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Abstract. An 'incremental form' of anisotropic damage constitutive equation is proposed both for brittle and ductile 
materials. Based on the concept of irreversible thermodynamics that damage processes are history independent coupled 
with irreversible energy dissipation, two types of definition for damage representation are established, known as damage 
tensor D and damage strain tensor nd, to describe constitutive responses of damaged materials. A state variable coupled 
with damage and other observable state variables, i.e. ha, is formulated separately from other internal variables and 
defined as an equivalent damage variable. A constitutive relation due to damage is finally formulated by introducing 
'damage flow potential function' employing the theory of irreducible integrity bases. A clear physical representation 
based on theoretical foundations and rigorous mathematical arguments of the conventional damage models defined in 
terms of 'damage effect tensor M(D)' is also elucidated. Validity of the proposed model is verified by comparing with 
the formulations of conventional damage effect tensor. A plastic potential function coupled with damage is also 
introduced by employing the anisotropic plastic flow theory, so that the proposed damage model can be applied to 
characterize a wide range of damage problems of practical engineering interest. 

1. Introduction 

Experimental evidence has revealed that the phenomena of material degradation are induced 
by microdefects such as microcracks, microvoids and cavities, etc. (Murakami [1]). In addition, 

this material degradation even exhibits to some extent the changes of material macroscale 

characters, i.e. stiffness and hardness reduction or residual life decrease associated with 
irreversible thermodynamic processes. To rationally describe these behaviors and then to 

precisely predict the remainder life or strength of a material element is one of the most lively 
research areas in recent solid mechanics development. However, due to complex and random 

material microstructures, to characterize the material behavior precisely in microscale would 
require detailed knowledge of all microstructures in that material, thus rendering the problem 
too complex for engineering applications. One way to overcome this difficulty is the concept of 

damage mechanics (DM) inaugurated by Kachanov [2] and advocated subsequently by 

Lemaitre [3] and Lemaitre and Chaboche [4] etc. The essential idea and advantage of DM are 
to summarize the effects of microdefects in a material element with the changes of macroscale 

internal variables, called damage variables, based on the concept of a local volume average with 
statistical homogeneity by ignoring the microstructure details. 

It is well accepted that the effects of damage on materials are manifested in changes in 

material stiffness or some equivalent parameters and these changes in macroscale can usually 

be measured by conventional standard experimentation using laboratory-size specimens. 
Different damage models have been formulated in the past based on the method known as the 
macro-mechanics approach due to Krajcinovic [5], Lemaitre [6], Murakami [7] and Chaboche 
[8-9] etc. Among them, a very important  damage concept is the introduction of effective stress 
and effective stiffness, proposed initially by Lemaitre [3] and Sidoroff [10] and can be simply 
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represented respectively as 

= M(D): a (1.1) 

and 

E(D) = [M(D)] - ~' r : E : [M(D)] - ~, (1.2) 

where M(D) denotes damage effect tensor; ~ and F; are effective stress and effective stiffness, 
respectively. This type of damage concept has been successfully employed to solve a number of 
practical problems, including the assessment of life expectancy and the prediction of crack 
initiation by Kachanov [11] and Chow and Wang [12-15]. However the physical meaning of 
tensor M(D), especially for the component of Mij(i # j )  when anisotropic damage problems 
are considered, has not been successfully interpreted physically or even fully understood. 
Moreover, according to later discussion in Section 2, this damage definition has in reality 
imposed a very strong restriction on the damage problems, and thus, has limited its applicabil- 
ity, e.g. the uni-axial crack damage problems. In order to surmount the restrictions imposed 
on the conventional damage model, a new alternative damage characterization is proposed in 
Sections 2 and 3. The incremental form of damage-stress relations based on the new damage 
characterization is derived such that the damage model can be discretized to perform finite 
element analysis for the solution of not only proportional but also non-proportional loading 
problems. Our effort is also focused on providing a physical representation of damage as an 
infinitesimal deforming process in Section 3. Several example cases are examined and then 
compared with those derived from the conventional damage models to demonstrate the 
validity of the proposed concept in Section 4. In Section 5, a coupled plastic potential function 
with damage variables is also presented and discussed. 

2. On the damage representation 

Broadly speaking, there are two major types of damage model, each developed based on its 
different physical interpretations of the mechanism of damage. One such damage model 
monitors state variable changes at macro-scale level by means of damage variables and may be 
known as a macro-damage model. Its essential hypothesis is that damage can be viewed as a 
macroscopic state variable by ignoring the micro-detail in the material element. This concept 
was first introduced by Kachanov in 1958 in the analysis of creep and fatigue problems [2], and 
later extended by Lemaitre and Chaboche [3, 4] who proposed the concept of 'effective strain' 
defined for isotropic damage as 

- - -  (2.1) 
(1 - D) 

where D is a scalar damage variable and ~ represents effective stress tensor. Since many 
damaged materials often exhibit anisotropic characters even if their initial property is isotropic, 
this expression of effective stress has been extended to a generalized tensorial form by Sidoroff 
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[10] based on the concept of elastic energy equivalence. When the principle axes (x1, x2, x3) of 
stress coincide with the damage variable principle directions, (2.1) becomes 

8 = M(D):a, (2.2) 

where the Voigt notation is adopted 

G = (0"1, 0"2, 0-3); 8 = (81, 82, 83) (2.3) 

and M(D) defined as 'damage effect tensor (DET)' is expressed as 

11 1 i - D 1 1 ( 2 . 4 )  
M ( D )  = 1 - D 2 I " 

1 - D 3 

Recently, this formulation of M(D) has been further developed in a number of generalized forms 
[1, 7, 12-14]. The validity of the DET formulations due to Chow and his co-workers has been 
checked experimentally as well as its applicability to solve a number of crack initial and 
propagation problems [12-16]. 

