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Abstract. Mode I near-tip stress fields for elastic perfectly plastic pressure-sensitive materials under plane strain and 
small-scale yielding conditions are presented. A Coulomb-type yield criterion described by a linear combination 
of the effective stress and the hydrostatic stress is adopted in the analysis. The finite element computational results 
sampled at the distance of a few crack opening displacements from the tip show that, as the pressure sensitivity 
increases, the magnitudes of the normalized radial and hoop stress ahead of the tip decrease, the total angular span 
of the singular plastic sectors decreases, and the angular span of the elastic sectors bordering the crack surfaces 
increases. When non-singular T stresses are considered along the boundary layer of the small-scale yielding model, 
the near-tip stresses decrease as the T stress decreases. The plastic zone shifts toward the crack surfaces as the T 
stress increases. When the discontinuities of the radial stress and the out-of-plane normal stress along the border 
between the plastic sector and the elastic sector are allowed, the angular variations of the asymptotic crack-tip 
fields agree well with those of the finite element computations. Variation of the Q stresses for pressure-sensitive 
materials can be found from the asymptotic solutions when the plastic zone size ahead of the tip is relatively larger 
than the crack opening displacement. In addition the T stress is shown to have strong effects on the plastic zone 
sizes and shapes which could affect the toughening of pressure-sensitive materials. 

1. Introduction 

In the classical plasticity theory, it is assumed that hydrostatic pressure has no effect on 
material plastic deformation, and plastic dilatancy is neglected. But for many materials, 
such as soils, concrete, rocks and silicate glasses, macroscopic pressure-sensitive yielding 
and plastic volumetric deformation are exhibited. Toughened polymers, which are widely 
used in structures due to their light weight and relatively high strength and toughness, also 
show apparent pressure-sensitive yielding and plastic volumetric deformation, for example, 
see [1-3]. Pressure-sensitive yielding is also observed in zirconia-containing transformation 
toughened ceramics, for example, see [4-8]. It is considered that the pressure-sensitive yielding 
occurs from basic flow mechanism, cavitation and craze formation in some polymers and from 
phase transformation and microcracking in some ceramics. 

Li and Pan [9, 10] made an attempt to study analytically pressure-sensitive yielding 
effects on asymptotic crack-tip fields based on a Coulomb-type yield criterion for power- 
law hardening materials and perfectly plastic materials under both plane strain and plane 
stress conditions. They found that the HRR-type asymptotic crack-tip fields [11-13] do exist 
for power-law hardening materials. They also found that the low-hardening solutions agree 
well with the corresponding perfectly plastic solutions. However, they could not find any 
HRR-type asymptotic solutions using the Runge-Kutta method for numerical integration and 
the shooting method for satisfying the boundary conditions when a pressure sensitivity factor 
# reaches a limit value for each hardening exponent as the stress state ahead of  the crack 
tip approaches the hydrostatic tension. Pan and Chen [14] used a finite element method for 
deformation plasticity power-law hardening materials to investigate the near-tip asymptotic 
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fields under plane strain and small-scale yielding conditions. Their results showed that for 
# larger than the limit value for each hardening exponent, the HRR field does exist and the 
stress state ahead of the tip stays in hydrostatic tension for a range of #. However, as # 
becomes larger than a value near x/'3/2, the HRR field breaks down and the near-tip field 
becomes oscillatory. Subsequently, Dong and Pan [15] investigated the crack-tip fields by 
finite element methods for elastic-plastic pressure-sensitive dilatant materials under plane 
strain and small-scale yielding conditions. Their results also indicated that the HRR-type 
asymptotic crack-tip fields exist beyond the limit value of the pressure sensitivity parameter 
for each hardening exponent for power-law hardening materials, and that elastic sectors of 
finite stresses exist and border the crack faces for elastic perfectly plastic materials, in contrast 
to the fully yielded solutions based on the slip-line theory proposed by Li and Pan [9]. Their 
perfectly plastic finite element solutions also indicated that when # is larger than v~/2, no 
asymptotic solutions can be found. 

