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A B S T R A C T  
In this paper, the fracture criterion for rectangular grooved beam-like testpieces under several loading 
conditions has been analysed using a simple beam-on:elastic ~'oundation model. Experiments have shown that 
the model is adequate for describing quasi-static fracture in such test geometries. In addition, the crack 
stability condition s under both load-controlled .and displacement-controlled testing machines are presented. 

List of symbols 

a crack length 
ti crack speed 
h depth of beam 
t effective thickness of fracture plane or grooved section 
r length of unbroken ligament of beam on elastic foundation 
u displacement 
v crack tip opening displacement 
w total length of beam 

ke elastic extensional stiffness of the beam on foundation 
k, rotational stiffness of beam on foundation 
np stability factor in a soft testing machine 
nu stability factor in a hard testing machine 
vc critical crack tip opening displacement 
/i thickness of ungrooved section of beam 
F a dimensionless function of 2r and 2a 
E1 bending stiffness of beam 
M bending moment 
P load 
R fracture toughness 
K~c critical stress intensity factor 
2 modulus of elastic foundation 
v Poisson's ratio 
e a numerical constant 
~b angle of rotation of beam at crack tip section about its neutral axis 

1. Introduction 

When straight crack paths are desired in beam-liKe testpieces, il; is common practice to 
introduce face-grooves to control the crack propagation direction. Since there are no 
readily available stress intensity factor expressions for grooved specimens, there has been 
some concern about the suitability of using them for fracture toughness testing [1]. 
* Present address: Dept. of 1;¢Iechanical Engineering, Imperial College of Science and Technology, London,U.K. 
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108 Y. W. Mai 

Moreover, the stability conditions governing spreading cracks in these testpieces have not 
been previously studied. 

Based on a simple beam-on-elastic foundation model, Gurney, Mai and Owen [2] 
have derived a simple fracture criterion for quasi-static cracking when researching on 
fracture stability problems. Independently, Kanninen [3, 4] has performed extensive 
investigations on similar problems and come up with similar conclusions. In general, 
it may be shown that for cracking to occur, 

Rt = kev2 + k,~k 2 , (1) 

where R is the fracture toughness of material; t, effective thickness of fracture plane; 
ke and k,, extension and rotation stiffness of the beam on the elastic foundation; 
v, crack tip opening displacement and 0, the angle of rotation of beam about its 
neutral axis. Note that in (1), the displacement and rotation at the crack tip section 
do not both take on unique critical values. It is the sum (k~v2+k,O 2) that becomes 
critical during crack propagation. 

Equation (1) has been successfully applied to double cantilever beam specimens under 
wedge-loading [3, 4]. It is anticipated that the equation can also be extended to other 
beam-like specimen geometries and under some other loading conditions. In particular, 
it should be useful for predicting fracture in those specimens with grooves on their 
faces. 

When discussion is confined to quasi-static crack propagation processes*, Kanninen 
[4] has shown that the fracture criterion is appropriately reduced to 

R t  = ke v2 , ( 2 )  

where v¢ is the critical crack tip opening displacement. This argument is supported by 
results shown in Fig. 2 of Kanninen's paper [4]. 

The deflections of semi-infinite and finite beams on elastic foundations under a range 
of loading conditions are given in Hetenyi [5]. Thus, substituting these crack tip 
displacement (v) expressions in (2) and simplifying, we obtain an equivalent fracture 
criterion as 

M/(REIt)  ½ = F( 2r, 2a) , (3) 

where M is the bending moment at the crack tip to cause quasi-static crack exten- 
sion, and F is a function of 2r and 2a; a is the crack length, r the unbroken 
ligament of the beam on the elastic foundation and 2 = [ke/4E1)] ~. Wfien the cracked 
testpiece is reversible and elastic, so that K2c=ER/(1-v2) ,  the critical stress intensity 
factor (KIc) can be expressed in terms of F(2r, 2a) and M, without going through 
complicated stress analysis at the crack tip. However, it should be pointed out that Kt~ 
estimates using the beam-on-elastic foundation analysis still involve the experimental 
determination of the spring stiffness (ke) and knowledge of the crack tip opening 
displacement (v). 

