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Abstract. Plane stress mode I crack-tip fields for perfectly plastic orthotropic materials are studied. Plastic 
orthotropy is described by Hill's quadratic yield function. The construction of crack-tip fields is based on the 
general crack-tip field analysis for elastic perfectly plastic materials given by Rice [1] and guided by the correspond- 
ing low-hardening power-law solutions. Two very different types of plane-stress crack-tip fields emerge as plastic 
orthotropy is varied. The first one consists of a centered fan sector in front of the crack tip and two neighboring 
constant stress sectors. The second one consists of a constant stress sector in front of the crack tip, a constant stress 
sector bordering the crack face, and a centered fan sector between the two constant stress sectors. All the perfectly 
plastic crack-tip solutons are verified by the corresponding low-hardening power-law solutions. General trends of 
crack-tip stress solutions as functions of plastic orthotropy and implications of these solutions to the design of 
ductile composite materials are discussed. 

I. Introduction 

Many engineering materials exhibit anisotropic behavior. To describe plastic anisotropic 
behavior, Hill [2, 3] proposed a phenomenological  quadratic yield function for orthotropic 
materials. Later, Hill [4] proposed non-quadrat ic  yield functions to account for the so-called 
anomalous behavior of  certain materials. To understand the plastic flow near the tip of  a 
crack in an anisotropic material, we adopt  Hill's quadratic yield function to describe the 
plastic flow behavior for its simplicity. We can study the crack-tip behavior using other 
non-quadrat ic  yield functions in our crack-tip analysis, which is based on the work of  Rice 
[1]. However, our intent is to employ a simple constitutive law that retains certain essential 
features of  plastic anisotropy in order to gain an understanding of  the crack-tip behavior as 
plastic anisotropy is varied. 

The asymptotic near-tip solutions for a crack in both power-law hardening and perfectly 
plastic isotropic materials have been introduced by Hutchinson [5, 6], Rice [7], and Rice and 
Rosengren [8]. The asymptotic near-tip solutions under combined mode I and II conditions 
for powerqaw hardening and perfectly plastic isotropic materials are presented and discussed 
in Shih [9-11] and for perfectly plastic isotropic materials in Nemat-Nasser  and Obata [12]. 
Hayashi [13] examined the asymptotic near-tip solutions for some powerqaw hardening 
materials with mild orthotropy.  Pan and Shih [14, 15] studied the asymptotic near-tip fields 
in detail for power-law hardening orthotropic materials under both plane-strain and plane- 
stress conditions. For  perfectly plastic anisotropic materials, Pan [16] presented the plane- 
strain crack-tip solutions based on the slip-line theory given by Rice [17]. 

Here, we present mode I plane-stress crack-tip solutions for perfectly plastic orthotropic 
materials. The solutions are constructed based on different types of  assembly of  plastic 
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sectors as plastic orthotropy is varied. The solutions of different types of crack-tip fields and 
different sizes of plastic sectors of each type as functions of plastic orthotropy imply and 
explain some interesting features shown by the corresponding crack-tip solutions for 
power-law materials [5]. Further, the perfectly plastic crack-tip solutions agree well with the 
corresponding low-hardening power-law crack-tip solutions [15] and thus represent the 
low-hardening limit of the corresponding power-law crack-tip solutions. 

2. Governing equations 

In this section, we will follow the development of  the governing equations of crack-tip fields 
for elastic perfectly plastic materials by Rice [1]. We will then use these equations to construct 
mode I crack-tip fields for perfectly plastic orthotropic materials under plane-stress con- 
ditions. Note that the Rice analysis [1] is general and is applicable to anti-plane, plane-strain, 
and plane-stress problems. 

