graph. Recall, however, that 
affinity analysis as a whole yields a measure of diversity and other characteristics of the data not 
available from methods of ordination and classification. 

The Oosting (1942) study also contained a detailed analysis of old field to pine forest succession 
in the Piedmont upland (examples 6-8, Table 1). An analysis of this subset of Oosting's data is 
included to show the effects of abundance data used with affinity analysis. Addition of abundance 
data increases both the mean similarity of sites and the mosaic diversity of the landscape. This 
increase in structure occurs because species with high abundance in one site also tend to have 
high abundances in other sites that share the same species. Similar sites become even more 
similar when abundance data is considered. The S-T graph and principal-components analysis 
(not shown) give a similar tracing of the successional sequence but in the much simpler form of a 
single pair of arms since only upland habitats were analysed. 

Danube valley meadows 

Data from Mueller-Dombois and Ellenberg (1974) describing an array of meadow samples 
in the Danube River valley (examples 9 and 10 in Table 1) provide a third example. The dimen- 
sions are Q=25, R=94,  and F=0.34. S-T graphs with both presence/absence and density 
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data appear in Fig. 4. Again linearity is apparent on both S - T  graphs and the only sample with a 
tendency to discontinuity is site 19 (as discussed by Mueller-Dombois and Ellenberg, 1974). 
Overall, the addition of density information to the analysis does not produce pervasive change in 
the way the sample sites assort by affinity with the mode, but there are some separate, dramatic 
changes of position, as for example sites 5, 6, 7, and 13. 
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Figure 5. S-T graphs of Australian mediterranean-type shrublands data of Griffin et al. (1983), presence/ 
absence version (examples 16 and 17 of Table 1). The lower graph is based on the complete data and the 
upper graph'on the data when two extreme sites, 30 and 31, are deleted. 
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Australian shrubland 

Another example (numbers 16 and 17 in Table i) provides a summary from the affinity analysis of 
data describing a mediterranean-type shrubland landscape in south-western Australia (Griffin et 
al., 1983). Only the presence/absence aspect of the data has been used. The Ix of 1.97 is close to 
the values from the North Carolina and Danube data..If the two communities acknowledged by 
the authors to be extreme are removed, the value of Ix falls to 1.11, indicating a quite homoge- 
neous array. Perhaps most interesting from the standpoint of confirming our general interpreta- 
tion of affinity analysis, the geographically central sites, which are also floristically central 
according to the original analysis of Griffin et al. (1983), are the ones plotting in the mode of the 
S - T  graph (Fig. 5 here, and see Fig. 3 of Griffin et al., 1983). 

Michigan forests 

A final example (numbers 14 and 15 in Table 1, and Fig. 6) comes from our recent study of 
compositional variation within the hemlock-white pine-northern hardwoods forest (Nichols, 
1935) of northern lower Michigan. In the S - T  graph for these data a 'tail' extending almost to 
Si=0, 2Pi=0 is present, allowing us to assess quantitatively the effect of discontinuity. At present, 
our data describing this hemlock-white pine-northern hardwoods landscape include 47 sample 
sites and 486 species of vascular plants. Among the sample sites are wet swamp forests, upland 
hardwoods, red and white pine forests, mixed hardwoods and pine, aspen and pine, natural and 
artificial burns, jack pine woodlands on wet and dry sites, spruce-fir forests, birch forests, bogs, 
and sand dunes. When the seven sites (dunes, dry jack pine, bog, and larch swamp) which form 
the 'tail' are eliminated the mosaic diversity reflected in ~ decreases markedly. The reality of the 
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Figure 6. S-T graph of hemlock-white pine-northern hardwood forest of northern lower Michigan 
(example 14 of Table 1). 
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'tail' was tested empirically by intentionally sampling additional sites intermediate (bog forest 
(46), larch swamp (38), and dry jack pine (40)) between the linear part of the graph and the most 
extreme sites in the 'tail', i.e. the bog (24) and the dunes (26, 28, 29). These additional sites are 
clearly intermediate along the 'tail' on Fig. 6. Full presentation of the Michigan study will appear 
in a separate paper. 