The stability conditions governing a spreading crack, under the constraints of either a 
load (P) or a displacement (u) controlled machine, have been discussed extensively in 
[2, 6-11]. In terms of the relative displacement at the crack tip section (v), these 
stability conditions can be re-written as follows: 

(1) For a load-controlled machine (i.e. dP/(P> 0), 

* "Quasi-static" is used in the sense that negligible generation of kinetic energy occurs during crack propagation. 
For more details, see [6] and [7]. 
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l d R  2[Ov~ n~. 
g d---a > -v \ff-aaJp = --'a (4) 

(2) For a displacement-controlled machine (i.e. du/u > 0), 

1 dR 2J-fay) V3 al = n~u (5) 
d---a > v t_k~a/p I~ ~ d  a " 

The right-hand side terms of expressions (4) and (5) (i.e. np/a and nu/a), are known as 
the geometrical stability factors (g.s.f.) for a load- and a displacement-controlled machine 
respectively [2, 7]. The smaller their algebraic magnitude, the better the stability of 
cracking (i.e. large negative values promote crack stability). In general, it is seen that 
negative dR/d~ makes stable cracking difficult (i.e. when R decreases with increasing 
crack speed) unless the g.s.f, are very negative. It should be pointed out that the 
stability conditions given in (4) and (5) are essentially the same as those derived 
independently by Clausing [10] (see for example, (24) and (25) in [10]. This fact has 
also been discussed by Atkins and Caddell [12]. Thus, the stability factors np and nu in 
the present paper are equivalent to f2(a/w)  and ( f 2 - f 3 )  (a/w) respectively as given in 
Clausing's paper. 

In the present investigation, we have analysed and examined the quasi-static fracture 
criterion according to (3) for a few grooved beam-like test-pieces under a range of 
loading conditions. Both experimental and theoretical results will be compared. In 
addition, crack stability conditions for these examples, under both load-controlled and 
displacement-controlled constraints, are also presented. 

2. Quasi-static fracture criterion and stability conditions 

In this section, fracture criterion and crack stability conditions are investigated for 
beam-like testpieces with grooves on their faces using the simple beam-on-elastic 
foundation model. 

2.1. Double-ended cantilever beam under central cracking 

Consider a finite double-ended cantilever beam (with 2r < n) under central cracking in 
the longitudinal direction as shown in the inset of Fig. 1. From Hetenyi [5], it may be 
shown that the crack tip opening displacement is given by, 

2 2 2 2 2 2 P 2 ~ 2  a (Sinh (2 r ) - s in  (2r) ) -4(Sinh (2r)+sin (20) 
2 2 VA = VB = 4ke ( [2a(Sinh ( 2 r ) ,  sin (2r)) + Sinh(22r) + sin(22r)] 

(Sinh2(2r) + sin2(2r)) (Sinh(2r)_ Cosh(2r) - sin (2 0 cos (2r)~ 
x (Sinh2(2r)_ sin2(2r) ) + 4 \ Sinh2(2r ) -  sin2(2r) ]~" (6) 

For quasi-static crack extension to commence, 

VA = V~ = (Rt/ke) ~ , 

so that 

M/( REIt)  ½ = 2 2 ae/4ke va . (7) 

The conditions governing crack stability (see (4) and (5)) are very complicated 

Int. Journ. of Fracture, 12 (1976) 107-123 



110 Y. W. M a i  

• ~P,u / 
MA. / 

nu A0 r|B / 
- ~1 ~ l t  t ttllOA Q ~ . t t t ,  t¢~ ' t t  k, / / 

1 I I I I 

1 2 3 
~r 

Figure l(a). Relations between n. and 2r for a finite beam under central cracking, (~,r < n). 
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Figure l(b). Relations between np and 2r for a finite beam under central cracking (2r < ~). 

mathematical expressions. For simplicity, n, and np have been plotted against 2r (<~),  
for varying a/w in Figs. l(a) and !(b). To have better ideas of these stability factors 
during continuous quasi-static crack extension, let us consider the case of a hard testing 
machine when two grooved testpieces with same w ( =  250 ram) but different 2 values 
(assuming 2 x 10 - 2  and 4 x 10 - 2  mm -1 respectively) are cracked by a central force 
as illustrated in the inset of Fig. 2. n, is seen to decrease for both specimens with 
increasing 2a or decreasing 2r, but comparatively, stability is shown to be better for the 
specimen with a bigger 2 value (see Fig. 2). Note that for specimens with the same groove 
dimensions, 2 can be increased by reducing the depth of the arms (h).Thus, this implies 
that more slender beams will provide better stability of cracking, a conclusion which 
is also reached in Mai, Atkins and Caddell [13]. 