We consider a crack with the crack front parallel to the x3 axis in the rectangular Cartesian 
coordinate system, x,, x2, and x3, as shown in Fig. 1, where the x 3 axis is perpendicular to 
the xl-x2 plane. Let r and 0 denote the polar coordinates centered at the crack tip, e the unit 
vector in the radial direction, and h the unit vector in the transverse direction. Note that 

Or/Ox i = e i, OO/Ox; = hi~r, (2.1) 

where the subscript i has a range of 1, 2, and 3 and 

el = h2 = c o s  0 ,  e2 = - h i  = sin 0, e3 = h3 = 0. (2.2) 

2.1.  E q u i l i b r i u m  

Within the context of the small strain approach, the equilibrium equations are 

~a~//Ox i + ~ = 0, (2.3) 

where a;j ( = aj;) is the stress tensor,fj is the body force, and the subscripts i and j  have a range 
of 1, 2, and 3 and follow the summation convention. The equilibrium equations (2.3), using 

X2 

h 

Fig. 1. Conventions at the crack tip. 
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the relation (2.1), become 

(&r~i/~O)(hi/r) + (&ru/c3r)ei + 
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= 0. (2.3) 

Since rf/ and rOaij/Or ~ 0 as r --* 0 for perfectly plastic materials [1], the equilibrium 
equations (2.3) reduce to 

t t hia~j = 0 where ~r~j = [~3~r~i(r , 0)/~30]r~0 (2.4) 

as r -~ 0. Equat ion (2.4) can be expressed fully in the Cartesian coordinate as 

e2~1 = el~r~l, e2~2 = e1~2,  e2~r~3 = elan3 (2.5) 

or in the polar coordinate as 

! t t 

a r r - -  a00 + ~r~0 = 0, 2~rr0 + a00 = 0, ~rr3 + o-o3 = 0. (2.6) 

For  an arbitrary tensor H,v, Rice [1] gives the following equality using the equilibrium 
equations (2.5): 

! I t ! 

a~jHij = (cry1 + a2z)Hrr + o33H33 + 2(a;3/el)H.3. (2.7) 

2.2. Yield condition 

The yield condit ion for perfectly plastic materials can be assumed to have the form 

f (a! j  ) = 0. (2.8) 

When the yield surface in the stress space is smooth,  the differential form of  the yield 
condit ion (2.8) can be written as 

/ 

P, ja~i = 0 (2.9) 

as r ~ 0, where 

P~j = ~f/Oaij. (2.10) 

Here, P~j represents a symmetric tensor in the direction of  the outward  normal  to the yield 
surface in the stress space. 

The differential yield condit ion (2.9) together with (2.7), which is obtained using the 
equilibrium equations (2.5), gives 

(0~, A- o'~2)P,~ q- 0"~3P33 -k- 2(a;3/el)Pr3 = 0. (2.11) 
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2.3. P l a n e  s t ress  p la s t i c  sec tors  

For two-dimensional plane-stress problems, we can set 0-31 = 0-32 = 0-33 = 0. The equilib- 
rium equations are 

e2a~l = ela21, e20-(2 : el0-22. (2.12) 

These equations in the polar coordinate are 

0-rr - 0"00 + 0"'rO = O, 2aro + 0-~o = 0. (2.13) 

Equation (2.1 1), which represents the differential yield condition and the equilibrium con- 
dition, simplifies to 

(a;1 + a~2)Pr~ = 0. (2.14) 

There are three equations, (2.14) and (2.13) (or (2.12)), for the three stresses o-u, 0-t2 ( =  O"21 ), 
and 0-z2. This is a statically determinate problem with two possible solutions: 

(1) C o n s t a n t  s t res s  sectors:  au = constant, 0"12 = a2~ = constant, and 0-22 = constant. 
(2) C e n t e r e d  f a n  sectors:  From the viewpoint of  the rigid perfectly plastic plane-stress 

equations, the vanishing extensional components of  P,j define the characteristics; 
therefore, P~r = 0 defines a fan of  radial characteristics. 

Under anti-plane and plane-strain conditions¢ the governing equations and their impli- 
cations on the crack-tip fields can be found i~ Rice [1]. 

