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Abstract. The compressive response of polymer matrix fiber reinforced unidirectional composites (PMC’s) is in-
vestigated via a combination of experiment and analysis. The study accounts for the nonlinear constitutive response
of the polymer matrix material and examines the effect of fiber geometric imperfections, fiber mechanical prop-
erties and fiber volume fraction on the measured compressive strength and compressive failure mechanism. Glass
and carbon fiber reinforced unidirectional composite specimens are manufactured in-house with fiber volume
fractions ranging over 10∼ 60 percent. Compression test results with these specimens show that carbon fiber
composites have lower compressive strengths than glass fiber composites. Glass fiber composites demonstrate a
splitting failure mode for a range of low fiber volume fractions and a simultaneous splitting/kink banding failure
mode for high fiber volume fractions. Carbon fiber composites show kink banding throughout the range of fiber
volume fractions examined. Nonlinear material properties of the matrix, orthotropic material properties of the
carbon fiber, initial geometric fiber imperfections and nonuniform fiber volume fraction are all included in an
appropriate finite element analysis to explain some of the observed experimental results. A new analytical model
prediction of the splitting failure mode shows that this failure mode is favorable for glass fiber composites, which is
in agreement with test results. Furthermore, this model is able to show the influence of fiber mechanical properties,
fiber volume fraction and fiber geometry on the splitting failure mode.
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1. Introduction

It is established that the compressive strength of PMC’s is generally lower than the tensile
strength; this relative weakness in compression is often the limiting factor in the application of
composite materials. In order to design a composite structure to operate efficiently and safely
under compressive loading, it is necessary to be able to accurately predict the compressive
strength of that structure, taking into account the possible failure modes of the structure under
different conditions.

A significant number of previous experimental results have revealed that material failure
(usually at the microstructural level) such as fiber microbuckling or kinking in laminae where
the fibers are aligned with the loading axis are the initiating mechanisms of compressive
failure that lead to global instability (Sohi et al., 1987; Waas et al., 1990; Soutis et al., 1991), in
composite structures. There is, thus, a necessity to develop a means of measuring the strength
of a lamina (derived from a test of a structure with the fibers aligned with the load), which can
be coupled with measured strengths in other orientations in an appropriate failure model, such
as those described in Cui et al. (1992). This failure model can then be used in conjunction
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with the laminate layup and the stress and strain distributions calculated from models using
CLT type theories to predict failure of the structure based on its construction.

Compression failure in composites is an area of active research, and other sources of in-
formation on this topic are presented in recent review articles by Schoeppner and Sierakowski
(1990), Camponeschi (1991), Guynn et al. (1992), Lo and Chim (1992), Chatterjee et al.
(1993), Waas and Schultheisz (1995) and Fleck (1997). The reviews by Waas and Schultheisz
(1995) and Fleck (1997) are the most up-to date and examines issues related to compress-
ive failure rather exhaustively. The papers by Budiansky and Fleck (1993) and Kyriakides
et al. (1995), provides a thorough treatment of plastic microbuckling and the initiation and
localization of deformation into kink bands, respectively. Since the publication of the above
articles, important contributions by Daniel (1996), who examined manufacturing process in-
duced defects and rate effects on compression strength, Sun and Jun (1994), who used a
lamina level plasticity formulation and Schapery (1993, 1995) who examines time dependent
microbuckling failure have also appeared. In addition, Shu and Fleck (1997) have used a
couple stress theory to examine microbuckling, while the effects of other plies on the zero ply
microbuckling strength of laminates have been examined by Swanson (1992) and Drapier et al.
(1998). Free edge effects and three-dimensional corrections have also been studied by Soutis
et al. (1998) and Kyriakides and Ruff (1997) respectively. Narayan and Schadler (1998), have
proposed a new mechanism for the initiation of kink banding based on experiments with
unidirectional composites in conjunction with Raman Spectroscopy. They propose a model
based on the development of a distributed damage zone due to fiber end effects.

The most frequently considered failure modes in unidirectional laminates are microbuck-
ling, kinking, fiber failure and longitudinal cracking (synonymous with delamination failure
in general laminates). Obviously, these failure modes may combine in any one specimen, or
a different mode may dominate for the same composite material tested under different con-
ditions. The test method itself may influence the measured compressive strength, particularly
if the testing apparatus induces stress concentrations or does not prevent global buckling of
the structure. Thus, the term compressive strength has meaning only if the mode of failure
associated with the strength measurement is specified.

The present paper is concerned with an exploration of the parameters that influence com-
pressive strength of unidirectional composites. The effect of adjacent plies and their location
with respect to zero plies, on the compressive strength of multidirectional laminates is not
explored herein. Of concern in the present work is how the mechanism of failure in com-
pressively loaded unidirectional composites is influenced by the mechanical properties of
the fiber, the fiber volume fraction and nonuniform packing of the fibers. A case is made
for the importance of performing a mechanism based failure analysis of the composites. In
the sections to follow, we begin with an exposition of the experimental work, followed by
a new analytical model for explaining the splitting failure mode of composites and a finite
element analysis of the observed kink band failure mode. A discussion ensues as to how
these mechanisms are related. A comprehensive and detailed version of the present work is
contained in the doctoral thesis of the first author (Lee, 1998).

2. Experiments

Uni-directional composite specimens were made in-house for static compression tests. Two
different kinds of fibers (glass and carbon) were used for specimens, while only one type of
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matrix material (vinyl ester resin) was used as the matrix. Such an approach enabled us to
examine the effect of fiber mechanical property on the compressive behavior of unidirectional
composites. The fiber volume fraction of the specimens could be easily controlled during
the manufacturing process used in this investigation. Specimens with six different volume
fractions were manufactured.

The making of the specimens involved taking an exact amount of fibers (without any fiber
surface treatment) matching the desired fiber volume fraction, which was put inside a glass
tube with an internal diameter of 6.8 mm and 300 mm length. Next, resin mixed with 1 percent
weight of initiator (Benzoyl Peroxide), was injected into the glass tube under pressure of 70–
140 Pa. The resin was circulated in the glass tube so that all the fibers were adequately wetted,
which resulted in a void free composite sample. After the tubes were filled, they were placed
in a furnace and cured at 80◦C for 2 hours. After cooling to room temperature, the specimens
were cut by a diamond saw, which resulted in a flat and smooth cutting section.