For elastic perfectly plastic Mises materials under plane strain conditions, Larsson and 
Carlsson [16] performed finite element computations for a variety of specimen geometries, 
such as center cracked panels and edge cracked bending specimens. They found that the 
computational results of the near-tip fields for the actual geometries showed larger discrep- 
ancies than those of the corresponding boundary layer formulation. In the boundary layer 
formulation, it is assumed that the 1/vq singularity is dominant near a crack tip such as 

K 
(1) 

where aij represent the crack-tip stresses, K is the mode I stress intensity factor, r and 0 
are the polar coordinates centered at the crack tip, and f i j (8 )  are given by the linear elastic 
asymptotic solution. As suggested by Rice [17], Larsson and Carlsson [16] showed that the 
stress discrepancies were eliminated by introducing a non-singular stress term, which is the 
normal stress parallel to the crack line, along the boundary of the boundary layer formulation. 
The intensity of the non-singular stress term depends upon the geometry of the specimen and 
the type of loading. Accordingly, they modified the boundary layer formulation to compensate 
for the differences by including the non-singular stress (T stress) such as 

K 
~ij -- ~ f i j ( O )  ~- T(~il~jl. (2) 

~/ z~rr 

Rice [17] also gave very accurate estimations of plastic zone sizes and shapes based on a 
simple model where the effect of the T stress can be included. 

Benteg6n and Hancock [18] studied the crack-tip fields for several crack geometries and for 
the boundary layer formulations with the small-strain assumption by finite element methods. 
Their results showed that the crack-tip stress fields under positive T stresses were essentially 
similar to the HRR fields for hardening materials, but those under negative T stresses deviated 
from the HRR fields. They also found similar results for non-hardening materials. A1-Ani and 
Hancock [19] showed a loss of J dominance due to the geometry of the specimen from 
their large geometry change solutions. In their finite element computations, they used edge 
cracked bending and tension specimens with various ratios of crack length to width to obtain 
different T stress values. They found that the J dominance can be retained for the specimens 
where the T stresses for small geometry change solutions are positive. Du and Hancock [20] 
employed the slip-line theory to interpret their finite element results and gave an empirical 
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relation between the hydrostatic stress ahead of the crack tip as a function of the T stress and 
the hydrostatic stress ahead of the crack tip without any T stress. In Du and Hancock [20], 
the crack-tip stress fields are proposed to be represented by an incomplete Prandtl field with 
a constant stress sector, a centered fan sector and an elastic sector. They made no attempt to 
verify their proposed assembly of the asymptotic crack-tip structure for the Mises materials 
by their numerical solutions. 

Here, we explore the combined effects of pressure-sensitive yielding and the non-singular 
T stresses on crack-tip fields for elastic perfectly plastic pressure-sensitive materials under 
plane strain conditions and construct the corresponding asymptotic crack-tip stress fields. 
These asymptotic stress fields, due to the existence of an elastic sector, contain parameters 
which cannot be determined by the asymptotic analysis alone. We used the parameters from 
the results of finite element computations as the input for the asymptotic analysis. Then, the 
complete angular stress functions of the asymptotic analysis based on these input parameters 
are compared with those of the finite element solutions. Based on the asymptotic solutions and 
the computational results, we also explore the one parameter description of the Q stress for 
pressure-sensitive materials in analogy to the Q stress concept proposed by O'Dowd and Shih 
[21, 22]. Finally, the implications and relevances of the results to the phase transformation 
toughening of ceramics are discussed. 