Comparing landscapes 
The examples from field studies show how the method can be used to compare the structuring of 
unrelated landscapes• For each example, we present two measures of high-order diversity, the 
mean similarity of all sites (J), a measure of [3 diversity (Whittaker, 1972), and Ft diversity. We 
have also obtained random expectation for ~¢ and p. using a null model based on a bootstrapping 
routine (Efron, 1981) and computer simulations (Scheiner and Istock, unpublished). Currently, 
the best statistic for comparing the mosaic diversities of unrelated landscapes is 0; it varies 
between 1 and 3•5 in most examples for which Q, R, and F are in the acceptable ranges for reliable 
behavior of affinity analysis (acceptable ranges derived empirically in Scheiner and Istock, 
unpublished)• Values for Q, R, and F are not within acceptable ranges for the Wisconsin tree 
community data. 

The mosaic diversity of the moss communities on the Hyuck Preserve in New York (Coleman 
and Istock, 1980) is much greater than for the studies with taxonomically more comprehensive 
species lists (number 11 in Table 1). The moss S-T graph is linear, lacking any 'tail'. It is possible 
that taxonomically narrow data tend to produce higher Ix values, but there are presently too few 
comparisons to support this speculation. 

The Wisconsin tree data (numbers 12 and 13 in Table 1) provide an example strikingly different 
from all the others• This case is the only one in which mosaic diversity is not significantly different 
from randomness (see Appendix). We urge caution in the interpretation of these data, however, 
because the relation of sample number to species number in the Wisconsin tree data falls in the 
range of dimensions where affinity analysis is not robust (Scheiner and Istock, unpublished)• 

Discussion 

A web of uncertainties has spread over the part of ecology devoted to the study of diversity (cf. 
Peet, 1974). Point or ct diversity is well measured by various indices, but we do not know what 
such measurements can tell us about the origin, development, dynamics and structure of natural 
communities, or about the existence of strong regularities in community processes and structure. 
It sounds good to say that the central questions are: how are communities created, patterned, and 
governed? But, it is unclear what, if anything, the measuring of ct diversities has to do with such 
sweeping questions. We certainly have not yet achieved a truly comparative study of ecological 
diversity. At the level of a-diversity studies, the mere delineation of the object we wish to call 'a 
community' is operationally unclear. Hence, in part, the ennui we mentioned at the beginning of 
this paper. Such weariness and uncertainty was expressed by R• H. Whittaker (1972) more than a 
decade ago. 

The development of diversity theory in the past 15 years may have disappointed those who expected the 
construction in ecology of an area of neat, tight, rigorously formulated relationships as bases of prediction. 
• . . There is some hazard in applying complex measurements and mathematical treatments to community 
data, of obscuring rather than clarifying relationships . . . .  If diversity is recognized as an evolutionary 
product, it may cause no surprise that no single measurement serves all purposes. 

Little has changed since Whittaker wrote these words. 
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At the scale of whole landscapes there is usually a visible mosaic, and we used this common- 
place observation as a point of conceptual departure for the development of affinity analysis. 

Non-randomly structured landscapes 
In the Appendix, and in a companion paper (Scheiner and Istock, unpublished), we determine 
empirical formulae for the null hypotheses of affinity analysis. These formulae allow several types 
of significance testing. The tests which are now possible include: (1) deviation of a data set from 
its null (random) expectation, (2) deviation of any single site (sample) from the mode, (3) 
significant similarity between any pair of sites, and (4) significant affinity between any pair of 
sites. 

All of the field data sets in Table 1, except for the Wisconsin tree data, deviate significantly 
from their null expectations by more than 3.5 standard deviations (with corresponding null, or 
random, data structures simulated without constraints on marginal totals)i We determined the 
fiducial limits using the formula for z in the Appendix. All the significant tx values were steeper 
than random. This result indicates that, with the exception of the Wisconsin data, all the 
landscapes we have analysed have a significant higher-order organization of the sort we refer to as 
the 'metastructure'. Undoubtedly, experienced plant ecologists would suspect that such a struc- 
ture exists. Nevertheless, it seems worthwhile to have the methods of affinity analysis to confirm 
it objectively, and to provide ways of representing, measuring and comparing such a higher-level 
organization. • 

A significant IX could mean that one or more clusters of similar communities exist within the 
landscape. We take up the question of clustering of communities versus continuity in community 
variation below. 

Unique aspects of affinity analysis 
As in the study of a diversity, the definition of 'a sample' = 'a community' is a difficult and 
essential one in the study of diversity in regional mosaics. However, when the data are to be used 
with affinity analysis the problem becomes less severe for two reasons. 