Based on the assumption of strain energy equivalence, the effective compliance can be 
represented according to the definition of M(D) as [10, 13] 

g(D) = MT(D) : S :M(D). (2.5) 

From the point of material science, the material deterioration in the process of deformation 
or/and damage initiation, growth and coalescence is entirely determined by material microstruc- 
tural rearrangements as a form of thermodynamic irreversible process. Thus, the exact analytical 
expression of damaged material stiffness g(D) as well as the damage effect tensor M(D) should 
be unique in the characterization of a particular material and its associated damage entities. As 
mentioned before, there are various formulations of DET for the characterization of a material 
and its damage entities. This unfortunate state of affairs is largely attributed to the arbitrariness 
of each formulation without sound fundamental and theoretical arguments. This arbitrariness 
results primarly from the lack of physical interpretation and representation of DET, especially 
for the components of Mu(i ~ j). On the other hand, the damage variables defined based on the 
effective stress and/or the effective compliance, are imposed with a particular restriction which, 
as indicated in (2.12) and (2.5) dictates the formulation of the damage effects on the material 
properties. For example, consider a particular damage entity for which the component D2 
vanishes, i.e. a uni-axial damage system developed in continuous fiber reinforced laminated 
materials due to matrix-cracking. Then according to (2.5) for plane stress problems, the effective 
Young's modulus is 

(1 - D 1 )  2 ( 2 . 6 )  
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and effective Poisson's ratio is 

[212 
/~12 - (1 - o)~,' (2.7) 

From simple tensile test for laminate materials, it has been observed that the above relations 
violate experimental results, i.e. reduction of Poisson's ratio is much larger than that of Young's 
modulus rather than lower as indicated in (2.6) and (2.7) [17]. 

Another major type of damage model is advocated by Vakulenko and Kachanov [18], 
Krajcinovic and Fonseka [19], Talreja [20] and Allen [21-1 and directly formulates the damage 
variables based on micro-discontinuity of some state variables such as micro-displacement or 
other micro-structural irreversible changes. We may identify this type of damage model as a 
micro- or mesco-scale damage model. Consider a representative volume V containing k damage 
entities such as cracks or crack-like defects. The damage variable is generally defined by 
statistical average of the volume as proposed in [18] 

1 bi" n~. ds(k), (2.8) 
Dij  = r (k) 

where ni is unit vector outward normal to the surface of a single representative entity; bj is a 
properly selected micro-discontinuous value, e.g. the micro-displacement of a point on s(k) due 
to damage entity according to Allen [21] and the extent and direction of some 'micro-influence' 
proposed by Talreja [20], while s(k) denotes the surface of the kth crack in the material volume 
in question. It is obvious that the advantage of this type of definition of damage variable is its 
clear physical representation of material damage. However in many published works some 
authors argued that the damage variable so defined is in reality associated with observable 
displacements of a material body, which does not consequently satisfy the basic assumptions of 
damage as an internal variable. Specifically, Murakami [1] pointed out that: 'although a plane 
crack bi = 0 (see (2.8)) surely induces a certain material damage, it does not make any 
contribution to D~j expressed in (2.8)'. Furthermore, the damage variable defined in terms of 
micro-displacement does not remain constant in reversible processes, say when a material 
element after a load application is completely unloaded, due to the inherent deficiency in 
definition of b~. 

Consider permanent micro-structure changes of a damaged material due to micro-cracks, 
micro-voids and other 'observable geometric shaped defects'. A second order tensoral represen- 
tation such as (2.8), expressed by D, can be found in many works. Similarly, we propose to 
modify the equation due to its lack of physical representation mentioned earlier, with the 
following general definition of damage tensor D as 

1 ~ Dk.dS(k) (2.9) D=V- .Js~K~ 

where 

D k = Dk(D k, gk, ~k(n ) . . . . .  V k, b k, Vkb a, V~V k, bkb k .... ) (2.10) 
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w h e r e  b k is defined as the residual micro-displacement vector at a point on s(k) between the two 
relative sides of the s(k)th crack when the damaged material is completely unloaded; V k 
represents the components of matrix crack area vector of s(k); D k and 9 k are the density of matrix 
cracks and the coefficient of crack geometry, respectively, while ctk(n) are the parameters due to 
the material secondary damage effects, such as the interaction between cracks, stress concentra- 
tion, etc. 