The two types of fiber materials used for the specimens were E-glass fiber of 24.1µm
diameter (Certainteed R099-625 E-glass fiber) and Carbon fiber of 5µm diameter (Hercules
IM-7-12K). The matrix material used for specimens was a vinyl ester resin (Dow Derakane
411-C50).

2.1. COMPRESSION TESTS

Compression tests were performed in a hydraulically actuated loading frame. The specimens
of length 63.5 mm were fit into grips which have a 25.4 mm length and a slightly larger than
6.4 mm circular opening. The gage length of the specimen was 12.7 mm. When the specimens
were compressed, the grips were restrained from moving laterally. The tests were performed
under displacement control with a cross head speed of 0.0381 mm/sec. Loads were measured
by a load cell at the top of the specimen. Back-to-back strain gages were attached at the
center of the specimen in the longitudinal direction to measure the compressive strain and
any bending strain. A schematic of the test set-up used for the static compression tests of uni-
directional composites is shown in Figure 1. The test specimens used are short enough that
global Euler buckling is prevented. In addition, any effects caused by stress concentration at
the grips are deemed negligible due to the fact that repeatable failure was observed in the gage
section for all of the glass fiber composites. For carbon fiber composites, the lateral constraint
provided by the grips leads to failure by kink banding, occurring inside the grips (away from
the load introduction end faces and also away from the grip termination location). This aspect
of failure initiation in carbon fiber composites is discussed later.

A total of 46 specimens were tested. The breakdown is as follows: 3 of the pure resin
specimens, 21 of glass fiber reinforced specimens (3 each of 10, 20, 30 percent volume
fractions, 4 each of 40, 50, 60 percent volume fractions) and 22 of carbon fiber reinforced
specimens (3 each of 10, 20, 30, 40 percent volume fractions, 6 of 50, 4 of 60 percent volume
fractions).

2.2. TEST RESULTS

From the compression tests, the axial stress-strain response (referred to as theσ–ε curve) of
the uni-directional glass and carbon fiber reinforced vinyl ester resin composites was obtained
as a function of the fiber volume fraction. Important mechanical properties of the composites
were deduced from theσ–ε curves. The Young’s modulus of the pure resin material was
measured as 3,693 MPa from the compression test of the pure resin specimens. Using this
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Figure 1. Schematic of the compression test set-up.
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Figure 2. Typical compressive stress-strain curves of glass-fiber composites.

value, the stiffness of the composite material in the axial direction,E11, was calculated via
the rule of mixtures (E-glass fiber:E = 72 GPa (Kumar, 1991), Carbon fiber:E = 276 GPa
(Guynn et al., 1992b; Jones, 1975)).E11 measured in each compression test was compared
to the rule of mixture result. The experimental result was approximately 83∼ 107 percent
of the rule of mixture prediction. Typicalσ–ε curves of glass fiber composites throughout
the volume fraction range 10∼ 60 percent is shown in Figure 2. From these curves, the
compressive strength and the axial stiffnesses of the composites are obtained.

A typical σ–ε curve of a carbon fiber composite is shown in Figure 3 for the case cor-
responding to a fiber volume fraction 10 percent. Theσ–ε curve is very irregular, because
the carbon fiber composite fails in a progressive manner, quite different from the catastrophic
failure of the glass fiber composites. The carbon fiber composites fail by kink band develop-
ment during the test. This phenomenon can be clearly understood by examining a stress-time
curve as shown in Figure 4 and an examination of the specimen after the test as shown in
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Figure 3. Typical compressive stress-strain curve of a carbon-fiber composite specimen,(Vf = 10 percent).
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Figure 4. Typical compressive stress-time curve of a carbon-fiber composite specimen,(Vf = 10 percent).

Figure 5. When a kink band is formed, there is a sudden load drop and the strain changes at
the location at which the strain gage is mounted. In fact, the initial kink band usually develops
inside the constrained grip section of the sample, as a result, the axial strain in the gage section
relaxes as indicated by the recorded strain gage output. Further loading leads to an increase
in load until the next kink band forms and this sequence of events is found to repeat itself.
The resulting stress-time curves, stress-strain curves and post experiment photomicrographs
add confirmation to these findings. Similar experimental results were obtained for specimens
with Vf ranging from 10–60 percent. Unlike glass fiber composites, the maximum strength of
the carbon fiber composites does not show a well defined trend. The maximum strength of the
composite in the case of kink banding is determined by the first load drop corresponding to
the formation of the first kink band as shown in the stress-time curve depicted in Figure 4.

The unloaded and failed composite specimens were inspected under an optical microscope
after the tests. Typical optical micrographs are shown in Figure 5 through Figure 9. It is seen
that fibers are randomly located in the composite. A longitudinal section of a carbon fiber
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Figure 5. Typical kink band failure mode of a carbon fiber composite specimen,(Vf = 10 percent).

composite withVf = 10 percent is shown in Figure 6. From this longitudinal cross section
of the composite, the fiber misalignment angleφ is measured and is found to be less than 3◦.
On average, a typical number for the misalignment was 2◦, for the specimens studied herein.
The sections obtained after the specimens were subjected to failure are shown in Figure 7
through Figure 9. Glass fiber specimens show a splitting mode of failure (sometimes also
referred to as ‘brooming’ in the literature) as shown in Figure 7. The fiber/matrix interfaces
split during the test and the fibers are broken during the process of failure. For high fiber
volume fractions (40∼ 60 percent), kink bands are also observed (Figure 8). It is postulated
that these kink bands are formed on account of the synergy due to the misalignment induced
during the axial splitting and the large amount of strain energy that is released. Indeed, in the
glass fiber composites, isolated kink bands were never observed. When kink bands were found
they were always accompanied by longitudinal fiber/matrix splitting cracks. It is, however,
quite possible that kinking in conjunction with a low interfacial fracture toughness can induce
axial splits. A comparison of the experimentally measured compressive strength of glass fiber
composites and carbon fiber composites is shown in Figure 10.

