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Abstract. Within the context of the small-strain approach, plane-strain mixed-mode near-tip fields of a stationary 
crack in an elastic perfectly plastic Mises solid under small-scale yielding conditions are examined by finite element 
methods. Steady-state stress fields in the immediate vicinity of the crack tip are obtained as the remote loading 
of the elastic K-field increases. Asymptotic crack-tip solutions consisting of constant stress sectors, centered fan 
sectors, and an elastic sector are then constructed accordingly. The asymptotic crack-tip stress solutions agree well 
with the numerical results for a whole spectrum of mixed-mode loadings. Our mixed-mode near-tip solution with 
an elastic sector differs from that of Saka et al. by one (plastic) constant stress sector situated between the elastic 
sector and the neighbouring fan sector. The effect of the existence of the elastic sector on the near-tip fields is 
discussed in the light of the computational results. The plastic mixity factor of the near-tip field is given as a 
function of the elastic mixity factor of the prescribed K-field. This function is well bounded by that of the perfectly 
plastic limit of the corresponding solutions for power-law hardening materials given by Shih. Some issues 
pertaining to the numerical procedures such as the implementation of the small-scale yielding assumption are also 
addressed. 

1. Introduction 

The asymptotic plane-strain and plane-stress crack-tip fields for both power-law hardening 
and perfectly plastic materials have been presented by Hutchinson [1, 2], Rice [3] and Rice 
and Rosengren [4] under pure mode I and pure mode II conditions, and by Shih [5, 6] under 
mixed-mode conditions. For power-law hardening materials, the asymptotic crack-tip stress 
and strain fields possess the well-known HRR singularity. The crack-tip field solutions for 
perfectly plastic materials presented by these authors are constructed with the assumption 
that the material surrounding the crack tip is fully yielded at all angles. These solutions agree 
with the perfectly plastic limits of the corresponding asymptotic solutions for power-law 
hardening materials. Note that these solutions for perfectly plastic materials under plane- 
strain near mode I mixed-mode conditions and under plane-stress mode I and mixed-mode 
conditions contain radial stress discontinuities (for anisotropic perfectly plastic materials, see 
Pan [7, 8]). 

For elastic perfectly plastic materials, the plane-strain mode I asymptotic crack-tip field 
(known as the Prandtl field) proposed by Rice [3] and Rice and Rosengren [4] has been 
verified by finite element computations under small-scale yielding conditions (for example, 
see Levy et al. [12] and Rice and Tracey [13]). Under mixed-mode loading conditions, Gao 
[9], with the assumption of Poisson's ratio v being 1/2, constructed theoretically plane-strain 
crack-tip fields that contain no stress discontinuities, but include two elastic sectors. Gao and 
Nemat-Nasser [10] and Nemat-Nasser and Obata [11] later suggested a mode II solution with 
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two elastic sectors. Due to the nonuniqueness nature of  the perfect-plasticity solutions, these 
solutions could be viewed as solutions of many possibilities, and have not been verified by 
any other means. Later, Saka et al. [14], based on the results of their finite element compu- 
tations, suggested a different near mode I mixed-mode near-tip structure from Gao's 
solution [9]. They found that, in reference to Gao's solution [9] valid for v = 1/2, the elastic 
sector bordered by the upper crack surface indeed exists and the elastic sector bordered by 
the lower crack surface should be a (plastic) constant stress sector according to their FEM 
calculations for M p -- 0.9, 0.79, 0.7, with Poisson's ratio v being nearly 1/2. 

In this paper, the plane-strain small-scale yielding near-tip fields under monotonically 
increasing mixed-mode loading with a fixed mode mixity at the remote elastic boundary are 
examined using finite element methods. The material is assumed to be an elastic perfectly 
plastic solid obeying the J2 flow theory. Attempts are made in elucidating the details of the 
limiting stress states near a crack tip, which will be referred to as the steady-stress states. Our 
accurate finite element computations show that, under the majority of mixed-mode loading 
conditions, the near-tip field contains an elastic sector but our near-tip field differs from that 
of Saka et al. [14] by one more (plastic) constant stress sector situated between the elastic 
sector and the neighbouring fan sector for Poisson's ratio being 0.3 and 0.495 ( ~  1/2). The 
asymptotic near-tip fields appropriate for elastic perfectly plastic solids are assembled and 
are shown to be in excellent agreement with the finite element results for a whole spectrum 
of mixed-mode loadings. The near-tip fields for plane stress will be discussed in a subsequent 
article [15]. 