It is well-accepted that a damaged material often exhibits varying material symmetric 
properties, i.e. isotropic, transverse isotropic or orthotropic symmetry. In addition, these 
symmetric properties of damaged material are sufficiently determined by the damage variable 
coupled with its virgin properties of material. For ease of illustration, we confine our 
attention, similar to other conventional studies, on the orthotropic damaged materials, al- 
though, rigorously speaking, damaged materials often behave anisotropically. Furthermore, 
virgin materials considered in this paper are assumed as isotropic ones. Since the damage 
variable defined as an internal state variable which can completely characterize the irrevers- 
ible material structure changes, it is consequently reasonable to assume that the damage 
tensor has the same symmetric property as the damaged material, i.e. orthotropic symmetry 
under the preferred directional coordinate system. However, it should be noted that the 
preferred directions of a virgin orthotropic material do not generally coincide with the 
principle axes of damage variable, so the eventual preferred directions of a damaged material 
are determined by both the virgin and damage variable principle axes rather than by damage 
alone. 

Mathematically, the symmetry of damage variable may be expressed in terms of correspond- 
ing orthogonal transformations in its material preferred coordinates system X(Xl,  X2,X3). 
Without loss of generality, if the three mutually perpendicular unit vectors, (el, e2, e3) are the 
preferred directions of the damaged material, the associated transformations, R1, R2 and R3 in 
(el, e2, e3) coordinate system for its orthotropic symmetry, e.g. Rhombic-dipyramidal, may be 
presented as 

R 1 = diag(1, - 1, - 1); R2 = d iag(-  1, 1, - 1); 

R 3 = d iag(-  1, - 1, 1). (2.11) 

Substitute the above into (2.10) and take into account a second order approximation. The 
individual first order terms of b k and V k vanish due to the orthotropic symmetry. In addition, 
the coefficients akj, bi k and ci k, which are damage coefficients dependent on D k, O k and ~k(n), are 
also reduced to zero for i # j. Therefore, with the initial condition that D = 0, when V = 0, the 
damage variable can be approximated by 

Dig = k . k , k ,  k , k .  k ° aij V1 Vj 3ii + bi; Vt bj gig, (no summation on i and j). (2.12) 

(2.12) may be alternatively expressed as 

o12 o13-] 
D =  D22 D23 / • (2.13) 

! 
D~3d 
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Similarly, for isotropic damage problems, two additional transformations Ro and Ro are 
satisfied, where Ro and R~ represent a rotation about xl and x3, respectively. This results in 
D]I = Dk2 = D k 3  = D in (2.14), and damage D is thus reduced to 

O = D.diag(1, 1, 1) (2.14) 

which is equivalent to a scalar damage variable for isotropic damage as in the conventional 
damage models. 

On the other hand, not all the material deterioration can be summarized by the proposed 
damage tensor, such as internal friction, dislocation movement etc. In fact, when the damage 
tensor D vanishes, the material internal friction may also lead to the reduction and degradation 
of material macro-properties, e.g. stiffness, especially for fatigue problems. Furthermore, these 
damage entities generally behave without any significantly 'preferred' directions, or displaying 
isotropic property. A brief review from the existing literature reveals that the internal variables, 
i.e. o9, a, etc., are associated with these types of damage. In this paper, we also define them as 
damage variables and name ~o as 'overall damage' to characterize the 'isotropic' damage entities 
and its coupled effects with damage tensor D. 

3. Brittle anisotropic damage 

The constitutive responses of damaged material are related to irreversible thermodynamic 
processes involving some material macro-property changes, such as stiffness reduction or/and 
energy dissipation. According to the assumptions (ii) and (iii) mentioned above, such irreversible 
thermodynamic processes can be described by a sequence of constrained equilibrium states 
corresponding to the instantaneous values of internal variables (damage variable), which is 
history and process independent. 

From the above assumptions, we may decompose the description of material deformation. 
Consider an infinitesimal deformation process in a material element coupled with damage 
entity. A reference configuration Xt of a damaged material body at time t and represented as 
Xt(tr, e,, D), see Fig. 1, where D represents the damage variable proposed in Section 2. The 
deformation to be examined is defined as a state change from Xt to Xt+dt(a + da, ~ + de,, 
D + dD). Suppose a reference middle-state is X't(a + da, e, + d~:, D), which suffers no damage 
change from the process Xt  to X't and thus no energy dissipation is involved. As illustrated in 
Fig. 1, the displacement fields according to the deforming processes may be represented 
separately as 

Xt to Xt+,~t: du = OP' - OP, (3.1) 

Xt to X~: d ~ = O P - O P  (3.2) 

and 

X't to Xt+d,: d u d = O P ' - O P .  (3.3) 
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Fig. t. Illustration of deformation processes due to damage. 
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Therefore, from the deformation theory, we have 

dg = dg + dn a, (3.4) 

where dn, d~ and dn d are strain tensors determined by du, d~ and du d, respectively. Without loss 
of generality, for brittle materials, d~ is an increment of current elastic strain tensor; d~ is defined 
as an increment of partial elastic strain tensor at constant damage state D and d~, an increment 
of damage strain tensor. The corresponding displacement fields du, d~ and du d are known as 
increment of current, partial and damage displacement fields, respectively. It should be 
emphasized that the effects of damage on the properties of deformed material may thus be 
entirely characterized by ~d. 

From (3.4) and without loss of generality, the increment of stress may be readily given as 

da = E ( D ,  co) : dg - E ( D ,  co) : dn d, (3.5) 

where E(D, oJ) is the equivalent stiffness with damage D and the overall damage u. A clear 
geometrical explanation of (3.5) may be found in Fig. 2, where A C  = de n, HG = da and A B  = de. 