In summary, the experimental results show that glass fiber composites fail by splitting
which is the predominant mode of failure of these composites in the 10∼ 30 percent fiber
volume fraction range. For glass fiber composites with 40∼ 60 percent fiber volume fraction,
both splitting and kink banding are observed. However the formation of kink bands is not
progressive (signified by a clear drop in load) as in carbon fiber composites, but, leads to
catastrophic failure via axial splitting. Throughout the entire range of fiber volume fraction
(10 ∼ 60 percent), the carbon fiber composites fail by kink banding as shown in the photo-
micrographs of Figure 5 and Figure 9. The kink bands are well defined and they form in a
progressive manner, starting from the specimen area that is confined within the grips. Similar
results for a different carbon fiber system (AS4/PEEK) have been reported by Kyriakides
et al. (1995). Even for the low fiber volume fraction range (10∼ 30 percent), the splitting
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Figure 6. Typical longitudinal cross section of a composite specimen (Carbon fiber,Vf = 10 percent).

failure mode that was dominant for the glass fiber composites was absent in the carbon fiber
composites. These results show that the compression response and failure of a composite
is strongly influenced by the mechanical properties of the fiber, the geometry of the fibers
(fiber diameter), the fiber volume fraction and possibly the quality of the interface between
the fiber and matrix. In the present case both glass and carbon fibers were untreated prior
to manufacturing of the specimens and thus the nature of the interfacial fiber/matrix bond is
dictated by the chemistry between glass/vinyl ester and carbon/vinyl ester. The implications
of the experimental findings that have been presented are examined next via a new analytical
model for the splitting failure mode and a numerical analysis for the kink banding failure
mode.

3. Splitting

The splitting failure mode is hypothesized to occur when a pre-existing flaw inside the speci-
men starts to grow when the specimen is under compression load. The splitting failure mode
was predominant for the glass fiber composites. Yet, it was noticeably absent in the carbon
fiber composites. Because the splitting failure is hypothesized to initiate from tiny unavoidable
flaws within the composite, the compressive strength of the composite specimens are closely
related to the appropriate crack toughnessesKIC and/orKIIC . The worst case scenario would
be for a flaw at the interface between a fiber and a matrix in which caseKIC andKIIC would
be the opening and sliding mode toughnesses corresponding to fiber/matrix interface failure.
During the process of manufacturing composite specimens, it is reasonable to expect that they
might contain tiny internal cracks. It is relatively easy to contemplate that the fiber/matrix
interface has a crack (caused by nonwetting) during the curing process. In the present study,
a representative volume element (RVE) that consists of a single fiber in a matrix cylinder and
containing a central interface crack is considered. The outer radius of the matrix cylinder is
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Figure 7. Typical splitting failure mode of glass fiber composites,(Vf = 30 percent).

Figure 8. Typical splitting/kinking failure mode of glass fiber composite,(Vf = 40 percent).

chosen to match the fiber volume fraction of the corresponding composite. An examination of
the total potential energy in conjunction with principles of linear elastic fracture mechanics
is next used to predict the compressive load at which crack propagation occurs. Since the
fibers within the composite can have an initial misalignment with respect to axial load, the
influence of such fiber crookedness is also incorporated in the development of the splitting
model. The latter is presented in Section 3.1.1. It is noted that Cherepanov (1979), used a
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Figure 9. A close up of the kinking failure mode of carbon fiber composite,(Vf = 60 percent).
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Figure 10. Maximum stress as a function of fiber volume fraction.

conservedT -integral approach to arrive at an expression for axial splitting. The approach we
have taken differs in that an expression is first obtained for the steady state energy release rate
by using ideas from classical fracture mechanics. This energy release rate is next compared
with the interfacial fracture energy to determine the load envelope corresponding to fracture
propagation. Both, perfectly aligned and misaligned fibers are considered. In addition, an
axisymmetric finite element analysis is carried out for short interfacial cracks, where the
energy release rate is found to be dependent on the crack length.
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3.1. ANALYSIS

Consider a RVE of a unidirectional composite of length 2L, which has a fiber/matrix interface
crack of length 2l as shown in Figure 11(a). The fiber/matrix cylinder is compressed by an
external loadP as indicated. The outer radius of the matrix is chosen such that the RVE has
the same fiber volume fraction as the composite. Thus,r2

0 = Vf r2
1. Further, the outer matrix

surface(r = r1) is assumed traction free. In the RVE, the fiber occupies the region,r 6 r0 and
the matrix occupies the region,r0 6 r 6 r1. Along the crack surface,(−l 6 z 6 l, r = r0),
the fiber is not bonded to the matrix, while outside this region, perfect bonding between fiber
and matrix is assumed. The total potential energy is5 = U −W , whereU is strain energy
andW is the work done.
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The energy release rate is defined as

G = −d5

dA
,

whereA = 4πr0l is the crack surface area.
The compliancec is defined as

c = 1

P
,

where1 is the axial compressive deflection of the composite andP is the external compress-
ive load.

For the case of load control (P is held constant during crack propagation)

W = P1,

U = 1
2P1,

5 = −1
2P1,

G = P 2

8πr0

dc

dl
,

while for displacement control (1 is held constant during crack propagation):

W = 0,

U = 1
2P1,

5 = 1
2P1,

G = P 2

8πr0

dc

dl
.

Notice that the expression forG is the same for load control and displacement control, because
of the assumption of linear elastic material behavior.

For the cracked region in Figure 11(a)(−l 6 z 6 l), the stress state which corresponds to
axial compression is given as follows (Lee, 1998).

Fiber:

σz = PEf

πr2
0δ
.

Matrix:

σz = PEm

πr2
0δ
,

where

δ = Ef + Em
(

1

Vf
− 1

)
.
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All other stresses are zero.
The axial contraction of the fiber and matrix in the cracked region can be obtained from

the axial strain corresponding to the above stresses, and is given by

11 =
∫ l

−l
εz dz = 2P l

πr2
0δ
.

For the uncracked region in Figure 11(a)(l 6 z 6 L,−L 6 z 6 −l), the stress state
which is three dimensional, is given as follows (Lee, 1998).

Fiber:

σr = σθ = 2P

πr2
0

αβ(νf − νm)(V −1
f − 1),

σz = βP

πr2
0

[Ef + 4ανf (νf − νm)(V −1
f − 1)].