2. Finite element analysis 

2.1. Computat ional  model  

We consider a crack in a solid of elastic perfectly plastic material with the coordinate systems 
depicted in Fig. 1; the Cartesian coordinates x 1 and x2 and the polar coordinates r and 0 are 
centered at the tip. The mixed-mode small-scale yielding problem was modelled by consider- 
ing the crack in a circular domain of radius r0 as shown. The circular domain was entirely 
discretized by finite elements. In the immediate crack-tip region we used a ring of 40 
wedge-shaped elements of size r~. We used collapsed nodes to simulate the 1/r singularity in 
strain at the tip. The crack-tip elements are equally distributed from - ~ to ~ and surrounded 
by 24 circular strips of elements generated by a logarithmic scale in the r direction. The entire 
model consists of 1000 isoparametric elements. 

The displacements due to the leading singular terms of the linear elastic asymptotic 
solution of the crack-tip field, 

1 
. / +  (Kll-li(O , "l~) I "~- Klll-li(O , I))II) ,  i = 1, 2, (1) 

ui - 2G xl zrc 

are specified as the boundary conditions at the outermost boundary r = r0 of  the domain. 
Here, G represents the shear modulus, v represents the Poisson ratio, K~ and K n denote the 
mode I and mode II stress intensity factors of the far-field, and ~i(0, v) x and ~i(0, v) n are the 
dimensionless displacement functions associated with the elastic singularity and depend only 
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Fig. 1. A finite e l e m e n t  m o d e l  a n d  the  c o o r d i n a t e  c o n v e n t i o n s .  

on the orientation 0 for a given elastic material. The loading was applied through the stress 
intensity factors, K~ and Kn, which are the amplitude factors in (1). The relative composition 
of K~ and K n was controlled through a mixity factor M ~" defined as [5] 

M e = - a r c t a n  
O'r0 ( r  , 0 0 )  

2 
-- - a r c t a n  - -  , (2) 

7"C 1 

where the magnitude of M e ranges from 0 to 1, with M e = 0 for pure mode II, and M e = 1 
for pure mode I. 

The types of elements used were eight-node serendipity elements and nine-node Lagrangian 
elements. To relieve artificial mesh-locking that occurs for nearly incompressible materials 
in plane-strain, we performed a number of numerical experiments on a DEN specimen [16]. 
The limit load was clearly observed with the eight-node elements using reduced integration 
and with nine-node elements using the/?-method proposed by Hughs [17]. Due to a large 
saving of the CPU time, the majority of the numerical results reported here were obtained 
with eight-node elements using reduced integration, unless otherwise specifically stated. 

To test the accuracy of  the mesh, we carried out several elastic plastic calculations using 
fine and coarse meshes. The numerical tests indicated that the results are essentially the same. 
In order to gain a complete picture of the crack-tip fields we feel that it is necessary to 
investigate the stress field deeply inside the plastic zone. Therefore, we leave the relative 
crack-tip element size ri/r 0 as a variable, typically ranging from 10 -I2 to 10 -4  for this 
investigation. 
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2.2. Numerical procedure 

The material is modelled here as an elastic perfectly plastic solid. A small-strain incremental 
plasticity theory was employed with the ttuber-Von Mises yield condition and the associated 
flow rule. A displacement-based finite element method with an iterative procedure based on 
the modified Newton-Raphson method was used in the analysis. The finite element equations 
were derived from the principle of virtual work. At a time t + At, this takes the form 

I~ a,j(t + At)fls~i dA = f,,A T~(t + At)flu, dS, (3) 

where aij(t + At) represents the Cauchy stress tensor, which satisfies the equilibrium con- 
ditions at time t + At, and T,.(t + At) is the imposed traction vector on the boundary 0A 
of the domain A. In addition, flui represents the virtual displacement field that vanishes on 
the part of the boundary where displacements are specified, and fls!j is the associated 
small-strain tensor. Here time is used as a convenient variable to represent different loading 
levels. Linearizing (3) with respect to the equilibrium configuration at time t and introducing 
the finite element approximation, we obtain the following incremental equilibrium equations 
in matrix notation: 