From the point of continuum irreversible thermodynamics, the law of physical damage 
process for a material undergoing progressive deterioration, i.e. micro-cracking, is generally 
known as the conservation of energy (first law) and the production of entropy (second law). With 
our attention confined to the purely mechanical deformation processes with quasi-static damage 
growth, the first taw of thermodynamics requires that 

d W  = d W  e + d W  d, (3.6) 
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Fig. 2. Illustration of deformation from Xt to X1+dt for damaged materials. 

where d W  = a:dn represents the increment of work of applied load, d W  e and d W  a denote the 
increment of material elastic strain energy and the dissipative work done on damage nucleation 
and propagation, respectively. Consider the elastic energy graphically illustrated in Fig. 2 as the 

area of O A E  

W e = area(OAE) = ½a: ~. (3.7) 

Then the increment of elastic energy d W  e is derived as 

d W  e = area(OA'O') = ½(da:n + a:dn) 

= n:E(D, o):de - ½e:E(D, co): dn a, (3.8) 

where da is given by (3.5) 
Conventionally, the form of free energy function • is often formulated in conjunction with the 

material elastic energy. However, an exact expression of • may sometimes be very difficult to 

obtain analytically. Instead of directly defining the free-energy function 0, we introduce an 
alternative definition in incremental form. From (3.8), an incremental form of free-energy 

potential • is considered as 

dO(t, ~a, D, o9, t) = d W  e + d(01(to)) 

8 0 .  d~ 8 0  
= 8,~" + ~e d:d~a + d(Ol(•))) = tr:d~ - aa:d~ a + d(Ol(o)) 

= g:E(D, ~o):de - ½e:E(D, o) :de  e + d(O1(¢o)), (3.9) 
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dO dO 
a = c~- = E(D, m):e; a e - - ½E(D, og):e; (3.10a) 

0e d 

dO 
B1 - ~o  - -O'x(e~). (3.10b) 

Note that • is a hidden function of damage D as shown in (3.8). From (3.6), (3.8) and (3.9), the 
second law of thermodynamics takes the form 

aa:de  a + B l "do9  >~ 0 (3.11) 

which indicates that a d is the associated variable of nd. 

On the other hand, based on the conventional argument of elastic energy as well as the free 

energy function for damaged materials, • can also be formulated in terms of associated elastic 
strain energy. However, the effective stiffness ~ is often assumed to be determined only by D as 
adopted in the conventional models. Accordingly, • may be given by 

• = W ~ + ~2  (¢o) = ½5: E(D, ~o): n + 02  (~o). 

Then from (3.12) 

d ~  = a :d~  - Y:dD - B ' & o ,  

(3.12) 

Y _ dO 1 . t~E(D, 09) 
d D -  ~e. ffD- :e (3.14) 

and B is completely expressed as the associated force of ~o 

t~O le .  dE(D, o) .  e , 
B - c~o9 - " t~e~ " - Oz (~o). (3.15) 

From (3.13) and (3.9), the Clausius-Duhem inequality becomes 

Y:dD + B ' & o  = a e : d ,  e + B l " d o  >~ O. (3.16) 

From the irreversible thermodynamics, a state variable is defined as an internal variable only if it 
is history independent. ~d, as shown in (3.4), is however associated with material deformation 
processes, and is thus a history-dependent variable coupled with the effects of damage D. In order 
to distinguish ne from the concept of internal variable, we may name the history-dependent state 

variable, which can to some extent, characterize the damage effects on the macro-properties of 

where Y signifies the associated force of damage variable D and is also known as the damage 
strain energy release rate. 

(3.13) 
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materials, as an equivalent damage variable. The implication of this concept as shown in (3.16) is 
that the dissipative energy due to damage can entirely be expressed with the proposed equivalent 
damage variable e n, such that material degradation may be formulated in terms of ~a instead of 
directly by D. The relation between ~d and damage D will be discussed in the next section. 

4. Damage evolution 

4.1 Damaoe evolution law 

From the irreversible process of thermomechanics, the inequality of (3.11) is associated with a 
properly defined flow potential function Fn(M, D) [16]. Without loss of generality, we consider 

F a = Fa(o "n, D) - F2(B1). (4.1) 

Then with the assumption of convex and normality, we obtain 

d8 n = d 2"--~ F n" 
~¢~d ' 

OFd 
do  = d2. - -  - d2. F~ (B~) (4.2) 

~(-B~) 

where d2 is a non-negative scalar parameter. As the condition of damage flow is postulated to 
satisfy dFa(a a, D) = 0, we may deduce 

d2 = 0 

~Fn. da d ~Fd. dD 
~a d" + OD" 

d 2 =  
(F'2(B1))2" B'(o) 

Fa < 0 o r  Fd = 0 and 

8I~a.daa + 81~d.dD < = 0 
~tr n" OD " 

F a > = 0  and 

OPn ~Fn. dan + d D >  0 
, gan  " ~ : 

(4.3) 

Similar definition of d2 can also be found in the open literature such as [22], which referred to 
d2 as Lagrange multiplier. 