Matrix:

σr = 2αβP
νf − νm
πr2

0

(
r2
0

r2Vf
− 1

)
,

σθ = −2αβP
νf − νm
πr2

0

(
r2
0

r2Vf
+ 1

)
,

σz = βP

πr2
0

[
Em − 4ανm(νf − νm)

]
,

where

α =
[

2(1+ νf )(1− 2νf )

Ef
(V −1

f − 1)+ 2(1+ νm)(1− 2νm + V −1
f )

Em

]−1

,

β =
[
Ef + (V −1

f − 1){Em + 4α(νf − νm)2}
]−1

.

The axial strains corresponding to these stresses are as follows.
Fiber:

εz = − νf
Ef
σr − νf

Ef
σθ + 1

Ef
σz

= − 4Pνf
πr2

0Ef
αβ(νf − νm)(V −1

f − 1)

+ βP

πr2
0Ef
[Ef + 4ανf (νf − νm)(V −1

f − 1)].

Matrix:

εz = 4αβPνm(νf − νm)
πr2

0Em
+ βP

πr2
0Em
[Em − 4ανm(νf − νm)].
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The axial contraction of the fiber and matrix are the same in this region and is given by

12 = 2
∫ L

l

εz dz = 2βP

πr2
0

(L− l).

Hence, the approximate total axial contraction, approximate compliance and change of
compliance with respect to crack length of the composite are as follows.

1 = 2P

πr2
0

[
l

δ
+ β(L− l)

]
,

c = 2

πr2
0

[
l

δ
+ β(L− l)

]
,

dc

dl
= 2

πr2
0

(
1

δ
− β

)
.

In computing the above quantities, only the stress states of the cracked and uncracked
regions are considered, whereas a region near the crack tip of finite sizeε is not considered. In
this region (Figure 11(b)), the stress state is influenced by the crack tip field. However, when
the crack propagates under steady state conditions, this region translates with the crack tip
resulting in an increase ofl and a corresponding decrease of(L − l). Thus, while the axial
contraction and compliance given by1 andc above are subject to a minor error due to the
negligence of the crack tip field, the rate of compliance change due to crack advancement,
given by dc/dl is exact, since the ‘ε’ region is invariant with respect to crack length. This fact
enables us to calculateG accurately for steady state crack propagation.

Finally, the energy release rate per unit area is obtained from the above quantities as

G = P 2

4π2r3
0

(
1

δ
− β

)
.

When this energy release rate per unit area,G, becomes equal to twice the critical interfa-
cial surface energy(γf ) the initial crack propagates

G = 2γf .

3.1.1. Misaligned fibers
The expression for axial compliance for the case when the fiber is misaligned in the cracked
region can be obtained by considering a slightly imperfect fiber with an initial imperfection of
w0(x) and using kinematics that are appropriate for geometrically nonlinear beam theory as
described in Appendix B. Then the relation between axial contraction11, and fiber loadPf
can be obtained as,

11

l
= −Pf
AfEf

[
1+ A

2
0Af

2If

]
,

where,Af is the fiber cross-sectional area,If is the fiber area moment of inertia andA0 is the
imperfection magnitude. From this relation an effective axial stiffness for the fiber is obtained
and is given below

(EA)eff = EfAf

1+ A2
0Af

2If

.
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Clearly, when the imperfection vanishes, one recovers the perfect fiber axial stiffness
EfAf . In the present work, the imperfection amplitude is chosen to correspond to an initial
misalignment angle of 2◦, representative of what was measured in the experiment.

Splitting failure was dominant for the low volume fraction glass fiber composites. Thus, the
test data from the 10–20 percent volume fraction glass fiber composites provide us a means to
obtain the interfacial toughnessγf , for a glass/vinyl ester interface, corresponding to the two
splitting models (perfectly aligned and misaligned fibers, respectively). In so doing, the range
of γf obtained are 1.0546× 10−4 KJ/m2 to 3.9357× 10−5 KJ/m2, for the perfectly aligned
case and 0.1224 KJ/m2 to 0.083 KJ/m2, for the misaligned case. Such an approach to obtain
γf was used because we are interested in obtaining a measure of fracture toughness that is
related to the total energy release rate, without explicitly considering the component modes of
energy release rates. If one performs suitable double cantilever tests or end notch flexure tests,
then component modes of toughness can be measured, however, their use in an appropriate
analytical model is not so straightforward. The values obtained forγf as noted above are in the
range of fracture toughnesses for polymers as reported in Ashby (1992), and are acceptable
as reasonable interfacial adhesive toughness values for a glass/vinyl ester system. Both these
ranges are used in comparing the model predictions with the experimental data.

Critical splitting stresses for glass fiber composites corresponding to the above range of
toughnesses are shown in Figures 12 and 13 respectively. Corresponding resultant critical
stresses for carbon fiber composites using the same values ofγf are shown in Figures 14
and 15, respectively. Notice that, we used the same values of interfacial toughnesses for the
carbon/vinyl ester interface, although this value should be probably higher. Even then, the
critical stresses required to split a carbon fiber composite, based on theγf corresponding
to a glass/vinyl ester interface is still much larger than that required to cause kinking. This
is because the carbon fiber has a larger modulus and a smaller radius than the glass fiber.
In effect, our splitting model shows that the axial stiffness ratio between fiber to matrix,
the fiber volume fraction, the fiber diameter and the interfacial fracture toughness are all
important parameters that dictate splitting failure in a compressively loaded composite, just as
misalignment and matrix yield strength are for compressive kinking. To the best knowledge
of the authors, a model for compressive splitting failure in conjunction with discussions on
composite compressive strength have not been reported before.

3.2. AXISYMMETRIC FINITE ELEMENT MODEL FOR SHORT CRACKS

The steady state expression for the energy release rateG, in the previous section does not
include the initial crack length (2l) nor the composite length (2L). For short (compared to the
fiber radius) cracks, it becomes necessary to use the finite element method to extract the de-
pendency of crack length onG. Axisymmetric finite element models as shown in Figure 11(c)
were used in simulating one half of the glass fiber composites corresponding to the extremes
of Vf = 10 and 60 percent with fixed composite lengthL = 0.241 mm and various crack
lengths in the range 0 mm6 l 6 0.0723 mm. After applying a prescribed compressive load
to cause a uniform axial deflection, the compliancec = 1/P was calculated. Only the case
of perfectly aligned fibers was analyzed with the intent of lending credence to the steady state
result obtained earlier.