2. Governing equations 

A straight crack is considered as shown in Fig. 1 where both the Cartesian coordinates, xi and 
x2, and the polar coordinates, r and 0, are centered at the crack tip. Rice [23] showed that due 
to the boundedness of the stresses as r ~ 0, the asymptotic form of the equilibrium equations 
for perfectly plastic materials can be represented with respect to the polar coordinates as 
follows 

d~rro 
~rrr -aoo+ d0 - 0 '  (3) 

d<r00 
2are+ dO - 0 "  (4) 

In order to incorporate the pressure-sensitive yielding, a simple Coulomb-type pressure- 
sensitive yield criterion [24, 9, 10], which is a linear combination of the effective stress a~ and 
the mean stress Crm, is adopted here, 

¢( , , i j )  = a~ + VS~am = ,,,~ = ao, (5) 

where a~ = (3sidsij/2) 1/2, sij = aid - a m ~ i j ,  and am = akk/3. Here, ~ij is the Kronecker 
delta and subscripts i, j and k have the range of 1 to 3. In (5), ~b(aij) represents the yield 
surface in the stress space, and # represents the pressure sensitivity of the material. Here it is 
taken as a constant. In (5), aa¢ is the generalized tensile effective stress. For perfectly plastic 
materials, aa~ is taken as a constant and is denoted as ao. 

The components of the outward normal to the yield surface in the stress space are defined 
a s  

i t  Pij - Oaij - 2a---~ + - ~ i J "  (6) 
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Fig. 1. Coordinates coventions and model definition. 

X 1 

Within the context of the small-strain approach, the strain increments deij can be decom- 
posed into an elastic part, dei~, and a plastic part, de~j. With Hooke's law of isotropic elasticity 
for the elastic strain increments and the assumption of the normality for the plastic strain 
increments, the strain increments can be written as 

/J 
deij = de~j + dePj - 1 + E ud°'ij - -~dakk~ij + d~Pij,  (7) 

where E is Young's modulus, u is Poisson's ratio, and d,k is a proportionality factor. For 
transformation toughened ceramics, the experimental results suggested that the plastic strain 
increments follow the normality flow rule [7]. However, non-normality flow occurs in plastics, 
rocks and metals, see Dmcker [11, Rudnicki and Rice [25] and Needleman and Rice [26]. For 
pressure-sensitive materials, a plastic potential was defined for non-normality flow in [27,281. 
Based on a perfectly plastic theory, the slip line fields around notch tips were constructed for 
pressure-sensitive materials and the effects of non-normality flow on slip lines were discussed 
in [27]. The effects of non-normality flow on the near-tip fields of blunted cracks in rubber- 
toughened epoxies were presented in [28]. Here we will concentrate on the crack-tip behavior 
for sharp cracks in pressure-sensitive materials with normality flow. 

Assuming at least one in-plane component of the plastic strain increments is singular and 
P ~  ¢ 0(a,  /3 = 1, 2) as r --+ 0, then d~ ---+ e~ as r -+ 0. Therefore, the plane strain 
condition de33 = 0 requires 

3833 ~3 
P33 - 2ae + = 0, (8) 

as r --+ 0. Equation (8) also represents the plane strain condition for rigid perfectly plastic 
materials following the normality rule. Note that ae = 0 represents a hydrostatic stress state 
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and the stress state in yielding is at the vertex of the yield cone in the stress space. Then Pij 
cannot be uniquely defined. 

From (8) the out-of-plane normal stress 0"33 can be expressed in terms of the three in-plane 
stresses with respect to the polar coordinates as 

0"33 -- 2 [1 - #2 /3 ]1 /2  -2 + 0.tO (9) 

Combining (5) and (9) gives 

-- 7 0 . 0 0 ) 2  + 2 1/2 Grr "~ OrO0 O" 0 
+ # 2 - V~" (10) 

From (9), we can see that 0"33 cannot be defined if # = v/3. According to the general analysis 
of  pressure-sensitive materials under plane strain conditions by Hill [29], the yield condition 
of (10) for # ~< x/~/2 can be transformed into a yield envelope in the Mohr plane. If two 
parameters, ~b and c, are introduced as 

sin ~b = # [1_½#211/2 (11) 

and 

0.0 
C = V~[1 -- 34-#2] 1/2'  (12) 

then (10) can be expressed as 

r = c - 0. tan ~b. (13) 

Here, 7- is the shear stress and a is the normal stress in the Mohr plane. Equation (13) is the 
well-known Coulomb criterion used in the slip-line theory in soil mechanics and concrete 
mechanics, for example, see [30]. Then, ~b represents the angle of internal friction and c 
represents the cohesion parameter. 