3. Orthotropic plasticity 

We consider the cases where the pronounced preferred crystallographic orientation is 
already firmly established and restrict the discussion to a range of  plastic straining such that 
further change of  plastic orthotropy is negligible. We choose the axes of  orthotropic 
symmetry of a material, XI, )(2, and )(3, to coincide with the axes of the Cartesian coordinate 
system, xl, x2, and x3, as shown in Fig. 1. Hill's yield condition [2, 3] for orthotropic 
materials can be expressed in the form 

f ( a i j  ) = F(a22 - -  0-33) 2 + G(0"33  - 0"11) 2 + H(o'11 -- 0-22) 2 

+ 2La223 + 2M0-~1 + 2Na~2 - Q2 = 0, (3.1) 

where f ( a i j )  represents the current yield surface in the stress space and F, G, H, L, M, and 
N are the dimensionless constants that describe the state of plastic orthotropy. An effective 
yield strength parameter Q can be defined to represent the characteristic size of the elastic 
domain in the stress space. For perfectly plastic materials, Q is a constant. We can set 
F = G = H = L / 3  = M / 3  = N / 3  = 1/6 and (3.1) becomes Von Mises' yield condition 
for isotropic materials. 
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Let X0, Y0, and Z 0 be the yield stresses along the orthotropic symmetry axes and R0, So, 
and T o be the shear yield stresses with respect to the or thotropic  symmetry axes. As in Pan 
and Shih [14, 1 5], we identify Q with the shear yield stress T. With this normalization, these 
relations follow (Hill [2, 3]): 

G + H = (To/Xo) 2, H + F = (To/Yo)  2, F + G = (To/Zo) 2 

2L  = (To/Ro) 2, 2 M  = (To~So) 2, 2N  = 1. 

We introduce the generalized shear and tensile yield stresses, % 
by 

2 
"C e = 002/3 = F(0022 - -  0033) 2 -[- G(0033 - 0022) 2 -~- H(0011 - -  0022) 2 

+ 2L0023 + 2M0011 + 2N00~2 = Q2. 

(3.2) 

and 00e, which are defined 

Invoking the plane-stress condit ion (O°13 = 0023 = 0"33 = 0 )  and 2N = 1, the yield condition 
becomes 

2 = 0. (3.4) f = F00~2 + G00~1 -t- H(0011 - 0"22) 2 -I- 0~2 - "~e 

The yield condit ion can be expressed in the polar coordinate by stress transformation: 

f = F(00rr sin20 + 00oo cos20 + 00ro sin 20) 2 

"~ G((Trr COS20  + 0000 sin20 - 00~0 sin 20) 2 

+ H[(00~ - ~oo) cos 20 - 200~o sin 20] 2 

_ 2 = 0 .  ( 3 . 5 )  + (1/4)[(00rr- 0000)sin 20 + 200~0 c o s  2 0 ]  2 "r e 

As discussed earlier in Section 2.3, there are two types of  plastic sectors: one is the constant  
stress sector and the other is the centered fan sector. In the centered fan sector, Prr vanishes. 
Prr can be expressed in the polar coordinate as 

Prr = t~f/~00rr = 0 

= (sin20)F(00rr sin20 + 00o0 c°s20 -[- 00r0 sin 20) 

+ (cos20)G( 00. cos20 + 0000 sin20 - at0 sin 20) 

+ (cos 20)H[(00rr - 0000) cos 20 - 200r0 sin 20] 

+ (sin 20)(1/4)[(a~ -- aoo) sin 20 + 2arO COS 20]. (3.6) 

When the normali ty flow law is assumed, the condit ion P~r = 0 specifies a rather strong 
kinematic condition: the plastic strain rate in the radial direction must  vanish. 

(3.3) 
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4. Mode I crack-tip fields 

Under plane-stress conditions, the crack-tip fields are functions of three material orthotropy 
parameters: F, G, and H (see the yield condition (3.4) or (3.5)). Since we assume that 
plastic orthotropy remains unchanged under deformation, the crack-tip fields therefore 
can be expressed as functions of the relative magnitudes of the yield stresses X0, Y0, Z0, 
and T o (see (3.2)). We vary the relative magnitudes of the yield stresses to examine the 
effects of  plastic orthotropy on the crack-tip fields. We only examine four simple cases 
as in [15]. 