The compliances as a function of crack length obtained from the finite element method
show linear ranges beyond a certain crack length for both theVf = 10 and 60 percent
cases as shown in Figures 16 and 17. The rate of change of compliance with respect to
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Figure 12. Predictions of the splitting model for glass fiber composites; perfect fibers..

Figure 13. Predictions of the splitting model for glass fiber composites; imperfect fibers.

crack length dc/dl, obtained from the analysis (steady state) and the finite element model
are listed in Table 1. For theVf = 10 percent model, dc/dl = 3.1881× 10−5 N−1 beyond
l/L = 0.075. This value is approximately the same as dc/dl = 3.0937× 10−5 N−1 obtained
from the analytical steady state solution (the difference is 3 percent). For theVf = 60 percent
model, dc/dl = 2.4042× 10−5 N−1 beyondl/L = 0.015. This is very close to the value of
dc/dl = 2.3969× 10−5 N−1 obtained from the analytical solution (difference is 0.3 percent).
Thus, these limit cases add further confirmation to the veracity of the proposed splitting model.
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Figure 14. Predictions of the splitting model for carbon fiber composites; perfect fibers.

Figure 15. Predictions of the splitting model for carbon fiber composites; imperfect fibers.

Table 1. Rate of change of compliance,(dc/dl[N−1] of glass fiber
composites.

Vf [%] Analysis F.E.M. Difference [%]

10 3.0937× 10−5 3.1881× 10−5 3.1

60 2.3969× 10−5 2.4042× 10−5 0.3
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Figure 16. Compliance of a glass fiber composite(Vf = 10 percent) corresponding to the axisymmetric finite
element model.

Figure 17. Compliance of a glass fiber composite(Vf = 60 percent) corresponding to the axisymmetric finite
element model.

4. Finite element analysis of kink banding

The kink banding failure mode was simulated by employing the finite element method. The
measured compressive stress-strain behavior of the resin has nonlinear characteristics. Ob-
servation under a microscope shows that the composite specimens possess geometric imper-
fections. The fibers in the composite are actually nonuniformly distributed. Also, fibers are
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misaligned with respect to the loading axis, indicated by the angle of rotationφ with respect
to the loading direction as indicated in Figure 7. We used the finite element method to simulate
the experiments because such an approach enables modeling the measured nonlinear mechan-
ical properties of the constituents and realistic geometric imperfections at least in a simplified
way. The ABAQUS commercial finite element code was chosen for this study because of its
capability to handle nonlinear problems.

4.1. FINITE ELEMENT MODEL

The composite specimen used in the compression test is of a circular cylindrical configuration
with diameter 6.4 mm, overall length 63.5 mm and gage length 12.7 mm. To mesh the entire
cylinder in a three-dimensional finite element model incorporating spatial inhomogeneity and
fiber geometric imperfection is a difficult and time consuming task. Therefore, a small repres-
entative planar region (RPR) within the cylindrical specimen is modeled in a two-dimensional
plane strain setting using the ABAQUS CPE4 element. Since the initial deformation field is
uniform and homogeneous, working with a RPR enables the study of the salient features of
the nonlinear aspects of this problem as will soon be evident. A recent study by Hsu, Vogler
and Kyriakides (1998) who examined a particular uniformly packed three-dimensional model,
revealed that three-dimensional corrections to the plane strain approximation were insignific-
ant, at least for large volume fractions(50 percent). The plane strain approximation would
incur the greatest departure from the intended physical situation at low volume fractions.
However, it still provides insight into the deformation characteristics, which are commensurate
with observed experimental data even at low volume fractions. This is especially true for the
carbon fiber composites. Thus, at low volume fractions we expect qualitative agreement with
experiment, while at higher volume fractions the results become more accurate.

In Figure 18, a finite element mesh corresponding to a glass fiber composite withVf =
10 percent is shown. Dark areas correspond to fiber and lighter areas correspond to matrix. The
element size is determined by the fiber diameter. Glass fibers have a diameter of 0.0241 mm,
which is chosen as the height of one element (y-direction) for a glass fiber composite model.
On the other hand, carbon fibers have a diameter of 0.005 mm and is also orthotropic. Two
rows of elements are used to model the carbon fiber. The aspect ratio of an element is set to 2,
and geometric initial imperfections are represented by a misalignment angleφ.

The material property of the matrix is measured from a compression test of the pure matrix
specimen. The PLASTIC material card of ABAQUS allows us to simulate nonlinear material
behavior modeled via a J2 incremental theory of plasticity. The essential ingredients of this
theory are explained in numerous texts on plasticity. The plasticity theory used to model the
matrix material and requisite justification is presented in Appendix A. Figure 19 shows the
nonlinear compressive uniaxial stress-strain curve of the pure matrix, as measured via tests
and as inputted into the ABAQUS code. The glass fiber is modeled as a linear elastic material.
The material properties of the glass fiber used in this study areE = 72 GPa andν = 0.35.
It is well known that carbon fiber is best described as an orthotropic material. However the
orthotropic material properties of the carbon fiber are difficult to measure exactly. The follow-
ing orthotropic properties which were obtained from several references (Guynn et al., 1992b;
Jones, 1975; Kumar, 1991; Kumar et al., 1993; Kyriakides et al., 1995; Kyriakides and Ruff,
1997; Shu and Fleck, 1997) were used in this analysis.

E11 = 276 GPa,
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Figure 18. Uniform glass fiber finite element model(Vf = 10 percent).

E22 = E33 = 8760 MPa,

ν12 = ν13 = ν23 = 0.35,

G12 = G13 = 12 GPa,

G23 = 3244 MPa.

4.2. ANALYSIS

With reference to Figure 18, the right edge of the mesh is compressed uniformly in thex-
direction by a prescribed displacement (δ) while the left edge of the mesh is constrained from
moving in thex-direction. The left edge is free to move in they-direction except the left
bottom node which is constrained to prevent a rigid body motion. Using the RIKS method



294 S.H. Lee and A.M. Waas

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
0

10

20

30

40

50

60

70

80

90

100

ε

σ
[MPa]

: TEST DATA

: ABAQUS INPUT DATA

Figure 19. The uniaxial compressive stress-strain curve of the pure matrix.
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Figure 20. Typicalσ–ε curve of a uniform glass fiber composite model,(Vf = 50 percent,φ = 2◦).

supplied by ABAQUS, the reaction force resultant at the left edge can be computed for each
increment ofδ. From this data, the stress and strain values are calculated. Typicalσ–ε curves
from such an analysis are shown in Figure 20. Deformed geometries corresponding to each
point marked in this figure are shown in Figure 21. The maximum stress (compressive strength
of the composite) and stiffness of the composite can be obtained from thisσ–ε curve.