When the beam shown in Fig. 1 is such that 2r>n, (6) yields an approximate 
solution for the crack tip displacements at A and B as, 

va = vn = P~,2 ( 2 +,~a) . 
x4g e 

(8) 
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Figures 4(a) and (b). Variations of np and nu with 2a for a finite beam under central cracking (2r> rt). 

Thus, substitution of (8) into (2), we obtain, 

M/( REIt) ~ ~ F( ~.a) = 2a/(2 + 2a), (9) 

where M =  Pal8, which is the bending moment (according to beam theory) applied at the 
crack tips A and B. 

Figure 3 shows a plot of theoretical M/(REIt) ½ oersus 2a. It is clear that M2= REIt 
only holds when 2 a ~ .  Crack propagation experiments were also conducted with a 
view to see how accurate experimental data were when compared with theoretical 
M/(REIt) ½ values. 6 mm thick Perspex specimens with rectangular dimensions 500 
m m x  100 mm were used. Face grooves with 1.53 mm depth and 6 mm width were 
made on the two faces of the testpiece as shown in the inset of Fig. 3. For accuracy, 
the value of ke was determined experimentally instead of using derived equations similar 
to that given by Kanninen [3, 4]. The procedures of k e determination have been given 
in [2, 19]. Briefly, this involved loading in tension tensile specimens* of different widths 
made from the grooved testpiece and plotting the measured stiffness against the specimen 
width, ke was'given by twice the measured slope of this plot. The foundation modulus 
(2) could then be calculated from (ke/4EI) ~, where all physical quantities were now 
known. In this way, we found that 2 was approximately 0.04 mm-  1 for the present grooved 
testpiece. For the purpose of plotting the experimental results, R for Perspex was 

* Note that all these tensile specimens have reduced sections corresponding to the face grooves midway 
along their lengths. 
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determined from the well-known irreversible work area method of Gurney and co-workers 
[2, 6-8, 13, 14, 19]. Thus, during the quasi-static crack propagation experiments, given 
crack lengths (a) and corresponding fracture loads (P), the experime~al values of 
M/(REIt)  ~ could be estimated and compared with theoretical solutions given by (9). 
These experimental data were superimposed on Fig. 3, and agreement with theoretical 
values was good. 

The stability condition of a spreading crack under the constraints of a load-controlled 
machine (i.e. dP/P>O) is given by (4), where 

ldR 2// 2a ~ n~ (10) 
/~ d--a > a\2--+~a] = a 

so that np= 22a/(2 + 2a). For a displacement-controlled machine, (i.e. du/u > 0), from (5), 
the stability condition becomes, . . . .  

I dR [ 2 v2 .] 4_( 2a "~=--,nu (11) 
d---a > 2 2 +2a S~o v2da > - a \2 + 2a/ a 

where nu= "42a/(2 + 2a). " 

Figures 4(a) and (b) show the variation of n~ and n, with 2a. In general, stability is shown 
not only to be better in a displacement-controlled machine, but also improves as 2a 
increases (i.e. as the crack proceeds). 

2.2. Crack-line loaded edge-crack specimen 

The inset of Fig. 5(a) shows a crack-line loaded edge-crack or Straight double- 
cantilever beam specimen. The crack tip displacement at A is given by [5] 
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Figure 5(a). Comparison of theoretical and experimental M/(REIt) ~ for varying 2r in a grooved DCB specimen. 
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2Pa.,~2 [-Sinh2(2r)+sin2(2r)] 2P2 [Sinh(2r)Cosh(2r)-s in(2r)  cos(2r)] 
I)A= ke kSinh2(2r)-sin2(2r)-] + --~-~ k- ~ ) - - s ~  J '  

(12) 

Manipulations of (2), (3) and (12), give the quasi-static fracture criterion as 

M ;ta [Sinh2(2r) - sin2(2r)] . (13) 
(REIt)  ~ = 2a [Sinh2(2r) + sin2(2r)] + Sinh(2r) Cosh(2r) - sin(2r) Cos(2r) 

Figure 5(a) shows the variation of M/(REI t )  ½ with 2r, according to (13). The finite 
length (w) of the specimen is taken as 250 mm in these  calculations. It follows that 
when ha--* oo and 2 r>  re, M E= REIt. However, it has been found that in some published 
work (e.g. [6, 15]), M2=REI t ,  has been invariably taken as t.he fracture criterion for 
the crack-line loaded edge-crack or straight DCB specimens ( w ~ t h e r  they are grooved 
or not). This is not necessarily true because it only holds in the asymptot ic  case, as is 
shown here. 