KrAU = F(t + At) - P(t), (4) 

where AU = U(t + At) - U(t) is the vector of incremental displacements at the nodal 
points, K r = ~ BTDB dA is the tangent stiffness matrix corresponding to the configuration 
at time t (B is the strain-displacement matrix and D the material constitutive matrix of the 
elastic plastic material), F(t + At) is the vector of applied external loads at time t + At, and 
P(t) = ~ B  a(t) dA is the equivalent force vector of the element stresses at time t. 

The loading was applied through the mode I and mode II stress intensity factors, which 
enter the far-field displacement boundary conditions (1). The remote load intensity can be 
expressed in terms of the well-known J integral [3] as 

1 - -  V 2 

J - - - ( K ~  ÷ Ku) , (5) 
E 

in order to facilitate the subsequent discussions. A small initial load (small J )  is applied so 
that all elements remain elastic. J is then scaled to cause incipient yielding at a crack-tip 
element where the stresses are the highest. At this point the value of J is denoted as J0. The 
load is then incrementally increased by a fraction of J0. An iterative Newton-Raphson 
procedure is employed in solving the incremental equilibrium equations (4) for each load 
increment, such that for the kth equilibrium iteration at time t ÷ At, the Euclidean norm 

AR k = F(t + At) - Pk-l(t  + At) (6) 

satisfies 

ItaR ~ II 
- -  <. T O L ,  (7) 

IIe H 
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where the TOL is a small preset tolerance. For the problems considered here, the TOL must 
be carefully controlled in order to obtain accurate crack-tip stress fields. Common tolerance 
settings are not good enough, and our numerical experiments show that much smaller TOL 
is needed as ri/r o becomes small. For instance, TOL = 10 -8 was used for r:/r o = 10 -~l, and 
TOL = 10 5 for r:/ro = 10 -4. It is important that the stress evaluation, which can be written 
a s  

cr~(t + At) = a~/(t) + J~,ij(,) D~/~: dekl, (8) 

is performed by integrating from the values of the last accepted equilibrium state to the 
current state of iteration k, so that the final results are not affected by the errors introduced 
in the intermediate iterations [18]. The incremental processes are continued until a steady 
stress state at the crack tip is observed. At all times the maximum extent of the plastic zone 
around the crack tip is smaller than 1/30 of r 0 to preserve the small-scale yielding conditions. 
For the results reported here, Poisson's ratio v is taken as 0.3, and the ratio of Young's 
modulus E to the tensile yield stress a0, E/so, as 500. 

2.3. Numerical results 

2.3.1. Pure mode I 
In the case of elastic perfectly plastic isotropic materials under mode I loading, Rice [3] 
proposed the Prandtl slip-line field as the near-tip field under small-scale yielding conditions. 
The solid lines in Fig. 2a show the crack-tip stress field according to the Prandtl field; the 
symbols are the FEM results taken directly from the Gauss quadrature points in the 
immediate vicinity of the crack tip at r/r: . . . .  ~ 10 2, after the steady stress state had been 
observed. Here, rp,ma~ represents the maximum extent of the plastic zone from the crack tip. 
In this figure, a,.r, 0-r0, and a00 are the polar coordinate representations of the stress com- 
ponents, and <~ is the effective stress. Note that the stress components shown in all figures 
in this paper are normalized by the yield stress o- 0. The stress field obtained from the FEM 
analysis is exactly as predicted by the Prandtl solution. Of course, this has been verified by 
Levy et al. [12]. We include this case here for completeness. 

2.3.2. Pure mode H 
For mode II, both our numerical results and the slip-line solution given by Hutchinson [2] 
are shown in Fig. 2b. To our best knowledge, this is the first finite element solution of its 
kind. The slip-line stress field is indeed achieved at the crack tip, and the finite element results 
at r/r r . . . . .  ~ 10 2, without using any smoothing techniques, coincide precisely with the 
slip-line solution. Special attention should be directed to this case. The numerical results 
shown in Fig. 2b were obtained at the 40th load increment. The exact same solution, 
plastically deformed all around the crack tip, had been observed after 25 load increments, 
and for the subsequent loading the stress field remained the same. No elastic sectors around 
the crack tip were identified, in contrast to the proposed mode Ii solution with two elastic 
sectors by Nemat-Nasser and Obata [11]. 