Consider a scalar function Fd determined by damage D jointly with M. The general form of flu 
may be expressed entirely by the irreducible integrity bases using the invariant theory. The 
associated irreducible integrity bases relating to the orthotropic damaged materials in question 
have been given by Spencer [23] and Talreja [24] under the orthogonal group of coordinate 

d and first order with transformations, see Appendix I. Take a quadratic approach to Fd with a u 
damage tensor D. f a  may be in general represented as (using the Voigt notation and also see 

Appendix I (A1.2)) 

Pa = Pa(I,), (k = 1,2, 18) 

=Jtkl)(Dkl)'Cra k 4- J(2)(Dkl ) 4- 0 .5"Ju(Dkl ) 'a~ 'a  ~, (k, l =  1 - 3, and i,j = 1 - 6), (4.4) 
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where J[1)(Dk~), J(Z}(Du) and Jij(Dkt) are dependent upon the damage variable D. Suppose da e 
vanishes in un-deformed state (or/and un-loading or/and compressing processes) for which 
~r a = 0. Then, according to (4.2) and (4.4), we have 

J~l)(Dkt ) = 0; J(2)(Dzk ) = 0. (4.5) 

In addition, for cracking or crack-like damage entities, it is reasonable to assume that the effects 
of damage components along xa-direction on the elastic characters in the plan x l -o  x2 normal 
to x3-direction are negligible (see [9]). Then, the components of J~j(Dk~) may be readily obtained 

J l l  = ax + a2D11; J22 = a3 + a4D22; 

J33 = as + a6D33; J12 = b4 + bsD11 + b6D22; 

J23 = bl + bED22 + baDa3; J13 = b7 + baD11 + b9D33; 

J44 ---- cl q- c2D22 "1- c3D33; J55 : c4 "]- C5Dll q'- c6D33; 

J66 = c7 -'l- CsOll  -'b c9922, J45 = d l  + d2D12; 

J56 -- d3 -q- d4D23; J46 = d5 + d6D13, 

J14 = el + e2D23 = J24 = J34; 

J15 = e3 q- e4Dla = J25 = J35; 
J16 = es + e6D23 = J26 = J36, 

and the others are zero. In addition, 

(4.6) 

Jij = Jjl (i,j = 1, 2-6), (4.7) 

where the coefficients ai, b i, cj and di in (4.6) are material constants and may be measured 
experimentally. 

Substitute (4.4) and (4.5) into (4.2) 

d~ d = d2" J(D) :o  "d = d2" J(D):E(D):e, (4.8) 

d~o = d2" V[ (B1) (4.9) 

Combining (4.1), (4.2), and (4.8), we obtain 

2F2(B1) (4.10) dgd, T. d -  l :dgd = (d2)2 .~d,T. j .  ffd • [d2 .  F,2(B1)]2 [F2(Ba)] 2" 

Without loss of generality, choose FE(B1) as 

Fz(B1) 1 2 = ~'Bx (4.11) 

hence B1 may be given 

B1 = Bo + v'~o k. (4.12) 
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Bo is the initial damage hardening threshold (co = 0) and v and k are material constants to be 
determined experimentally. Therefore, substituting (4.9) into (4.10), dco is derived as 

dco= x/ded'T:J- I(D) :ded, (4.13) 

where J -  I(D) is the generalized inverse of tensor J(D). 
Assume that the flow of damage evolution satisfies the normality relation with its associated 

force, then the evolution law of damage may be expressed in a generalized form as 

dD = d2" G(Y, D, co). (4.14) 

The exact analytical expression of the tensorial function G(Y, D, co) should be made based on 
experiments and/or the detailed knowledge of physical properties of the microdefects. 

To characterize the damage criterion in the sense of 'stress' increase coupled with damage 
such as (4.1) is known as a stress-based model which postulates that damage initiation and 
growth are developed only when Fd >~ O. Similar definitions for Fd have also been proposed in 
other works (e.g. [25]), one of which is called an energy-based model and argues that the 
damage criterion should more reasonably be formulated with the damage energy release rate 
or the damage conjugate force, as defined in this paper as Y. In fact, according to the above 
discussion, the difference between the two models can be identified from examining (3.16) 
which signifies that their dissipative energies due to damage are the same. However, a major 
difference between the stress-based and the energy-based models is their respective definition of 
the equivalent stiffness due to damage. For the energy-based model, the equivalent stiffness is 
directly formulated in terms of E(D, co) as shown in (3.12), while the stress-based model with 
the damage potential function, in terms of J(D). The validity of the two models will be 
examined by comparing with other conventional models available in the literature in the next 
section. 