3. S ingular  plastic sector 

Rice [23] derived the governing equation for plastic sectors near the tip by combining the 
differential form of the yield condition and the asymptotic form of the equilibrium equations. 
The result which is applicable to the pressure-sensitive materials considered here is 

d(o-11 + ) d0.33 D 0.22- P r r  --}- --~- ' - r33 = O. 
dO 

(14) 

For singular plastic sectors with P33 = 0 as r ~ 0, (14) becomes 

d(0.11 + 
G22"prr] = O. (15) 

dO 
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There exist two possible solutions to satisfy (15) [23]. One possible solution which repre- 
sents a constant stress sector is 

d(0.11 + 0.22) 
- 0 ,  ( 1 6 )  

dO 

or, 

0-11 = constant, (17) 

0"22 = constant, (18) 

O"12 • constant, (19) 

a33 = constant. (20) 

All the stresses with respect to the Cartesian coordinates are constants in this sector. The 
constants are to be determined by the yield condition, the plane strain condition expressed in 
(8), and the boundary conditions. 

The other possible solution which represents a centered fan sector is 

P ~  3s~  # 
= 20.~ + ~  = 0. (21) 

According to [29], P ~  = 0 indicates that the radial lines represent a family of characteristic 
lines of the hyperbolic stress equations when # < v/-3/2. The other family of the stress 
characteristics are in general not orthogonal to the radial lines unless # = 0. 

3.1. CONSTANT STRESS SECTOR 

The shear stress referring to the Cartesian coordinates in the constant stress sector ahead of 
the crack tip as shown in Fig. 2 should be zero to satisfy the symmetry condition of the mode 
I crack-tip fields. Then, 

0-11 = constant, o22 = constant, a12 = 0. (22) 

When we express (10) with respect to the Cartesian coordinates, with o12 = 0 we can easily 
express o'22 in  terms of O" 11 a s  

20-0 [1 -- # 2 / 3 ] 1 / 2  -- # 
+ o-11. (23) 0-22 = v#j([1 _ #2/311/2 + #) [1 - #2/311/2 + # 

The out-of-plane stress 0-33 call then be obtained when (9) is expressed with respect to the 
Cartesian coordinates. There is another constant stress sector in the assembly of the crack-tip 
sectors as shown in Fig. 2(b). The assembly of the crack-tip sectors will be detailed later in 
this paper. The stresses in this sector must be determined by the boundary conditions, the yield 
condition and the plane strain condition. 
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Elastic Sector ~ C o n s t a n t  Stress(l) 
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Fig. 2. The assemblies of the asymptotic crack-tip fields. (a) Two singular plastic sectors and an elastic sector 
facing the crack surface, (b) Three singular plastic sectors and an elastic sector facing the crack surface. 

3.2. CENTERED FAN SECTOR 

Since the conditions of P~r = 0 and P33 " 0 give 0.rr = 0"33 in the centered fan sector, (21) 
can be rewritten as 

- + 0"r0 = 0 .  ( 2 4 )  

If  we differentiate the above equation with respect to O, we have 

t 2 ]-1/2 0"rr-0" 0+# (0"rr-0"0e7 +o e (25) 
3 J 

where ~r[5 = d0"ij/dO. From (3), (4) and (25) the governing equations for the stress fields in 
this sector can be rewritten as 

o'~ e = -2o 'ro,  (26) 

~r'~o = tree - ~ , , ,  (27) 
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, (1 + 2#Z(0-r~-  aoo)/3)a~o - 2#Z0-~oa~ro 
O'r r -~  

1 + 2 # Z ( a ~  - 0-oo)/3 
, (28) 

0"33 ---~ O'rr, (29) 

where Z = [ (a~ - a00 )2 / 3 + a]0]- 1/2. Then we can use the Runge-Kutta numerical integration 
scheme to integrate (26)-(28) in order to find the stress fields in the centered fan sector. As 
# --+ 0, (24) is reduced to 0-~r = a00 which represents one characteristic equation of the 
centered fan sector for the Mises materials under plane strain conditions. The numerical 
results, using (26)-(29), showed that as # --+ 0, the stress state in the centered fan sector 
converged to that for the Mises materials. 