2.3.3. Mixed-modes 
The crack-tip stress fields at r/rp . . . .  ,~, 10 . 2  corresponding to three combinations of K~ and 
KI~ of the far-field (M e = 0.84, 0.7, and 0.54) are shown in Fig. 3 (only every other data point 
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Fig. 2. Compar i sons  between the F E M  results at  r/rp . . . .  ~ 10 -2 and  the slip-line solutions: (a) mode I, (b) 
mode  II. 

is plotted for clarity). The stress field in all cases contain no discontinuity of  the radial stress 
art, in contrast to the slip-line solutions proposed by Shih [5] where the solutions were 
constructed with the assumption that the material surrounding the crack tip is fully yielded. 
It is noted that  ~ is less than 1 in a part of  0 > 0 in the neighbourhood of  the upper surface 
of  the crack. In addition, a constant stress sector neighbouring the elastic sector can be 
identified. This constant stress sector connected the elastic sector and a fan sector (charac- 
terized by art = a00)- This finding differs from the stress fields presented by Saka et al. [14]. 
Similar computat ional  results are also obtained for v = 0.495 ~ 1/2. These results indicate 
that the stress distributions do not change noticeably as v is varied. 
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Fig.  3. Angular  variations of  the normalized stresses at r/rp ....... ~ 10 -2 under mixed-mode loadings: (a) M" = 0.84, 
(b) M" = 0.7, and (c) M ~' = 0.54. 
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These results were obtained along the very first ring of the Gauss quadrature points of the 
crack-tip elements with ri/r o ~ 10 4. Before we generalize the findings and the correspond- 
ing stress fields as appropriate representations of the crack-tip stress fields as r --+ 0, we 
further probed the stress fields more closely to the crack tip. This time we used ri/r o ~ 10- ~ 
with 28 elements in the 0 direction and 35 in the r direction. This numerical experiment with 
such a small crack-tip element size allowed us to pursue the mathematical structure of the 
crack-tip fields. This model also enabled us to impose the remote loading to the highest 
possible level without violating the small-scale yielding assumption. 

The stress fields at two widely separated load levels, measured by J/J• ,  are shown in 
Fig. 4 for M ~ = 0.84. The stress field at r/rp,~a ~ ~ 2.5 x 10 3 shown in Fig. 4a was obtained 
at J/J• = 167 long after a steady stress state at the tip was observed. It clearly gives the same 
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Fig. 4. C o m p a r i s o n s  o f  the  crack-t ip stress fields at two widely separa ted  load levels for M ~" = 0.84 with a crack-t ip 
e lement  size ofri /ro ,,~ 10-H: (a) J/J• = 167 (r/rp ...... ,,~ 2.5 × 10-3), (b) J/J• = 621 (r/% . . . .  ~ 6.7 x 10-4). 
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stress field as shown in Fig. 3a, where r / r  o ~ 10 -4 was used. To  examine the effect of  load 

intensities, the incremental  process was cont inued to a very high load level. The stress field 
subjected to J/Jo = 621 r/rp ..... ,~ 6.7 x 10 -4 is shown in Fig. 4b. When  we compare  

Figs. 4a and 4b, there is no noticeable difference in the stress fields: all the stress components 
are continuous,  and an elastic sector exists. 

In Figs. 5a and 5b, we plot  the normal ized stresses with respect to the normalized radial 

distance from the crack tip (r/rp) in a logarithmic scale along two radial lines for the case of 
M ~ = 0.84 at the highest load level permit ted by our  computa t iona l  facilities. One radial line 
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is within the elastic sector at 0 = 138.7 °, and the other is well inside the plastically deformed 
region at 0 = 10.2 °. Note that rp represents the plastic zone size at 0 = 0. In both figures, 
we see that for r/r; > 1, the straight line distributions of  the normalized stresses as functions 
of  the normalized radial distance have a slope of exactly - 1/2 and clearly indicate the r-  ~/= 
singularity as it must  be in the elastic K-field. As r/rp approaches 1, the magnitude of  the 
slope decreases. As r/rp decreases from 1, the slope of  these lines becomes exactly zero well 
inside the plastically deformed region (Fig. 5b) and becomes approximately zero within the 
elastic sector (Fig. 5a). 