4.2. The equivalent stiffness and compliance 

Consider the following stress-strain relations (unless otherwise specified, we simply express 
E(D, co) as E(D) in subsequent discussions) as 

a = E ( D )  :e, 

a + de = E(D + dD):(e + de). (4.15) 

Substitute (3.5) and (4.8) into (4.12) with E(D + dD) approximated by 

E(D + dD) = E(D) + dE(D) (4.16) 

for which higher order infinitesimal terms are neglected, the increment of damaged material 
equivalent stiffness is derived as 

E(D + dD) = E(D) - ½d2-E(D): J(D):E(D). (4.17) 
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Similarly, 

+ d~ = S(D + dD):(a + da), 

= S(D):  a, (4.18) 

where S(D) is the equivalent compliance of damaged materials and then we have 

S(D + dD) = S(D) + ½dA.J(D). (4.19) 

In view of the conventional analysis [3, 4, 12] for an isotropic damaged material, the effective 
compliance is proposed as 

S03) = ~3. S(O), (4.20) 

o r  

S(~ + d~3) = S(~3) + d~3-S(0), (4.21) 

where ~3 is a properly defined scalar damage variable [3] as in (2.15). Substitute (2.15) into (4.19) 
and express J as 

J(D) = jo + j I (D ) = jo + O.Ja(i), (4.22) 

where for the sake of simplicity, we establish from (4.6) that the components of jo  are 

jo = J(D)]o = o (4.23) 

and 

J~(D) = J(D) - jo. (4.24) 

The effective compliance presented in (4.20) contains a severe limitation as discussed in 
Section 2 in that there is no effect of Poisson's ratio on isotropic damage entities and the 
formulation is not therefore realistic. This is also elucidated by Chow and Wei [26] that the 
reduction of Poisson's ratio is a measurable quantity for aluminium alloys, even though the 
damage is isotropic. In view of this relevation, a damaged material, although it is isotropic in its 
virgin state, may be assumed to behave as an equivalent isotropic material when the damage 
variable is reduced to (2.15). Therefore, since J is considered as a material constant independent 
of damage entities or material deforming states, we can thus deduce from the above assumption 
that the coefficients of J in (4.6) may be readily given as 

a i = ~ ,  (i = 1, 3, 5); aj =/~, (j = 2, 4, 6) 

b, = - ~/~, (i = 1, 4, 7); h i = - ~/2fl, (i = 2, 3, 5, 6, 8, 9) t (4.25) 

c i =  - 2 ( 1 + 0 / ~ ,  ( i=  1,4,7); ci= -(1 +0/2f l ,  ( i=2 ,3 ,5 ,6 ,8 ,9 )  

e i=d i=O,  ( i=  1,3,5) e i = q & d i = v ,  ( i=2 ,4 ,6 )  

where ~,/~, ~, ~, v and r/are material constants which can be measured experimentally. 
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In order to compare the above results with those evaluated from the conventional models, we 
simplify the discussion by confining the problem, to the damage principle coordinate system. 
The damage tensor shown in (2.13) may be reduced to 

D = diag(D11, D22, D33). (4.26) 

Then the conventional effective stress defined by the damage effect tensor M(D) and its 
associated damage variable D, as defined in conventional models [1, 12, 16] may be given by 

# = M(D):a. (4.27) 

Similarly, we define the effective damage stress for the proposed damage model as 

#a = M(D):aa, (4.28) 

for which the difference between ~(D)  and M(D) is to be identified. Without loss of generality, 

consider the following form of Fa(a a, D) 

Fa(a a, D) = 17 T'd : J(D) :a a = ¢~T,d :MT(D): S(0): M(D):a a. (4.29) 

In addition, suppose that the current state of damage can be decomposed by 

n i 

D = ~ d D , ;  and Di = ~ d D , .  (4.30) 
1 1 

From (4.19) 

S(dDx) = S(0) + ½d21- Mr(0) : S(0): M(0), 

S(D,÷ 1) = S(D~) + ½d2," Mr(D,):S(O):M(D,),  

S(Dn) = S(D.  -1) + ½dAn-l" Mr(Dn_l )  : S(0) : M ( D . - I ) ,  (4.31) 

then the effective compliance may be given as 

S(D. ) = M T(D ): S(O): M (D) = S(O) + [½ d21" M T(O): S(O): M(O) 

+ ... +½d2~_I.MT(Di_1):S(O):M(D~_I)+ ... + 

½d2. I " M T ( D ,  - 1):S(0):M(D,_ 1)- (4.32) 

It may thus be deduced from the above relation that 

M(D) = I + ½d21-M(D0 + ... + ½d2,_I"M(D,-x) + 

+ .-. + ½d2,_ 1-M(Dn_ 1). (4.33) 

A similar formulation has also been derived by Chow and Lu [27]. 
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Take for example a conventional model of M(D) described in [12]. In the case of isotropic 
damage, D = ~.diag(1, 1, 1). Then 

(1 - ~3) ~ - 1 + 2~3 + . . . .  1 + 2.  {¼d21 .(~ + flD1) -t- " "  + 

+ ¼d.~._ ~-(~, +/~o._ ~)} (4.34) 

for which M(D) is defined as ~/(g + flD1)'diag(1, 1, 1, 1, 1, 1). 
It is obvious that this conventional model MiD) [1, 12, 16] results in a first order approxi- 

mation to (4.34) of the proposed model. However, in more general cases, the exact formulation 
of effective stiffness (or compliance) with damage should be made according to (4.19) as M(D) 
would not be expressed by the above diagonal tensor and by the associated relation between 
MiD) and M(D) shown in (4.33). 