In this paper, we study mode I symmetric cases only. For the four cases [15] that we 
consider here, we found that there are two types of crack-tip fields. The first one, a type-A 
field, shown in Fig. 2(a), consists of  a centered fan sector in front of the crack tip and two 
neighboring constant stress sectors; a discontinuity of the radial stress appears along the 
border OB of the two constant stress sectors. The other, a type-B field, shown in Fig. 2(b), 
consists of  a constant stress sector in front of  the crack tip and a constant stress sector 
bordering the stress-free crack face. Between the two constant stress sectors, there is a 
centered fan sector. The assembly of plastic sectors of type-B fields is similar to that of  the 
plane-strain mode I crack-tip fields [1, 7, 16, 18]. 

(1) 

C (2) / 

B c.s. / 

C ~  ec 

0 

C.F. 
(3) 

A 

(a) 

(1) 

C (2) 

C.S. ~ ~ c  C'F" ~JC.S .  
eo 

O 

D 

(3) 

(b) 
Fig. 2. Two possible plane-stress mode I crack-tip fields (C.S. represents a constant stress sector and C.F. 
represents a centered fan sector). 
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In constructing the crack-tip fields, we use the low-hardening solutions of the crack-tip 
stress fields for power-law materials (Pan and Shih [15]) to guide the selection of either a 
type-A or a type-B field. We integrate the governing equations of (2.13) and the differen- 
tiation of (3.6) by the fourth-fifth Runge-Kutta  scheme with error and step-size control. We 
employ two-parameter shooting methods to meet the symmetry and boundary conditions of 
the crack-tip fields shown in either Fig. 2(a) or 2(b). 

Due to the symmetry conditions, we only need to consider the crack-tip field from 0 = 0 ° 
to 0 = 180 °. We reinforce the symmetry conditions such that ~0 = 0 at 0 = 0 °. To satisfy 
the stress-free boundary conditions, we have ~r~0 = c~00 = 0 at 0 = 180 °. We also reinforce 
the traction continuity conditions such that at0 and a00 are continuous along the borders of 
the two sectors of  the crack-tip fields. 

4.1. Case 1 

First, we examine the case where the strength in the x I direction is increased while the 
strengths in the other directions remain unchanged, as for isotropic materials, i.e., Xo/Yo > 1 
and Y0 = Z0 = xf3T0. Figure 3(a) shows the crack-tip stress field for isotropic materials 
(X0 = Y0 = Z~j = x/-3T0). This is identical to the stress field (a type-A field) presented by 
Hutchinson [6]. Note that for the perfectly plastic crack-tip stress solutions shown in this 
paper, the crack-tip stresses are normalized by a,,. Figures 3(b) and 3(c) show the crack-tip 
stress fields (with 110 = Z0 = x/3T0) for Xo/Y  o = 2 and 4, respectively. 

All the crack-tip fields shown in Fig. 3 are type-A fields. For isotropic materials, 0 c and 
08, as defined in Fig. 2(a), are calculated as 79.8 deg and 151.2 deg, respectively. These values 
agree with Hutchinson's results [6]. When Xo/Yo is increased from 1 to 4, Oc and 08 increases 
from 79.8 and 151.2 degs to 86.4 and 170.8 degs, respectively; the discontinuity of the radial 
stress at the border OB increases from 1.31a~, to 3.63a,,. As shown in Fig. 3, the angular 
variation of % peaks at 0 = 0 ° as the strength in the xj direction is increased. 

Pan and Shih [15] studied the crack-tip field for power-law hardening orthotropic 
materials. According to their results, the angular variations of the dimensionless singular 
crack-tip stress fields, 6!j and ~e, for n = 20 are shown in Figs. 4(a), 4(b), and 4(c) for the 
three materials corresponding to Figs. 3(a), 3(b), and 3(c), respectively. Note that n = 20 
represents a stress-strain relation very close to the perfectly plastic stress-strain law and that 
the angular functions are normalized by setting the maximum value of the 0-variation of 6~, 
to unity. 

In Fig. 4, the power-law solutions show the same trend as the perfectly plastic solutions 
in Fig. 3 when the strength in the xl direction is increased. For example, art peaks at 0 = 0 ° 
and the magnitude of the apparent discontinuity of art near the stress-free crack face 
increases. As discussed in [15], the increase of strength in the xL direction does not affect the 
crack-tip stress field very much except the normal stress near the Xl direction. This fact is 
shown in Figs. 3 and 4, which demonstrate that as the strength in the x~ direction is increased, 
6r~ increases near the angles 0 = 0 ° and 0 = 180 °. 