Similar results to those shown in Figs. 5a and 5b are also observed for M ~ = 0.__7 and 0..54. 
This indicates that the stresses are nonsingular within both the plastic sectors and the elastic 
sector. Therefore, the trend indicates that the stress field at smaller r/rp would be the same 
as those presented in Fig. 3, and that the stress fields shown in Fig. 3 may be taken as the 
correct representations of  the small-scale yielding mixed-mode near-tip stress fields as r ~ 0. 

3. Asymptotic near-tip fields 

3.1. Equilibrium equations 

In this and subsequent sections, we intend to seek a near-tip solution in which all the stresses 
are continuous. With reference to the polar coordinates (see Fig. 1), the equilibrium equa- 
tions can be written as 

~Grr 1 (~GrO (Trr - -  (7"00 + - - -  + - 0, (9) 
0r r ~30 r 

1 ~O'O0 (~arO 20-r0 
7 ~ -  + W + r - O. (10) 

Rice [3, 20] analyzed the stress state aij = o-ij(0) as r --, 0 at the tip of  a stationary and a 
growing crack in an elastic perfectly plastic solid. He argued that since the stress at the tip 
must be bounded, terms of  the form r(Oa~j/c~r) in the equilibrium equations must vanish as 
r --, 0. Hence (9) and (10) reduce to the two ordinary differential equations: 

da,0 
a, . , . -  aoo + dO - 0, (11) 

daoo 
2a,.0 + dO - 0. (12) 

3.2. Yield criterion 

Following the development of  Rice [19], we write the Jz yield condition as 

o~(G,~) = ~ s i i s ~ j -  ~ = O, (13) 
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where st~ is the deviatoric part of a~i. The differential form of the yield condition, as r 
approaches 0, is 

do-i/ _ 0. (14) 
si/ dO 

Under plane-strain conditions, (14), in combination with the equilibrium equations, (11) and 
(12), gives 

d(o-ii ÷ 022) d0"33 
dO Srr ÷ ~ S33 = 0 .  (15) 

3.3. Plastically deformed region 

Within the context of the small-strain approach, the strain rate tensor is defined as the 
symmetric part of the velocity gradients: 

s(/ = i ~ + 8x,)" (16) 

For elastic plastic materials, the strain rate tensor can be decomposed into the elastic part 
~e i and the plastic part ~P: 

~/ = ~. + ~P. (17) 

The elastic part, ~., is given by 

~,: = ~ jk ,  a . .  (18) 

where M,/k t is the elastic compliance tensor. The plastic strain rate ~,P/is given by 

~P/ = J~s~i, (19) 

where )~ is a proportional constant. The plane-strain condition requires 

833 = 8~3 Jr- 8P3 • M33klGkl Jr- 8P3 = 0 .  (20) 

Since in-plane components of ~P can develop singularities at the crack tip, while the plastic 
strain in the z-direction is bounded (since the total strain in the z direction and its elastic 
portion are bounded), it is evident that 

, 0 ,  ~,fl = 1,2 (21) 
"P -p 
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as r ---, 0. As a result, from the normality flow rule (19) we have s33 = 0 at r ~ 0. It then 
follows that the yield condition (13) reduces to 

(0.00 - 0.r,) 2 0.2 
+ G -- (22) 

4 3 '  

and that (15) becomes 

d(0.11 + 0-22 ) 
dO s,. = 0. (23) 

Equation (23) leads to the following forms of the solutions within the plastic region at the 
crack tip: 

(i) Constant  stress sectors, in which stresses 0.H, 0-22, and 0.12 (referred to the Cartesian 
coordinates) are independent of  O, i.e., 

O"11 = constant, 

0.22 = constant, 

0.12 = constant, 

where the constants are chosen to satisfy the yield condition and other boundary conditions. 
(ii) Centered fan sectors, in which Srr = 0, and 

0.tO ~ -~- TO, 

G~ = 0.00 = constant  +_ 2~00 , 

where r0 is the yield stress in shear. 