Similar experiments as those described in section 2.1. were run on 250 x 100 x 6 mm 
specimens made from cast sheets of Perspex. The groove dimensions were the same as 
those used in the previous example. Because the bending stiffness (EI) of the beam on 
the foundation is constant, it follows that the foundation modulus (4) should have the 
same value. These experimental results were also plotted in Fig. 5(a). 

Johnson and Radon [16] suggest that for a grooved DCB specimen, the critical 
stress intensity factor (K~c) can be written as, 

K~ c = 3.46P(a/h + 0.7) 
[tBh(1-v2)] ½ ' (14) 

where h is the depth of the arm, v the Poisson's ratio, B the thickness of the ungrooved 
section and t that of the fracture plane. This equation is in fact a modification of the 
Gross-Srawley boundary collocation solution [17] for an ungrooved specimen. Equation 
(14) can also be expressed as 

M _ [(a/w)/h/w)](1-  v2) ¢ ' " 
- (15) 

(SEIt)½ [(a/w)/(h/w)+0.7] " 

I t  is useful to compare the experimental data with the theoretical predictions made from 
(13) and (15), so that the relative accuracies of the beam-on-elastic foundation analysis 
and the Johnson-Radon equation can be "directly compared. 

For the specimen just described, with w/h=5.0, 2 = 4 x  10-2mm -1 and w=250 mm, 
M/(REI t )  ½ may be plotted against (a/w) as shown in Fig. 5(b). It may be seen that the 
experimental data are in better agreement with the beam-on-elastic foundation model 
than with the Johnson-Radon equation. 

The stability condition of a spreading crack under the constraint of a load-controlled 
machine can be found from (4) and (12). Thus, 

a { 4(2a)2Sinh(2r) sin(2r) 
Rld-RRda > 2 Sinh(2r) Cosh(2r ) - s in (2 r )  cos(2r) + Sinh2(2r)-sin2(2r)  

x [Sinh(2r) cos( ) . r ) -  sin(2r) Cosh(2r)] 

k JJ Sinh2 (2r) - sin 2(2r) 

-" {2a(Sinh2(2r) + sin2(2r)) + Sinh(2r)C0sh(2r) -  sin(2r) cos(2r)} = nv/a. ~ (16) 

Int. Journ. ofFracture, 12 (1976) 107M23 



Fracture criterion and crack stability in grooved beam-like testpieces 117 

To take into account of the finite length (w) of the beam, it may be noted that 
ila = Ir/(w/a- 1). Therefore, np may be plotted against Ar for varying a/w. Such curves 
are shown in Fig. 6(a). In the broadest sense, it may be seen that stable cracking is 
difficult to achieve under such loading conditions since np are large positiye numbers. 

The crack stability criterion in a displacement-controlled machine, as worked out from 
(5) is cumbersome. The value of n,, however, is shown in Fig. 6(b) as a function of 
Ar for varying a/w. Obviously, stability is markedly increased when compared with the 
case of an ungrooved DCB specimen as shown in Gurney and Hunt* [6] in which 
n, = - 4.0. 

To gain better insight into the crack stability conditions, consider a grooved DCB 
specimeninwhichA.=4x10-2mm-1 and w= 125 mm. Figure 6(c) shows the variation of 
n, and fiP with h. Note that when the crack extends, Ar decreases. In this way, it may 
be seen that cracking should be very stable in a hard testing machine and unstable 
in a soft one. 

Following this implication that a grooved DCB specimen promotes stable cracking in 
a hard testing machine, experiments are performed on polycarbonate which is an unstable, 

t = 3mm 

1 I I I I 1 

80 120 160 
R, (kJti2) 

Figure 7. Variation of fracture toughness (R) with crack speed (li) for polycarbonate. 

* It should be noted that the derivation given in Gurney and Hunt [6] is based on a rigid foundation 
and an Euler-Bernoulli beam and is hence inadequate. 
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rate sensitive material with dR/dti<0. Experimental results showed that cracking was 
indeed stable in these grooved specimens. Therefore, useful R(ti) information could be 
obtained easily, Figure 7 shows the variation of R with ti for polycarbonate. Note that 
cracking in ungrooved specimens of polycarbonate is violently unstable. 