The power-law solutions resemble the perfectly plastic solutions in every way except that 
the power-law solutions are smoother than the perfectly plastic solutions. Note that when 
we construct the power-law solutions, we assume that the second derivatives of  the singular 
stresses with respect to 0 exist. However, when we construct the perfectly plastic solutions, 
we assemble these sectors as shown in Fig. 2(a) and we impose the traction continuity 
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Fig. 3. Case 1: A n g u l a r  d is t r ibut ions  of  the perfectly plastic crack-t ip  stress fields for Yo = Zo = 
Xo/Yo = (a) 1, (b) 2, (c) 4. 
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conditions along the borders of these sectors. Therefore, a discontinuity of O%r and a 
discontinuity of the derivatives of ar~ and ~r~0 with respect to 0 along the borders of two 
sectors may exist. Nevertheless, the derivative of a00 with respect to 0 along the borders 
must be continuous due to the equilibrium equation (2.13) and the continuity of a~0 
along the borders. A detailed comparison of the stress fields shown in Fig. 3 with 
those in Fig. 4 suggests that the perfectly plastic solutions shown in Fig. 3 indeed 
correspond to the low-hardening limit of the crack-tip fields for the corresponding power- 
law materials. 

4.2. Case 2 

Next, we examine the effects of  plastic orthotropy on the crack-tip fields when the strength 
in the x2 direction is increased with respect to the other, i.e., Yo/Xo > 1, X o = Zo = ,,/3To. 

Figure 5(a) shows the crack-tip stress field for isotropic materials. Figures 5(b) and 5(c) 
show the crack-tip stresses for Yo/Xo = 2 and 4, respectively. 

All the crack-tip fields shown in Fig. 5 are type-A fields. A comparison of the stress fields 
shows that as Yo/Xo is increased from 1 to 4, 0 c increases from 79.8 deg to 89.1 deg, 08 
decreases from 151.2 deg to 147.2 deg, and aoo at 0 = 0 ° increases from 1.16ae to 4.03ae. 
Since the strength in the x2 direction is increased, we expect that the crack-tip normal stress 
near the x 2 direction must increase at some angle 0. Figure 5 shows that as the strength in 
the x2 direction is increased, aoo near 0 = 0 ° and art near 0 = 70 ° increase. The elevation of 
hoop stress in front of  the crack tip is similar to that of the plane-strain case forp < 1, where 
p is the plastic orthotropy parameter defined by Pan and Shih [14]. However, in general, the 
nature of the plastic sector ahead of the crack tip in plane strain differs from that in plane 
stress. For example, for isotropic materials in plane stress, there is a centered fan sector in 
front of the crack tip. This fan sector may induce a large amount of plastic shearing due to 
a 1/r singularity in strain for elastic perfectly plastic materials [7]. For isotropic materials in 
plane strain, there is a constant stress sector in front of  the crack tip. This constant stress 
sector induces only a limited amount of plasticity, as shown in the computational studies for 
elastic perfectly plastic isotropic materials under small-scale yielding conditions by Levy 
et al. [19], Rice and Tracey [20], Tracey [21], and Parks [22]. 

The low-hardening crack-tip stress fields (n = 20) for power-law materials are shown in 
Figs. 6(a), 6(b), and 6(c) for the three materials corresponding to Figs. 5(a), 5(b), and 5(c), 
respectively. The characteristics of the stress fields for each of the corresponding power-law 
solutions and the perfectly plastic solutions are the same except that the power-law solutions 
are smoother due to the continuity of the second derivatives of the stresses with respect to 
0. Therefore, Figs. 5 and 6 suggest that the perfectly plastic solutions shown in Fig. 5 indeed 
correspond to the low-hardening limit of the crack-tip fields for the corresponding power- 
law materials. 