Recall that when the specimens were observed under the optical microscope the fibers were
nonuniformly distributed in the composite. To understand the effect of this spatial inhomogen-
eity on composite compressive strength, finite element models incorporating nonuniform fiber
spacing were analyzed. Figure 22 shows a typical nonuniform glass fiber model used in the
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a) Increment No. 10 b) Increment No. 13

c) Increment No. 16 d) Increment No. 19

e) Increment No. 22 f) Increment No. 26

Figure 21. Typical deformed geometry of a uniform glass fiber composite model(Vf = 50 percent,φ = 2◦).

study. Fibers are located randomly inside the RPR while keeping the overall fiber volume frac-
tion Vf = 10,20,30,40,50 and 60 percent, respectively. Two different nonuniform models
were examined forVf = 40 percent. The second nonuniform model forVf = 40 percent has
a more severe nonuniformity than the first nonuniform model. All 7 nonuniform models were
assumed to have the same initial imperfection (φ = 2◦) and the same fiber properties (glass
fiber), as used before.

4.3. ROBUSTNESS OF THE F.E. MODEL RESULTS

The results obtained via the finite element models described in the previous section were
checked for accuracy and robustness in the following manner. These checks included depend-
ence of results on element type, model size, element size and aspect ratio of model. Uniform
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Figure 22. The finite element mesh for a nonuniformly spaced glass fiber model(Vf = 40 percent,φ = 2◦).

glass fiber models corresponding to the extreme cases ofVf = 10,60 percent andφ = 2◦
were chosen as the candidates for the robustness study. Nonuniform glass fiber models and
the nonuniform carbon fiber models were not examined in this manner because they include
the same modeling features as with the uniform glass fiber models.

The CPE4 element (4-node bilinear plane strain quadrilateral element) was used to gener-
ate the previously presented results. The use of the CPE4 element is justified by comparing the
analysis results using the CPE4 element models to the analysis results obtained via the use of
the CPE8 element (8-node biquadratic plane strain quadrilateral element) model. For purposes
of comparison, similar glass fiber composite models with CPE4 element and CPE8 element
were examined. The first model used has dimensions ofL = 1.928 mm andh = 2.892 mm.
The results obtained by using this model size is compared to the results of ‘small’ models
with L = 0.964 mm andh = 1.446 mm. Such an analysis examines the influence of overall
mesh size and element type on the results obtained. Another model having a element size of
0.0241 mm× 0.0482 mm produces results which are compared against results obtained with
a model having an element size of 0.01405 mm× 0.0241 mm. Such a comparison establishes
the effect of element size on the results obtained.
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Figure 23. Verification of the numerical results obtained for glass fiber composites.

Comparison of the results obtained as described above revealed that the differences in
maximum stresses between the models were−7 ∼ −0.9 percent forVf = 10 and−7.3 ∼
1.4 percent forVf = 60 percent. These differences were deemed insignificant. Theσ–ε curves
predicted by the various finite element simulations are shown in Figure 23.

4.4. DISCUSSION OF FINITE ELEMENT RESULTS

4.4.1. Uniform glass fiber model
All 12 uniform glass fiber models representing 6 fiber volume fractions(Vf = 10 ∼
60 percent) and 2 initial imperfections(φ = 2◦,3◦) were meshed and analyzed. Predictions
of maximum stress and stiffness are shown in Table 2. As the fiber volume fraction increases,
both the maximum stress and stiffness increase. As the initial imperfection increases, both
of these quantities decrease. A typicalσ–ε curve as shown in Figure 20 indicates that there
is a sudden load drop after increment number 10. Corresponding deformed shapes shown in
Figure 21 show a kink band geometry after the maximum stress point is reached. Initially
the model compresses uniformly until the maximum stress point is reached. Immediately
beyond this point, deformation localizes into a kink band with a corresponding load drop.
The finite element simulations predict that all 6 fiber volume fraction models display a similar
trend, i.e., a kink band appears in all of the models examined. However, in the experiment,
only the high fiber volume fraction specimens(Vf = 40 ∼ 60 percent) showed a distinct
kink band (even then, splitting was noticeable) while low fiber volume fraction specimens
(Vf = 10 ∼ 30 percent) did not show kink banding. This difference in failure mode can
be explained by revisiting the predictions of the splitting model presented earlier. When the
uncompressed, as manufactured specimens were observed under the microscope, a measurable
maximum initial imperfection of 3◦ was found. Hence, as shown in Figure 24, the analysis
prediction of maximum stresses corresponding toφ = 2◦ andφ = 3◦ are compared against
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Table 2. Results of finite element analysis for uniform glass fiber composites

Vf [%] 10.0 20.0 30.0 40.0 50.0 60.0

σmax φ = 2◦ 338.8 457.5 537.3 589.6 651.5 712.3

[MPa] φ = 3◦ 302.8 394.2 441.2 481.0 517.3 555.7

E11 φ = 2◦ 11171 18172 25138 32104 39094 46160

[MPa] φ = 3◦ 11034 17906 24671 31429 38244 45160

Table 3. Results of nonuniform glass fiber composite F.E. models.

Vf [%] 10.0 20.0 30.0 40.0 50.0 60.0

σmax[MPa] 335.7 454.0 540.8 599.6/585.8 653.5 719.2

E11[MPa] 11191 18189 25217 32211/32199 39217 46310

the experimentally measured maximum strengths. While reasonable agreement between these
numbers is present, the mode of failure observed in the experiment is clearly different and calls
for a mechanism based model as presented earlier for axial splitting. In passing, it is noted that
the influence of misalignment on the predicted axial stiffness(E11) results in differences in
the range 2.8∼ 5.8 percent forφ = 2◦, and 0.5∼ 4.5 percent forφ = 3◦ model.