2.3. Single-ended double cantilever beam specimens subjected to bending moments at the ends 

The inset of Fig. 8 shows a grooved DCB specimen with unequal bending moments M 
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and eM applied at the ends. The crack tip opening displacement at A is g!ven by 

2M22 [ Sinh2(2r)+sin2(Ar)] 4eM22 F Sinh(Ar) sin(2r) ] 
vA- ke LSinh2(2r)-sin2(2r)J ke l_Sinh2(Ar)-sin2(Ar)J" (17) 

For quasi-static cracking to commence, we have the fracture criterion as 

M Sinh2 (2r) - sin2(2r) 
(REIt )  ½ - Sinh2(Ar) - 2e Sinh(Ar) sin (2r) + sin2(Ar)" (18) 

The theoretical values of M/(REI t )  ½ as a function of 2r for varying e are shown in 
Fig. 8. It is obvious that only when 2r > ~, will the fracture condition become M 2--  REIt.  
Freiman et al. [18] have used a grooved DCB testpiece with loading arrangements such 
that e= 0 and reported that at fracture, M 2 =  REIt.  However, they have not shown that 
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Int. Journ. of Fracture, 12 (1976) 107-123 



120 Y. W. Mai 

,lr> 7~ is a necessary condition for this relation to hold. To prove this point and to 
verify the fracture criterion described in (18) experiments were performed using grooved 
beam-like testpieces made of Perspex and aluminum alloys*, which were inserted into the 
special test rig developed in 121. The k, values were determined experimyntally with the 
testpieces inserted in the test rig, and A values calculated from (kJ4EI)x. Experimental 
results of M/(REZt)t were obtained for E = 1.0 and a=0 as a function of h. These 
results are plotted in Fig. 9 and they compare favorably with those predicted from (18). 
It is interesting to note that in these experiments performed in an Instron testing 
machine (where du/u>O), stable quasi-static cracking was achieved when E= 1.0 for all 
values of Ir. However, in contrast, cracking was unstable when E=O and h small. 
These experimental results can be explained adequately in terms of the stability curves 
shown in Figs. 10(b) and 10(c). 

The crack stability conditions may be worked out from (17) and (4) and (5). The 
analysis is tedious, and is not given here, but IZ, and n, are plotted as functions 
of h for varying E in Figs. 10 (a)--(c). 

For E= 1.0 in a displacement-controlled machine, Fig. 11 plots the variation of n, 
with ;Ir for progressive crack extension in both an aluminum testpiece with ;1= 2 x lo- 2 
mm:‘, w=500 mm and in Perspex with 1=4x 1O-2 mm-’ and w=125 mm. It is 

Figure lo(a). Variation of stability factor np with Ir for varying E. 

* The aluminum and Perspex grooved-specimens were identical to those used in previous investigations [2, 191. 
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obvious that crack stability is greatly improved when compared with a similar case of an 
ungrooved testpiece which gives nu = - 2[6]. Other experimental results in support of these 
predictions have been reported in Gurney, Mai en Owen [2] and in Owen, Mai and Chow 
[19]. 

3. Conclusions 

The present investigation shows that the beam-on-elastic foundation model is adequate 
for describing quasi-static fracture in grooved rectangular beam-like testpieces. The fracture 
criterion according to M / ( R E I t )  ~ = F(2a, 2r) or equivalently, R t  = k e 0 2, has been successfully 
verified by quasi-static crack propagation experiments. Moreover, crack stabilities in 
these grooved specimens have been investigated. 
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RI~SUMI~ 
Dans ce m6moire, le crit&e de rupture pour des pi6ccs rectangulaires entaill6es en forme de poutres soumis¢s 
/t diverses conditions de mise en charge est analys6 en recourant / tun  mod61e d'une poutre simple pos6¢ 
sur une fondation 61astique. 

Des essais montrent que le mod61e est ad6quat pour d6crire une rupture quasi statique dans le cas de 
g6om6tries similaires A la g6om6trie 6tudi6e. En outre, les conditions de stabilit6 de la fissure sont pr6scnt6es 
pour les deux cas d'essais sur des machines/t d6placement contr616s et ~t charge contr616e. 
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