First, we can operationally define the sample as any area which, though very small relative to 
the entire landscape, is extensive enough to have the largest abundant life forms of that locale 
repeated many times within the sample site. Ample opportunity will then exist for the dominant 
forms to be 'diversified' with respect to rarer and rarer forms of similar size. Smaller forms then 
too will have ample spatial scope to be repeated and diversified. Thus variation owing simply to 
statistical fluctuations will be reduced. If such a procedure for delineating sample sites is followed, 
it is not necessary for the sites to have equal ai-eas. Visibly homogeneous areas of one to a few 
hectares, and lacking gradients, are suitable for vegetation studies in most parts of the world. 

Second, as increasing numbers of samples are brought into the analysis, and the S-T plot 
emerges, an increasingly well defined and stable 'metastructure' appears and actually accommo- 
dates to vagaries of sampling. For example: redundancy, or over-representation, of one sample 
type does not warp the structure, since all such samples merely plot in the same place. As samples 
intermediate in species composition between previous samples come into the data, they plot as 
intermediate between the sites they resemble. Sites which break strongly in their compositional 
affinity become organized into the 'tail' portion of the S-T graph. The position of a site on the 
S-T graph is controlled by the proportion of its species common to the whole landscape. The 
greater this proportion, the nearer the site to the mode and thus the greater the 'affinity' to the 
landscape. Once enough data exist to define the 'metastructure' clearly and stably, the central 
statistic for the structuring of the mosaic, Ix, and its standardized form, ix, are obtained and a 
comparison of the overall structuring of different landscapes becomes possible. 
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Despite the present paucity of analysed data sets, we have some strong evidence that Ix 
diversity and 15 diversity are independent measures of landscape level phenomena. This evidence 
is shown in Fig. 7, where the measure of 13 diversity is S. For the analyses thus far, ix varies 
independently of ~ (i.e. the two are uncorrelated), and thus IX measures a different property of 
landscape organization. Specifically, Ix differs from J because it is sensitive to all of the details of 
variation in community composition simultaneously, something which a mean similarity coeffi- 
cient like j cannot be. For instance, the high mean similarity of the Danube meadow samples (9 
in Fig. 7) is almost certainly due to the restriction of sampling to a single habitat type. Fig. 7 also 
suggests that for extensive, presence/absence, community data sets S is conservative over a range 
of approximately 0.22 to 0.27 while ~t varies more widely. 
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Figure 7. Graph of mosaic diversity against 13 diversity for all the natural data sets of Table 1. Underlining 
indicates abundance data. Mosaic diversity (~t) varies independently of 15 diversity (~). 

In the future it will be interesting to ask whether there are geographical, climatological, 
successional, taxonomic, or evolutionary correlates of variation in mosaic diversity. Mosaic 
diversity should increase over time in regions isolated by lack of dispersal if evolution creates a 
strengthening of species associations through specific adaptations (including speciation), extinc- 
tion, and coevolution of species interactions. At present, affinity analysis provides the only way 
available to search for such regularities. 

A simple way to envision the ecological meaning of the S-T graph, and one which suggests that 
15 and IX diversity should be independent, is as follows. Let the number of species in a region be 
constant. Move the cloud of points in Fig. i up and down the ordinate, with its slope unchanged, 
15 diversity changes while Ix diversity remains the same. Biologically such change in 15 diversity 
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signifies a change in species packing (Whittaker, 1972) which is equivalent to adding or subtract- 
ing a constant to all pairwise similarity values. Conversely, when the tilt, Ix, is changed without 
changing 13, i.e. mean species packing is left constant, the biological process involved is a change 
in the degree of structuring among the species associations. Thus, the extraction from vegetation 
data of the S - T  graph and Ix - -  i.e. abstraction into the 'metastructure' - -  rests on biologically 
motivated concepts and methods. 