4.3. Case 3 

Now we examine the effects of plastic orthotropy on the crack-tip fields when the strength 
in the x3 direction is increased with respect to the others, i.e., Zo/Xo > 1, X o = Yo = ",/-3To. 
The transversely isotropic materials that we consider in this case are isotropic in the x~-x2 
plane and have an orthotropic symmetry axis in the x3 direction. Figure 7(a) shows the 
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crack-tip stress field for isotropic materials. Figures 7(b) and 7(c) show the crack-tip stress 
fields for Zo/X o = 2 and 4, respectively. 

Note that the crack-tip field for isotropic materials as shown in Fig. 7(a) is a type-A field. 
The crack-tip fields shown in Figs. 7(b) and 7(c) are type-B fields. As shown in Figs. 7(b) and 
7(c), we do not have any radial stress discontinuity between the constant stress sectors and 
the centered fan sector for the type-B fields. 

The crack-tip field tends to gain the characteristics of the plane-strain crack-tip field for 
isotropic materials as Zo/X o becomes large. When we reinforce the strength in the x 3 
direction, we restrain the deformation in the x3 direction. Thus we create a plane-strain-like 
condition in the x3 direction regardless of the stress-free conditions in the x3 direction in 
plane stress. 

As we increase the ratio Zo/Xo, the angle of 0B approaches 180 deg and Oc approaches 135 
deg (08 and Oc are defined in Fig. 2(a) for type-A fields). When the ratio Zo/Xo is increased 
to about 1.4, sector (1) in Fig. 2(a) disappears and a constant stress sector appears in front 
of the crack tip. The crack-tip field becomes a type-B field, shown in Fig. 2(b). 

When the ratio Zo/X o is increased further, 0D approaches 45 deg and 0 c approaches 135 
deg. As the crack-tip field changes from a type-A field to a type-B field, the border OB 
between the two constant stress sectors disappears (consequently, the discontinuity of the 
radial stress O'rr of  the stress field disappears). The radial stress O'rr at 0 = 180 ° changes from 
a negative value to a positive value. This fact is shown in Figs. 7(a), 7(b), and 7(c). 

The low-hardening crack-tip stress fields (n = 20) for power-law materials are shown in 
Figs. 8(a), 8(b), and 8(c) for the three materials corresponding to Figs. 7(a), 7(b), and 7(c). 
The power-law solutions resemble the perfectly plastic solutions for each of the correspond- 
ing cases. This suggests that the perfectly plastic solutions shown in Fig. 7 indeed correspond 
to the low-hardening limit of  the crack-tip fields for the corresponding power-law materials. 
Also, the study of this case suggests that, when the deformation in the out-of-plane direction 
of a thin sheet is somehow constrained, for example, due to manufacturing processes, the 
asymptotic field at the tip of a crack in the thin sheet may exhibit the "plane-strain-like" 
characteristics. 

4.4. Case 4 

Finally, we examine the effects of  plastic orthotropy on the crack-tip fields when the in-plane 
shear strength T o with respect to the x~ and x2 axes is decreased (or increased) with respect 
to the tensile strength in the x~, x2, and x 3 directions, i.e., x/-3To/Xo < 1 (or > 1), 
X0 = Y0 = Z0. Because the effective stress is defined with respect to the in-plane shear 
strength, this case equals the one where the tensile strength in the x~, x2, and x 3 directions 
is increased (or decreased) with respect to the in-plane shear strength. Figure 9(a) shows the 
crack-tip stress field for isotropic materials. Figures 9(b) and 9(c) show the normalized 
crack-tip stress fields 6i~ for x~To/Xo = 1/2 and 1/4, respectively. The normalized crack-tip 
stress is defined by 6-~j = (,~/-3To/Xo)aij. 