5. The elastoplastic coupled with anisotropic damage 

Once a loaded material undergoes plastic deformation, its mechanical properties may be 
degraded due to void stretching, wedge cracking, precipitate coarsening, increase in mobile 
dislocation density, formation of substructure, etc. The discussion for brittle anisotropic damage 
can also be applied to characterize elastoplastic damage by decomposing the increment of strain 
d8 into d8 e + de p. Similarly, consider an infinitesimal deforming process with damage and plastic 
strain. The reference configurations Xt at time t are represented by Xt(a, se + ~P,D), and 
Xt+st(a + dtr, ee + np + ds, D + d D )  at t + dr. The decomposed elastic and plastic strains are 
also coupled with damage effects as 

d8  = dg e + dg p. (5.1) 

Based on the incremental elastic deformation coupled with damage, the reference middle-state is 
proposed as X't(a + do, £e _~_ ~p "1- d8  p --I- d~,  D) such that 

de e = d~ + de d, (5.2) 

where dl~ e is the increment of current elastic strain tensor, d~ is defined as increment of partial 
elastic strain tensor at constant damage variable D, and de d, increment of damage strain tensor. 
Thus the increment of stress may be readily obtained as 

da = E(D, o9) : d~ = E(D, o9) : dg e - -  E(D, o9) : ~d. (5.3) 

Similarly, introducing the incremental elastic energy defined as 

d W  e = ge:E(D, o 9 ) : d t  e - ½8e:E(D, og) :de  d 

and 

(5.4) 

d~b(e e, ~ ,  D,  o9, t) = d W  e @ d((I)2(o9)) -[- d((I)l(0C)) 

= ne:E( D, o9):de e - ½ne:E(D, o9):dn d + d(~2(o9) + d(~l(00) (5.5) 
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and the Clausius-Duhem inequality becomes 

ad:d~ ~ + a:d~ p + B1 "dco + A "c~ >~ O, (5.6) 

where ~ refers to accumulated plastic deformation and A is its associated force. 
On the other hand, if we assume that the plastic hardening potential function is not coupled 

with damage, Fp(a, A) can be readily presented as 

rp(a, A) = ~ 2  + FI(A). (5.7) 

In general, the plastic hardening function is coupled with damage which will be discussed later. 
Experimental evidence reveals that there is no residual volume change for plastic deformation. 

The classical theory of plasticity assumes that the material plastic potential is only associated 
with its distortion energy, which is expressed via Levy-Mises flow theory 

Fp(a) = a ' r :a  ' + FI(A) (5.8) 

and 

dd  = d2" a'. (5.9) 

Thus 

dv p = de~/= 0, (5.10) 

where a' is the deviatoric tensor of a; dv p represents residual volume change due to plastic 
deformation and the rate of plastic deformation de p is given by the assumption of convex and 
normality. 

Similar to the classical plastic theory, the plastic potential function coupled with damage has 
been proposed by Chow and Wang [13] and generally presented as 

Fp(a, D) = Fe(6, D) = ~T:~ _4_ FI(A) 

= 8T:M(D)r:H:M(D):# + FI(A), (5.11) 

where for isotropic materials 

1 
Hijkl ---- ~ [--~(~ij '6kl  -}- ½(~)ik "bit + ~)il't~jk)] • (5.12) 

For (5.7), if we also assume that the material plastic deformation satisfies the convex and normality 
properties, the plastic deformation coupled with damage can also be presented as [13] 

OF 
d~ p = d)~p '~ = d2/IT-I:a, (5.13) 

where 

FI = M(D):r: H :M(D). (5.14) 
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It is clear from the above that the condition of incompressibility is not satisfied or 

dv p = des ~ 0 (5.15) 

In general, the damaged materials, as has been discussed previously, are considered to be 
orthotropic. For virgin anisotropic materials, Hill [28] first developed the Mises type of flow 
potential function as 

Fp(a,A) = a r : H : a  + FI(A) (5.16) 

and assumed that 

(~i j 'Hi jk l  = Hiikl  = 0 .  (5.17) 

On the other hand, the plastic potential for isotropic materials, i.e. (5.7), is only considered to 
contain a strictly limited capacity of storing the distortion energy. A new plastic potential for 
anisotropic materials based on the theory of the eigen states in fourth order tensor has been 
proposed by Olszak et al. [29]. Its general form is also expressed as (5.14), but the tensor H is 
assumed to have the following properties: 

(i) it has all the symmetry properties as elastic modulus E (or S), 
(ii) the spherical tensor is one of its eigen states with the corresponding eigen values to be zero, 

(iii) each deviatoric eigen state of S (or E) is also an eigen state of H, 
(iv) the corresponding flow function is a part of the total strain energy, 
(v) it reduces to the form of (6.1) in the isotropic case. 

Then the tensor H is given as (see Appendix II) 

(I. S) ® (S. I) 
H = S (5.18) 

I - S . I  

Thus, for a fixed quantity of damage variable, this concept of plastic flow to damaged materials 
may be extended to yield 

(I. S(D)) ® (S(D). I) 
H(D) = S ( D ) -  , (5.19) 

I. S(D).  I 

or (using the Voigt notation) 

Hijkt(D,a) = Sijkt(DH) -- Smz,j(D,j)" S,nk,(D1s) (I,J = 1, 2, 3) 
Sqqrr(DIJ) 

and i , j ,k , l ,m,n = 1,2,3. (5.20) 

Thus the plastic potential function coupled with damage variable is proposed in this paper as 