Ecological and evolutionary ramifications 

Community change over any part of the earth is a kind of variation. Affinity analysis emulates the 
reduction of variation familiar in univariate statistics by establishing representations of central 
tendency and dispersion for the more complex community data. The 'tail' in the S - T  plot, of 
course, introduces a striking non-linear property. Biologically, the method in its presence/ 
absence form treats each species as an evolved genotypic array of monitors, or living sensors, of 
the surrounding abiotic and biotic environmental variation. With this evolutionary motivation in 
mind, presence/absence data which give equal weight to a large set of these 'physiological 
probes', while abundance data which represent the species quite unequally and usually less 
completely, might be expected to provide different kinds of information. Presence/absence 
data give macroevolutionary diversification at and above the species level the major role in 
shaping the S - T  plot and determining ~t. Abundance data necessarily carry much more of a 
microevolutionary influence derived from both landscape-wide and local expressions of high 
fitness for particular species. It is interesting that our comparisons, thus far, with the two types 
of data have shown only modest differences in the positioning of sites within the S - T  plot 
(e.g., Fig. 4). However, all the relevant examples (data sets 6-7-8, 9-10, 12-13 in Table 1) show 
an increase in Ix when abundance is included. Taken together, these last two observations 
suggest: (1) that the internal ordering of sites within the S - T  plot is mainly an expression of 
evolutionary diversification among species and higher taxonomic categories, and (2) that 
additionally separate ~t measurements can be used to measure comparatively the overall influence 
of variations among species in expressed fitness versus macroevolutionary differentiation on the 
structuring of landscapes when both presence/absence and abundance data are available for the 
same region. 

While we have found discontinuity in several of the natural examples, the rule is clearly that 
continuity pervades most of the variation in community composition when it is cast in the form of 
the S -T  plot. This observation plus our studies of ordination plots, not presented here, suggest to 
us that continuity is probably also the rule in the similarity space itself. Hence, the classification 
and naming of communities to finer and finer levels may never be very useful. A useful 
classification would arise naturally if there were much clustering and discontinuity in the 
distribution of sites in the similarity space. 

This issue of continuity points up a fundamental difference between our approach and that of 
Pielou (1975, ch. 5). Her treatment assumes a priori that a finite set of vegetational phases exists 
and that the phases have all been identified prior to a sampling analysis of mosaic patterning. In 
our case we sample first and then solve empirically for the overall mosaic diversity without 
knowing beforehand whether the variation in community compositions (phases) is more nearly 
continuous or discontinuous. It is possible that, in the future, we may be able to use affinity 
analysis in conjunction with ordination to define the 'phase' of any particular site even in complex 
situations where the mosaic is not completely subdividable on a priori grounds, and thus gain 
access to Pielou's log likelihood method for testing randomness in vegetation mosaics. Such an 
approach might provide a check on our use of simulation to achieve statistical inference. Either 7~i 
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or Si and 7~i together can be used as an index for any community relative to the mode of the 
landscape. Hence, these indices can provide a calibration, an ecological metric, for both 
successional and ordination studies. 

Without a logical basis such as that of affinity analysis and its realization as a method of 
analysis, the study of large-scale variation and change cannot advance. The human mind falters 
upon direct inspection of an array of community data. The Michigan data, for example, is a 
seemingly impenetrable matrix of zeros and ones, nearly 500 by 50 strong, and it is not as large a 
data set as those we are likely to contend with in the future. More palpable images of internal 
regional variation come when the primary data is reduced to a diagonally symmetrical matrix of 
similarity coefficients, say 50 by 50 strong, and various techniques of ordination are available to 
provide images of internal patterning. At the next level of data reduction with affinity analysis, 
more easily grasped images and insights emerge in the S-Tplot  and a small number of descriptive 
statistical parameters. Quantification of regional diversity, comparisons between data sets, and 
the search for regularities become possible. 

The sorting with respect to the mode in the S-T graph could be of use in matters of 
conservation by allowing us to express the degree (S-Tposition coordinates) to which a given site 
is typical or unusual within its contemporary landscape. Repeated use of affinity analysis with 
data from sequential sampling through time of the same sites in the same region should also 
provide information about total change in a landscape mosaic, as well as directions of succesional 
change for specific points in a landscape. 

It is interesting how the succession-like chains of communities shown in Fig. 3 for Oosting's 
data are arranged within the S-T plot. One wonders if major successional trajectories tend to 
course neatly through the mode of the metastructure, and whether succession does or does not 
often involve crossovers between such trajectories. The simple internal structures of Fig. 3 may 
or may not represent dominant successional trajectories, but if they do, the T-axis can provide a 
quantification of position and perhaps assist in describing motion along paths of succession. 
Affinity analysis also provides a formal framework for simulations of succession, as well as for 
simulations of many related ecological processes. Various assumptions about rules or processes 
operating during the formation, maintenance, and change of structure and diversity of landscape 
mosaics can now be explored. Explicit descriptions of species dispersal, competition, herbivory, 
population dynamics, and coevolution, as well as successional transitions, could be studied 
through computer simulation, with affinity analysis providing the diagnosis of major effects on, 
and patterns of, landscape structure. Such simulations would proceed by creating dynamical 
algorithms reshaping the species, or species-abundance, by site matrix, with affinity analysis and 
ordination then serving to provide a coherent summary of many of the ensuing consequences for 
the overall organization of a landscape. 