4.4.2. Nonuniformly spaced glass fiber models
The analysis results of 7 nonuniformly spaced glass fiber models are listed in Table 3. All mod-
els have the same initial imperfection (φ = 2◦) and same material properties. The predicted
maximum stress of a nonuniformly spaced fiber model is slightly lower (−0.7 ∼ −0.9 per-
cent) than the corresponding uniformly spaced model in the low fiber volume fraction range
(Vf = 10, 20 percent), while it is higher (0.3 ∼ 1.7 percent) in the high fiber volume fraction
range (Vf = 30, 40, 50, 60 percent) than the corresponding uniformly spaced glass fiber
model. The second nonuniform model corresponding toVf = 40 percent has a lower max-
imum stress value (−0.6 percent) than the corresponding uniform model. The axial stiffness
of the compositeE11 of the nonuniform model is slightly higher (0.2 ∼ 2.5 percent) than
the uniform model throughout the fiber volume fraction range examined. The trends of the
response curves are similar to what was found for the corresponding cases of the uniformly
spaced fiber models. Thus, the local nonuniform spacing of fibers do not appear to have a
significant effect on the overall RPR response.

4.4.3. Carbon fiber model
Results corresponding to the carbon fiber simulations are summarized in Table 4. If we choose
an initial imperfectionφ = 4◦ andφ = 5◦ then, the predicted maximum stress and stiffness
match up well with the test results as shown in Figure 25. Since the maximum measurable
initial imperfection under a microscope was 3◦, the 4◦ and 5◦ imperfections are regarded as
larger than that found in practice. Just as in the glass fiber case, the predicted maximum stress
and stiffness increases with increasing fiber volume fraction and show a corresponding de-
crease with increasing size of initial imperfection. A typicalσ–ε curve and the corresponding
deformed shapes are very similar to what was reported for the kinking analysis of the glass
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Figure 24. Predicted maximum stresses for glass fiber composites as a function of fiber volume fraction.

Table 4. Results of finite element analysis of carbon fiber composite F.E. models

Vf [%] 10.0 20.0 30.0 40.0 50.0 60.0

σmax φ = 4◦ 330.8 378.3 408.6 435.0 456.7 480.3

[MPa] φ = 5◦ 285.4 326.0 344.3 371.0 388.3 407.0

E11 φ = 4◦ 26889 47889 69252 89944 110667 135141

[MPa] φ = 5◦ 25000 43628 61389 79333 99233 119778

fiber composites. As before, the deformed shapes show a kink band after the maximum stress
point is reached. Figure 26 shows a comparison between predicted results and test results
for glass and carbon composites. The ABAQUS analysis results of carbon fiber composite
specimens withφ = 2◦ show a higher maximum stress than the corresponding glass fiber
model for the kink banding failure mode. Yet, the experimental results (which for glass fibers
corresponds to splitting) show an opposite trend; the carbon fiber composites havea lower
maximum stressthan the glass fiber composite. As alluded to earlier in the discussion on
splitting, carbon fiber composites show a favorable tendency to kink, whereas glass fiber
composites are more prone to splitting. This fact is reflected in the model predictions that
have been presented herein and these will be discussed next.

5. Discussion

Failure stresses for glass fiber composites predicted by the splitting model are seen to increase
almost linearly with the increase of fiber volume fraction. As a result, they are lower than
the test results in the low fiber volume fraction range and higher than the test results in the
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Figure 25. Predicted maximum stresses for carbon fiber composites as a function of fiber volume fraction.
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Figure 26. Compressive strength of glass and carbon fiber composites as a function of fiber volume fraction.

high fiber volume fraction range. The slopes of these curves are dictated mainly by the value
of interfacial toughnessγf the fiber radius,rf and the fiber volume fraction,Vf . Predictions
from the splitting model that include fiber misalignment were shown in Figure 13 and Figure
15, for the glass and carbon fiber composites respectively. A comparison between the exper-
imental data and the predictions based on a range of interfacial toughnesses for a fixed value
of misalignment angle showed that the splitting model was able to bound the compressive
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failure stress in the fiber volume fraction range spanning 10–30 percent. For the carbon fiber
composites the splitting model predictions show that very high axial compressive stresses are
required to activate the splitting failure mode. The results show that glass fiber composites
are favorably disposed to fail by splitting when compared with the carbon fiber composites.
This finding also explains the dearth of photomicrographs in the literature on kinked glass
fiber composites and the abundance of such photomicrographs for carbon fiber composites.
The splitting model predictions also show that the splitting failure mode is favorable than the
kink band failure mode for low fiber volume fractions, while the kink band failure mode is
favorable than the splitting failure mode for high fiber volume fractions. Thus, when simul-
taneous splitting/kinking was seen in the high volume fraction glass composites, it is likely
that the kinking event preceded splitting. Notice also that in the 30–40 percent fiber volume
fraction range, afailure mode transitionoccurs in the glass fiber composites. Predictive results
for carbon fiber composites obtained via the splitting model are compared to the test results
in Figure 15. The splitting failure stresses are much higher than the test results throughout
the entire fiber volume fraction range. Note that both the glass and carbon fiber systems were
used as ‘unsized’ during the manufacturing process. Previous authors have stated that for the
same matrix system, carbon usually has a higherγf than glass. Thus, even with the relatively
smallγf value used, the predicted splitting stresses for carbon fiber composites far exceed the
test results, indicating the importance of the fiber modulus, fiber diameter and fiber volume
fraction in influencing themechanismof failure. As shown in Figure 26, the finite element
results for the carbon fiber composites corresponding to kink banding were found to agree
closely with the test results for an initial imperfection ofφ = 4◦. This mechanism of failure
was clearly seen in the experimental results for carbon fiber composites as reported earlier.