Fp(a, D) = ar:H(D):tr  + FI(A) (5.21) 
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and 

d~ p = dXp. H(D): a, 

where 

d~.p = 0 

~Fp t~FP : da + : dD  

dG -- (F'~(A)) ~.A'(") 

and 

6ij" Hijkt(Dij)  = Hiikt(Dia) = 0 

or 

dv p = de~i = 0 

(5.22) 

Fp < 0 or Fp = 0 and" 

dFp 
OFp:da + :dD < = 0 

Fp > = 0 and 

~Fp : da dFv ~a + ~ :dD > 0 

~- (5.23) 

(I, J = 1, 2, 3), (5.24) 

(5.25) 

which indicates that the resident change of volume is vanished for the proposed elastoplastic 
model coupled with damage. On the other hand, the evolution law of damage can be derived 
similarly as brittle material, as discussed in Section 4. 

6. Conclusions 

The damage mechanics models currently available based on the macro-mechanics approach are 
primarily concerned with the formulation of the effective stiffness due to damage by introducing 
'damage effect tensor' through the hypothesis of elastic energy equivalence. In comparison, the 
proposed model is focused on the preservation of symmetric properties caused by such micro- 
structural changes as an alternative damage variable with the concept of volume average in a 
material element containing a cloud of microdefects. This approach enables the formulation of a 
simple second order damage tensor. The establishment of a constitutive equation with damage is 
thus derived by employing the increment of 'damage strain' ed within the confine of an 
infinitesimal deforming process. The advantages of the proposed model are that it presents a 
clear physical representation and its resulting 'incremental form of constitutive equation' may be 
simply incorporated into the finite element analysis. 

The proposed model assumes that the virgin material is isotropic and its damaged state is 
orthotropic. For most conventional metals, these two assumptions are considered reasonable 
and present a good approximation to characterize common engineering materials. However, for 
virgin orthotropic materials, the proposed model may be readily modified by re-formulating the 
J-tensor using the same irreducible integrity bases described in this paper. The irreducible 
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integrity bases employed are in fact derived according to the virgin orthotropic materials, 
although all the derivations and formulae can also be obtained by using the irreducible integrity 
bases of virgin isotropic materials. 

Appendix I 

The integrity bases for tensor ad and D are given by Spencer [26] 
transformation based on the first order approximation of damage D as 

under orthotropic 

I 1 = 0All, 12 = o 'd2 ,  13 = 0"~3 , 

l 4 : (0"d23) 2, 15 = (0~13) 2, 16 = (o'd2) 2, 

17 = 011,  Is = 022,  19 = 033 ,  

I10 = D 2 2 ,  I11 = D223, 112 = D23, 

I13 = D230"d23, I14- = D31~31, 115 = D12°'d12, 

023trt3tr12, 117 = 0310-d~zt~23, 118 = O12trd23tr~13 • 116 = d d 

(A1.1) 

where Dij are the components of tensor D which has been defined in (2.14). Then, the scalar 
function determined by Ik(k = 1-18) can be formulated as 

Fd(ad, D) = Fd(Ik) = Ck'Ik + ekt'Ik'II, (A1.2) 

where Ck, and ekt are material constants already discussed in Section 4. 

Appendix H 

Let the elastic compliance S be a symmetric fourth order tensor. If there exists a symmetric 
second order tensor a that satisfies 

S-a = 2-a, (A2.1) 

then we define the tensor a as the elastic eigen state of S, and 2 is the modulus of the compliance. 
For stress tensor, it may form a six-dimensional space of second order symmetric F~, resulting 
in six orthogonal eigen basis tensors 

al I = 1, 2, ,6 (A2.2) 

and the corresponding eigen values are 2~. Then 

S = ( S ' a l )  ~ a l  + ( S ' a 2 )  ~ a2 + ... + ( S ' a 6 )  (~ a6, (A2.3) 

or 

S = 21"al ® a l  + ~,2"a2 ~)a2  + .-- + ~,2"a2 @82.  (A2.4) 
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Consider the properties of tensor H presented in Section 6. It can be easily verified that the 
expression of (6.11) satisfies all of these conditions. Let b be an eigen tensor of H, thus 

H ' b  =/~ .b  (A2.5) 

Then we know that b is also in the space F[ ,  hence 

b = bi" av (A2.6) 

Substitute (A2.6) into (A2.5) 

hi" H.  al =/z .  bt" al, (A2.7) 

and therefore the set of six linear homogeneous equations for bl is given as 

b l a s ' H ' a l  = /z .b j  (J = 1, 2 - - 6 ) .  (A2.8) 

There are nontrivial solutions of the equation if the compatibility condition is satisfied 

d e t ( a s . H . a j - # . 6 ~ j ) = 0  ( l , J =  1,2, ,6). (A2.9) 

Then we obtain the six order equation for eigen value/~ as 

G 6 : #6  _~_ 51]25 q_ 52]24 ._[_ 53~t3 "b 5 4 ~  2 "-[- 55] / - [ -  56 : 0. (A2.10) 

It can be verified that 

5 6 = 0 (A2.11) 

which agrees with the fact that the spherical tensor is an eigen state of H tensor with zero eigen 
value. 

Although the properties satisfied by the tensor of H represent a special case, the plastic 
potential tensor H presented in (6.11) may be extended to general anisotropic materials. 
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