3.4. Elastically deformed region 

As seen in the finite element results, it seems reasonable to admit the existence of an elastic 
region around the crack tip and to assume that  the stresses in the elastic region are 
nonsingular. For  the elastically deformed region, the compatibility equation in terms of 
stress components gives 

V2(Grr q- O'00 ) = 0, (24) 

where V 2 is the Laplace operator with respect to the polar coordinate system, i.e., 

0 2 1 c~ 1 0 2 
V2 - &.2 + -  + - - -  (25) 

r ~ r  r 2 (~0 2 '  
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and its corresponding asymptotic form for bounded stresses as r --, 0 is 

02 1 c~ 1 ~2 ) ~2 
r 2 ~ - - .  

~- ~ ~ q- ~ ~ 002 (26) 

Then, the compatibili ty equation (24) becomes an ordinary differential equation 

6 2 
dO ~ (a,.,. + a00 ) = 0. (27) 

Solving (11), (12), and (27), we can write the solutions for the stress components  in the 
following forms: 

a,-r = 2A + 2BO - 2 C c o s 2 0 -  2 D s i n 2 0 ,  (28) 

~oo = 2A + 2BO + 2 C c o s 2 0  + 2 D s i n 2 0 ,  (29) 

o-i. 0 - B + 2 C s i n 2 0 -  2 D c o s 2 0 .  (30) 

The integration constants A, B, C, and D are to be determined from the boundary conditions. 

3.5. As semb ly  o f  the crack-t ip solutions 

The possible crack-tip sectors categorized in the previous sections may be assembled in a 
manner that is consistent with the continuity of  o-,.r, o-,.0, and ~r00, since we seek a solution in 
which all the stresses are continuous. (Note that the traction continuity across a radial line 
emanating from the crack tip requires the continuity of  a0(~ and a,.0, but  not a/.,..) For  near 
mode I mixed-mode loadings, the appropriate form of  the solution suggested by the FEM 
results is shown in Fig. 6 where regions (1), (3), and (5) are the plastic constant  stress sectors; 
(2) and (4) the plastic fan sectors; and (6) the elastic sector. The continuity of  all the stresses 
requires that o-,.,., o-,.~, and ~00 are continuous along the boundaries between two adjacent 
sectors. In addition, the stresses in regions (1) and (6) must satisfy the boundary  conditions 
on the crack surfaces, 

o-00(±~) = o-,.0(±rc ) = 0. (31) 

The integration constants for the plastic and elastic regions are obtained by solving simul- 
taneously a system of  five equations. For  instance, for the elastic sector we have 

A - % [  7r cOS 204 COS (204 -- 05) 1 (32) 
2 sin205 + sin 05 ' 

"C o COS 2 0 4  

B - 2 sin205 (33) 
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O. 

-37r 
0 1 - -  4 

--71" 
02 - 4 t- 

7 r  

03 = ~ + ~  

Fig. 6. Assembly of the crack-tip solutions under mixed-mode loading. 

"C O COS (204 -- 05) 
C - 2 sin 05 ' (34) 

-c o cos 204 
D - 4 sin205 ' (35) 

where  0 4 and  05 sat isfy the fo l lowing  e q u a t i o n  

COS 204 COS (204 -- 05) 3re 
(05 -- ~) sin205 sin 05 = 1 + 44 -- 204 -k- ~ - .  (36) 

The  p a r a m e t e r  ~ is a func t ion  o f  the near-f ield mix i ty  p a r a m e t e r  M p, def ined by  Shih [5] in 
t e rms  o f  open ing  and  shear  stresses a h e a d  o f  the c rack  tip as 

2 E m OO r 0 m p = - -  a r c t an  . (37) 
rC ~ (rrO ( r , 0 
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Fig. 7. Relationship between the near-field plastic mixity M p and the far-field elastic mixity M e obtained from the 
current FEM analysis. 