The crack-tip fields for this case are all type-A fields. As shown in Fig. 9, when the shear 
strength T O is decreased (or the tensile strength in the x~, x2, and x3 directions is increased), 
08 and 0 c increase; the magnitude of the crack-tip stresses becomes large and increases 
approximately linearly with the ratio Xo/x~T o. At 0 = 0 °, the hoop stress aoo, which is a 
very important fracture parameter, also increases. The effect of the elevation of the hoop 



Plane-stress crack-tip fields 117 

CO 
O0 

cO 

- I  
-180 

~oo 

- 90  0 90 180 

(a) 

O0 
O0 
(D 

cO 

2 ~Y00 

1 / -  

0 

-1 
-180 -gO 0 go 180 

(b) 

O0 
O0 
(D 

CO 

~oo 

2 

I 

o 

-~  I I L 

-180 -90 0 90 180 

(c) 

Angle 
/ :~.  8. Case 3: Angular  distr ibutions of  the crack-t ip stress fields for power-law materials with n = 20, 
X, = Y~ = x~T~, and Z,,/X~ = (a) 1, (b) 2. (c) 4. 



118 J. Pan 

GO 
O3 

cO 

-IBO 

cr~e 

~O 

-go o 90 lflO 

(a) 

O3 
tO 

- t , - ~  

cO 

-I 
- l e 0  

~o 

~ro 

! . . . .  t t 

-90 0 90 180 

(b) 

O3 
O3 
(I) 

CO 

~e 
t ~rr 

.~ I ....... I I 

-190 -90 0 gO 

(c) 

IBO 

Angle 

Fig. 9. Case 4: Angular  distributions o f  the perfectly plastic crack-tip stress fields for Xo = Yo = Z0 and 
~/3To/Xo == (a) 1, (b) 1/2, (c) 1/4. 



Plane-stress crack-tip.fields 119 

stress in front of the crack tip is the same as that of Case 2 where only the tensile strength 
in the x2 direction is increased with respect to the others. 

Figure 10(a) again shows the crack-tip stress field for isotropic materials. Figures 10(b) 
and 10(c) show the normalized crack-tip stress fields ai~ for x/-3To/Xo = 2 and 4, respectively. 

The crack-tip fields in Fig. 10 are still all type-A fields. As shown in Fig. 10, when the 
in-plane shear strength T o is increased (or the tensile strength in the xj, x 2, and x3 directions 
is decreased), the magnitude of the stress field becomes small and decreases approximately 
linearly with the ratio Xo/x/3T o. Also, when the in-plane shear strength T o is increased, both 
0 c and 08 decrease and approach 45 deg and 135 deg, respectively. Note that 0c of the type-A 
field represents the size of the centered fan secter in front of the crack tip, and the centered 
fan sector may induce a large amount  of plastic shearing at the crack tip [7]. This explains 
the fact that for Case 4, when the in-plane shear strength To is increased, the plastic shearing 
of the asymptotic crack-tip solutions for power-law materials becomes concentrated between 
0 = 45 ° and 0 = - 4 5  ° [15]. The corresponding low-hardening power-law crack-tip stress 
solutions are very similar to the perfectly plastic solutions and can be found in Pan and Shih 
[151. 

5. Discussion 

In this paper, we presented the crack-tip fields for perfectly plastic orthotropic materials 
based on the work of Rice [1]. The construction of the perfectly plastic crack-tip fields is 
guided by the corresponding low-hardening stress solutions for power-law materials (Pan 
and Shih [15]). The results show a close agreement between the perfectly plastic solutions and 
the low-hardening power-law solutions. 

The perfectly plastic solutions we presented here are based on Hill's quadratic anisotropic 
yield condition. However, the governing equations for the crack-tip field derived by Rice [1] 
are valid for materials with general anisotropic smooth yield conditions. Therefore, other 
types of yield conditions such as the non-quadratic yield conditions proposed by Hill [4] or 
empirical yield conditions can be employed to study the corresponding crack-tip fields. The 
crack-tip field solutions presented here demonstrate the applicability of the Rice [1] analysis 
and these solutions indicate the general trends of the effects of plastic anisotropy on the 
crack-tip fields. 