6. Conclusions

Compressive response and failure characteristics of glass fiber and carbon fiber reinforced
unidirectional composites have been examined experimentally. The carbon fiber composite
was seen to have a lower compressive strength than the glass fiber composite, while the
carbon fiber composite demonstrated a higher stiffness than the glass fiber composite. The
difference in stiffness was explained via a simple rule of mixtures result while the difference
in strength is due to the different mechanism of failure. Glass fiber composites demonstrated
a splitting failure mode for low fiber volume fraction (Vf = 10∼ 30 percent) and a combined
splitting/kink banding failure mode for high fiber volume fraction (Vf = 40 ∼ 60 percent).
The carbon fiber composite demonstrated a kink band failure mode throughout the entire
range of fiber volume fractions examined. An experimental study such as reported here, that
examines how the various parameters in a composite influence unidirectional compressive
strength is invaluable and broadens the scope of future investigations on composite compress-
ive strength. We note here that the effect of ply thickness and the location of zero plies with
respect to thickness on the compressive strength of multidirectional laminates are important
and the interested reader is referred to Drapier et al. (1998) for more discussion on this aspect
of composite compressive strength.

The analytical model for the splitting failure mode predicted that axial splitting failure is
favorable for glass fiber composites at low fiber volume fractions. This model also showed
that the ratio of axial moduli between fiber and matrix, the fiber diameter and the fiber volume
fraction are just as important as the fiber/matrix interfacial fracture toughness towards dictat-
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ing the mechanism of compressive failure. Furthermore, the kink banding model and the axial
splitting model provide a means to assess the fiber volume fraction (for given constituents of
a composite) at which the failure mechanism transitions between kink banding and splitting.

A two-dimensional finite element analysis of the kink banding failure mechanism showed
that the maximum stress prediction for carbon fiber composites matched the test result with
an initial imperfectionφ = 4◦. The effect of nonuniform fiber volume fraction showed a neg-
ligible correction to the prediction with a uniform fiber volume fraction model. On the other
hand, this same model was seen to provide reasonable agreement for the compressive strength
of glass fiber composites at high volume fraction. To the best knowledge of the authors, this is
the first instance in which a predictive capability that includes several competing mechanisms
has been afforded to assess composite compressive strength.

Appendix A: Plastic material property of matrix

A compression test of the pure matrix specimen showed inelastic material behavior. A Cou-
lomb torsion test of a pure matrix specimen is performed to obtain the shear stress-shear strain
curve of the matrix material, which also exhibits inelastic behavior. There are two types of
small strain volume preserving plasticity theories, J2 deformation theory and J2 incremental
theory with isotropic hardening. The stress-strain curve obtained from the compression test of
a pure matrix specimen is used to predict the shear stress-shear strain curve by using the two
plasticity theories. The results are compared with the torsion experimental results.

A.1. TORSION TEST

A cylindrical shaped specimen of the vinyl ester matrix material with the same dimensions
as used for the compression tests, was held by two grips at each end of the specimen. While
one end was firmly held, the other end was rotated by a small measurable angle. A strain
gage is attached at the center of the specimen at 45◦ with respect to the axial direction of the
specimen. The shear stress-strain curve of the pure matrix is obtained from this torsion test as
described in (Lyon, 1991). The test result is shown in Figure 27.

A.2. DEFORMATION PLASTICITY THEORY

When the uniaxialσ–ε curve of an elastic-plastic material is represented by the following
Ramberg–Osgood equation

ε = σ

E
+
(σ
B

)n
whereE : elastic modulus,B : constant,n : integer, then, according to J2 deformation theory,
the shear stress-shear strainτ–γ curve can be reproduced by the following equation

γ = τ

G
+
( τ
A

)n
whereG : elastic shear modulus,A : constant. The constantsE, G, A andB can be shown to
have the following relations

G = E

2(1+ ν) ,

A = B

31/2+1/2n
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Figure 27. A comparison of the predicted and measuredτ–γ curve of the matrix material.

whereν : Poisson’s ratio.
At first, constantsE, B andn are determined asE = 3.6 GPa,B = 0.136 GPa andn = 8

from theσ–ε curve. Next, the constantsG andA are determined asG = 1.3 GPa andA =
0.073 GPa by the above relations. Then theτ–γ curve should be the following

γ = τ

1.3
+
( τ

0.073

)8
.

A.3. INCREMENTAL PLASTICITY THEORY

The appropriateness of incremental plasticity theory is checked by using a finite element ana-
lysis via the ABAQUS commercial finite element code. A cylinder of 6.35 mm diameter and
40.64 mm length is modeled by 15-noded solid elements. Theσ–ε data from the compression
test is used as the input for the plastic material property of the finite element model. While
one end of the cylinder model is fixed, the other end is rotated by a prescribed angle as is done
in the test. The ABAQUS static analysis, which includes nonlinear geometry, calculates the
torsional moment resultant at the fixed end. Two cases are considered in this analysis. First,
the cylinder is under pure torsion with no restraint in the axial direction so the cylinder is free
to change its length. Next, the cylinder is restrained from axial deformation. In the second
case, the cylinder shows a slightly higher stiffness in the nonlinear region, which is due to the
axial constraint that induces axial compression.

Comparison of all the results (deformation theory, incremental theory and test) are shown
in Figure 27. This figure shows that the incremental plasticity theory and the deformation
plasticity theory provide a reasonable model for the vinyl ester resin.
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Appendix B: Axial compliance of a misaligned fiber

Consider the response of an axially loaded misaligned fiber of uniform cross sectional area,
Af , length 2l and elastic modulusEf within the context of geometrically nonlinear Euler–
Bernoulli planar(in thex- andz-plane) beam theory. Let a set of Cartesian coordinate axes
be placed such that thex-axis is aligned with the load application direction and thez-axis
perpendicular to it. Place the origin of the coordinate axes atx = 0, z = 0. Let the initial
misalignment, total deflection in thez-direction measured from the fiber centerline and the
additional deflection be denoted byw0(x),w(x) andw1(x), respectively. Then, the deflection,
w(x) = w0(x)+ w1(x), is governed by,

d4w

dx4
− d

4w0

dx4
+ λ2d

2w

dx2
= 0

where,λ2 = Pf /Ef If . Assuming an initial misalignment distribution ofw0(x) = A0(1−
cosπx/2l), solving the above equation for clamped-clamped free to slide in thez-direction,
boundary conditions imposed atx = 0 andx = 2l, respectively, and, adopting the definition
of axial strain

εx = du

dx
+ 1

2

(
dw

dx

)2

− 1

2

(
dw0

dx

)2

,

in conjunction with the one-dimensional stress-strain relationσx = Ef εx, we obtain the
relation,

(EA)eff = EfAf

1+ A2
0Af

2If

.
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