Perhaps the most important result we have presented is the identification of mosaic diversity, 
Ix, as a measure of high-level diversity independent of 13 diversity measured by J. Since 13 diversity 
should reflect the consequences for community and landscape structuring arising from species 
turnover along environmental gradients, the independence of ~t and 13 indicates that the similarity 
and dissimilarity of communities due to gradients does not have a common influence on these two 
forms of diversity. The relation of Ix or ~t to ct diversity remains obscure. To this stage in the 
development of affinity analysis it has been impossible for us to establish either a theoretical or 
empirical relationship across this wide conceptual span within the general study of ecological 
diversification. 

We believe that as we go beyond calculation of 13 diversity in affinity analysis, and use the T- 
statistic to accomplish a study of the 'similarities of similarities', we leave behind much of the 
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specific imprint of environment gradients. Or perhaps it would be more accurate to think that we 
thereby obtain a procedure which solves for a more general form of gradation, a form of 
gradation summarizing many physiological performances by many species in many ecologically 
different settings, and encompassing, in some substantial degree, the large set of events and 
processes which create the floristic structure of a landscape. 

Appendix 

Affinity analysis can be used for statistical inference at several different levels of comparison: the 
whole landscape, single sites to the whole landscape, and among sites. Expectations and sampling 
variances of the indices of affinity analysis were generated by random simulation. The null model 
assumed, given the number of sites (Q), number of species (R), and matrix filling (F), that all 
species had an equiprobable chance of being in all sites. There were no constraints on either row 
or column totals. A regression procedure was then performed to obtain random expectations for 
g, Ix, and the other affinity analysis indices corrected for data matrix attributes. A complete 
description of this procedure ~vill be given in a companion paper (Scheiner and Istock, 
unpublished). 

The results of the random simulation procedure can be used for statistical inference in the 
following ways. For example, the formula for the random expectation of tx was found to be: 

E(Ix) = 10 exp[1.20 + x/-Q{ - 0.64 + (0.073) 4x/-R-~Q 
+ (0.63)(F) - (0.23)(F) 4M~7-Q) 
+ % / ~ Q {  - 1.31 + (2.06)(F)} - (4.18)(F)] (A1) 

and the coefficient of variation was found to be less than 0.3. Thus, a conservative test of whether 
the mosaic diversity of a landscape is significantly different from random expectation is given by: 

z > [Obs(ix)- E(~t)]/0.3 E(IX). (A2) 

Probability values for z can be obtained from any standard statistics text (e.g., Snedecor and 
Cochran, 1967). As the distribution of Ix is positively skewed, we recommend using 3 standard 
deviations as a minimum test of non-randomness. Most of the natural data sets in Table 1 have 
mosaic diversities that are at least 3½ standard deviations greater than random expectation. 

Significant deviations of individual sites from the modal communities can be identified by use 
of the measured values of Ti and its variance [V(Ti)]. For example, in the Australian data set 
(Fig. 5), V(Ti) = 4148 and 7~23 = 92, which is 3 standard deviations away from the modal sites. 

One type of comparison among sites is based on the pairwise similarity values. Again, the ran- 
dom simulations provided random expectations for the mean similarity and variance of similarities. 

E('3) = F -  (O.16)sin(TtF) 

and 

giving 

E[V(Sq)] = 10 e x p [ -  1.00 - (0.16) V~Q - (0.32) Rv'~Q] 

z = [S~v- E(g)I/V'E[V(Sq)], (A3) 

where Sxy is the measured similarity of any sites x and y. For example, in the Australian data 
samples E(J) = 0.23 (Table 1) and E[(V(Sq)] = 0.0033. Thus, sites 1 and 10, although they plot 
next to each other on the S - T  graph (Fig. 5) are not more similar than would be expected at 
random (Sin0 = 0.20, z = 0.52, P < 0.61). A similar procedure can be used to test for significant 
differences in pairwise affinities. 
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