Slip-line theories based on the geometric properties of the yield surfaces in the stress space 
were introduced by Rice [17, 23] for perfectly plastic solids with arbitrary anisotropy under 
anti-plane and plane-strain conditions. The theories are general enough to treat the yield 
surfaces' corners and flats, which may exist when crystalline slip is considered as the primary 
physical process for plastic deformation in crystalline materials. Rice [23] and Rice and 
Nikolic [24] presented the crack-tip fields for stationary cracks and growing cracks in 
anisotropic materials such as single crystals under anti-plane shear conditions. Rice [25] also 
studied the crack-tip fields in single crystals under tensile loading conditions. Pan [16] 
examined the crack-tip field for anisotropic materials using Hill's quadratic anisotropic yield 
condition. Note that we can use the governing equations of Rice [1] to investigate the 
crack-tip field under plane-strain conditions using a plane-strain anisotropic yield condition. 
However, as shown by Pan [16], the crack-tip fields are easier to construct using the Rice 
plane-strain slip-line theory [17]. 
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Hill's quadratic yield condition in plane-stress has more plastic orthotropy parameters 
than that in plane-strain, where only one plastic orthotropy parameter is needed to deter- 
mine a family of the near-tip fields. Under plane-strain mode I conditions, when the 
orthotropic symmetry axes are aligned with the Cartesian coordinates shown in Fig. 1, the 
crack-tip slip-line fields for orthotropic materials based on Hill's quadratic yield condition 
are identical to the Prandtl field for isotropic materials (Pan [16]). In contrast to the 
plane-strain case, as shown in this study under plane-stress conditions, the size of the plastic 
sectors in terms of 08 and 0c for type-A fields (Fig. 2(a)) and in terms of 0 c and 0, for 
type-B fields (Fig. 2(b)) are strong functions of the material orthotropy parameters. This is 
especially true for Case 3 shown in Fig. 7. 

Suppose that the plastic behavior of a ductile composite as an anisotropic continuum can 
be qualitatively approximated by Hill's anisotropic yield condition adopted here. Using this 
yield condition, we consider a material where the crack is along the x~ direction and 
reinforcement is along the x2 direction. For simplicity, it can be assumed approximately that 
Yo/Xo > 1 and X 0 = Z0 = x/3T0 for the materials of this class. The present analysis shows 
that the crack-tip fields for these materials are type-A fields as shown in Fig. 2(a). Then, 
according to (3.5) and (3.6), we can solve for cr00 and arr at 0 = 0 °. Note that the shear stress 
vanishes ahead of the crack tip. The results are croo/~r ,, = 1/(F + (HG/ (H  + G))) ~'2 and 
arr ~- ( H / ( H  + G))aoo. For Yo/Xo = 1, 2, and 4, aoo/a,, is 1.16, 2.06, and 4.03, and a,,/a,, is 
0.58, 0.26, and 0.12, respectively. This indicates that as the strength in the x2 direction is 
increased, a00 ahead of the crack tip increases almost linearly with respect to the ratio Yo/X~. 
This information may be useful in the design of ductile composites. 
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R6sum6. On +tudie les champs de contraintes planes de mode 1 fi l'extr6mit6 d'une fissure, dans les mat6riaux 
orthotropiques parfaitement plastique. L'orthotropie plastique est d6crite par la fonction quadratique de plasticit~ 
de Hill. On base les constructions des champs de constraintes sur l'analyse g6n~rale des constraintes ft. l'extr6mit6 
d'une fissure fournie par Rice pour les mat6riaux 61astiques parfaitement plastiques, que l'on r6gle par les lois 
paraboliques caract6risant un faible 6crouissage. Lorsque l'on modifie l'orthotropie plastique, il apparait deux 
types de champs de contraintes ~. l'extr6mit6 de la fissure tr6s diff6rents. Le premier comporte un secteur en 6ventail 
centr6 sur le front de fissure, et deux secteurs voisins ~t contraintes constantes. Le second consiste en une secteur 

contrainte au bord de la surface de la fissure, et un secteur en 6ventail centr6 sur les deux secteurs fi contraintes 
constantes. Toutes les solutions relatives & une extr~mit~ de fissures parfaitement plastique sont v~rifi6es par les 
fonctions paraboliques d'6crouissage faible correspondantes. On discute des tendances gbn6rales que suivent les 
solutions pour les contraintes en extr6mit6 de fissure selon l'orthrotropie plastique, et des implications que 
comportent ces solutions dans la conception de mat6riaux composites ductiles. 