For the slip-line field shown in Fig. 6, ~ and M p can be related as the following 

i 1 + r e -  24 + cos24 rc a rc t an [  - s i n 2 ~  1' i f - 4  ~ < ~ < 0 ;  
M p = (38) 

( 3~ ) ~ 1 
arctan 1 + ~-  + 4~ , if 4 2 ~< ~ ~< 4'  

For a given far-field mixity parameter M e, defined by (2), there exists a unique value of M p 

for our monotonically increasing proportional loading of/(1 and K~I. From the results of our 
finite element computations, the relationship between M p and M e is plotted in Fig. 7. 
Examining (36), we can identify two special cases: 

(i). ~ = 0. 
This is the case for M p = 1 (corresponding to mode I loading). From (36), we have 

3~  
04 = 05 - 4 (39) 

As a result, (32) through (35) become 

A = C -  z0 (40) 
2 '  

B = D - -  0.  ( 4 1 )  
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= o 

%) ½< <o 

1 

(d) ~ =  3re 1 
8 4 

Fig. 8. Typical asymptotic crack-tip fields under mixed-mode loading. 

T h e  elastic sec tor  (6) b e c o m e s  a plas t ic  c o n s t a n t  stress sector.  T h e  so lu t ion  c o r r e s p o n d s  to 
the P rand t l  field p r o p o s e d  by  Rice, as s h o w n  in Fig. 2a and  Fig. 8a. 

(ii). ~ = - r e / 4  - 1/2 

This  is the case for  M p = 2/re a r c t an  (~z/2 - 1) ~ 0.33. Then ,  f r o m  (36), we have  

rc 7c 3re 
04 ~---~, 05 ~- ~ or ~ -  (42) 

Again ,  

A = C -  % (43) 
2 

B = D = 0. (44) 



Plane-strain mixed-mOde.fields 259 

o~ 2 

El) 

N 

0 
z 0 

-1 
GrO 

, , , ,  i z , , , I , = , ~ 1 , , , ,  

J 

(b) Me= 0.70 
o o e  

Gr8 
- - 1  . . . .  I . . . .  I . . . .  I . . . .  

-180 - 9 0  0 90 
0 

~ (c) M~= 0.54 

180 -180 - 9 0  0 90 
O 

2 

180 

~e0 (d) Me= 0.16 

Gr8 
-1  

Oee 

- - 2  . . . .  I . . . .  I . . . .  ' 1  . . . .  

-180 - 9 0  0 90 180 -180 - 9 0  0 90 180 
8 8 

Fig. 9. C o m p a r i s o n s  between the F E M  results at r/rp ...... ~ 10 -2 and  the current  asympto t ic  solutions:  (a) M" = 

0.84, (b) M" = 0.7, (c) M e = 0.54, and  (d) M" = 0. 

As in case (i), the elastic sector (6) becomes a plastic constant stress sector. Plastic yielding 
occurs at all angles around the crack tip. The corresponding slip-line field is shown in 
Fig. 8c. Motivated by this development, we performed another finite element calculation 
using the corresponding far-field mixity parameter M ~ = 0. l 6. The stress fields obtained at 
r/rp ..... ~, 10 2 using the FEM and the slip-line solution are both shown in Fig. 9d. Indeed, 
plastic yielding all around the crack tip is achieved, and FEM results yield the slip-line 
solution exactly. 

For  -3rc/8 - 1/4 ~< ~ < - re /4  - l/2, a fan sector develops between regions (5) 
and (6). All the sectors are plastic. The pure mode II case is shown in Fig. 8d [2]. For  
- ~ / 4  - 1/2 < ~ < 0, according to (36), region (6), however, remains as an elastic sector 
(Fig. 8b). 

These observations are verified by the FEM solutions at r/t), ..... ~, 10 --~ shown in Fig. 9 
for M e = 0.84, 0.7, 0.54, and 0.16. The solid lines are from the current asymptotic solutions, 
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in which 05 is undetermined from the above analysis for - re/4 - 1/2 < ~ < 0 and the value 
of 05 from the FEM solutions is used instead (note that the value of 05 of the near-tip field 
for a given elastic mixity does not change noticeably as v was varied; this indicates that the 
value of 05 is dominantly determined by material plasticity). The symbols represent the FEM 
results obtained directly from the Gauss quadrature points of the crack-tip elements. No 
smoothing techniques were used in any manner. Excellent agreement between the numerical 
results and the asymptotic solutions is evident. Note that the range of  remote mixed-mode 
loading gives a near-tip field with an elastic sector as shown in Fig. 8b and is quite large 
(ranging between M e = 0.16 and 1). 

4. D i s c u s s i o n  

As noted in Section 2.3 for the case of M e = 0.84, the stresses level off within the elastic 
sector as r/rp approaches 1, and the slope is approximately zero within the region r/r; < 1. 
This is also true for several other mixed-mode cases. Therefore, the asumption that the stress 
components are not singular in arriving at (28-30) is justified. 

If we start with a certain small crack-tip element size, ri/ro, and further decrease it, the 
same steady stress fields result as the remote K field increases. After the remote K field 
reaches a certain level, further increases in the remote loading cause no noticeable increases 
in the stress components in the elastic sector, as well as in all the plastic sectors. If plastic 
yielding at all angles around the crack tip is not impossible, we can at least say that within 
the length scale and the loading intensity of our investigation, it seems difficult to obtain 
fully-yielded crack-tip fields under certain combinations of mode I and mode II loading. The 
existence of elastic sectors may suggest fundamental differences between the non-hardening 
limit of the power-law hardening solutions and the elastic perfectly plastic solutions. There 
are indeed no real reasons why they should match: the governing equations (asymptotic 
forms) for power-law hardening materials are elliptic, whereas the governing equations in the 
plastically deformed region for elastic perfectly plastic materials are hyperbolic, and they are 
problems of two different classes. 

From this study it is clear that proper numerical conditionings have to be imposed in the 
analysis of asymptotic crack-tip fields to ensure the validity of the small-scale yielding 
assumption, under which meaningful stead-state near-tip fields can be numerically extracted. 
We define rp .... as the maximum extent of the plastic zone (not necessarily occurring at 
0 = 0). When we plotted the mixity factor M p of the near-tip stress field as a function of 
rp . . . .  /ri and J/Jo, we found that the mixity factor M p reaches a steady value at certain values 
of  rp .... /ri and J/Jo. Further, when we plotted the plastic zones in the normalized coordinates, 
we found that beyond certain values of rp .... /r~ and J/Jo, the sizes and the shapes of the plastic 
zones do not change. Therefore, we may suggest that the fully developed plastic zone be 
approximately characterized by the parameter 

rp . . . .  ~ lO 2, (45)  
ri 

and in terms of remote loading, 

J 
- -  ~ 102, (46)  
J0 
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according to the numerical analyses for all cases of  mixed-mode loading. From this point 
on, since the small-scale yielding condition requires that rp . . . .  /r o be small, our numerical 
results show that the self-similarity of  the solution can be clearly observed with the upper limit 

rp . . . .  ,~ 10- 2. (47) 
ro  

This appears to suggest an upper limit of the crack tip element size as rs/r o "~ 10 -4 for elastic 
perfectly plastic materials under small-scale yielding conditions. 
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Fig. 10. P l a s t i c  z o n e s  p l o t t e d  in t h e  n o r m a l i z e d  c o o r d i n a t e s  b y  JE#r~: (a)  M" = 1, (b )  M ~̀ = 0 .84 ,  (c) M '+ = 0 .7 ,  

(d)  M "  = 0 .54 ,  (e) M "  = 0 .16 ,  a n d  ( f )  M "  = 0. 
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The normalized plastic zones are shown in Fig. 10 from the current FEM analysis for pure 
mode I, pure mode II, and different combinations of remote mixed-mode loadings. A point 
in the figures represents a Gauss quadrature point in plastic state. The plastic zone sizes are 
consistently scaled by the self-similar parameter JE/cr~ for all the cases, regardless of the 
remote loading levels. The sizes and the shapes of the plastic zone for elastic perfectly plastic 
solids are close to those solutions obtained for the power-law hardening material with 
n = 13 obtained by Shih [4], even though an elastic sector exists for near mode I mixed-mode 
loading. For all combinations of the remote mixed-mode loadings, the relationship between 
the near-field mixity parameter M p and the far-field mixity parameter M e for elastic perfectly 
plastic solids under the proportional loading of KI and K~I (see Fig. 7) appears to be well 
bounded by the relationship extrapolated from the power-law hardening solutions by Shih 
[5]. 
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