In the following, we derive the analytical solutions for centered fan sectors. The values 
of # are about 0.02 ~ 0.06 for steels [31], 0.1 ~ 0.25 for polymers [32], and 0.55 ,,~ 0.77 
for transformation toughened ceramics [6, 7]. However, for CeO2-TZP ceramics, # can be as 
high as 0.93 [8]. Here, we restrict our study to # < v '3/2  since asymptotic crack-tip fields 
can be found under this condition [15]. 

First, the relation of the three in-plane stress components can be derived from (8) and (21) 
for # < v ~ / 2  as 

2# 
O'rr --O'00 = Trl[ -- ~J4# 211/20"r0 (30)  

where we take ' - '  when a~0 > 0 and '+ '  when a~0 < 0. From (3) and (30), we have 

dcrr0 2# 
T [1 -- 3 ]4#211/20-r0 = O.  (31) dO 

0 When we integrate (31), we set the lower integration limit at 0o and we denote aro = a~o at 
0 = 0o. Then 

o exp ( 2 / z ( 0 - 0 o ) )  
aro = C%o + [1 - 4#211/2 " (32) 

0 and 0o can be found to satisfy the boundary conditions. Then 0-00 can be calculated Here, a~o 
from (4) for # ¢ 0 as 

[1 - 4y2]1/2 o [ ,  2 y ( 0 -  Oo) 
ao0 = - ~ "a '°exp ~ [ I  - 4#211/2) + C, (33) 

where C is an integration constant which can be determined to satisfy the yield condition. 
Equations (30), (32) and (33) can be used to find 0-~ as 

0-r  = ( [1- 4#211/2. 2# ) [ ,  2#(0 - 0o) 
[I - 34-.21'12. 0-r°exp ~-t'[1 - 4#21,12) + C. (34) 

If # ¢ O, the integration constant C can be determined as C = go/x~3# for the stress states 
described in (32), (33) and (34) to satisfy the yield condition in (5). 
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As # ~ 0, (32, (33) and (34) cannot be used to determine the stress states in centered fan 
sectors since in the present form 0-00 and O'rr will not converge to finite values. In order to 
determine the stress states as # ~ 0, we expand the exponential term near # = 0 as 

(2#(o_:0o) 
exp + [1 - 4 # 2 ] 1 / 2 }  = 1 -t- 2#(0 - 0o) + O[#:]. (35) 

If we substitute this first order expansion in # into (32), (33) and (34) for # ~ 0, 

0 (36) 0-rO = 0-rO~ 

0 (7 0 
0-00 = q:20-°o( 0 - 0o) - 0-r..__Ao + (37) 

# v '~# '  

0 0-0 
0-r~ = 3:20-°0(0 - 00) - 0-j_o0 -t- (38) 

# x/~# ' 

0-33 = 0-rr.  (39) 

As # ~ 0, the stress states will exist only if 0-° 0 = 0-0/x/~. Therefore, the stress states of (36) 
through (39) converge to those of the centered fan sector for the Mises materials. 

4. Elastic sector 

The finite element results [34, 35] showed that finite stress elastic sectors exist near the 
crack surfaces at physically reasonable radial distances to the tip for elastic perfectly plastic 
materials. The stresses in the elastic sectors are obtained to satisfy the compatibility equation 
and the equilibrium equations [35] as 

0-~ = 2A8 + 2A90 - 2AloCOS20 - 2All sin20, (40) 

0-oo = 2A8 + 2A90 + 2AloCOS20 + 2All sin 20, (41) 

o-tO = - A 9  + 2Al0 sin20 - 2All cos20, (42) 

0-33 = / / ( 0 - r r  + 0-00). (43) 

Here, As, A9, Alo, and A11 are constants which can be determined by the boundary conditions. 
The generalized effective tensile stress o-g, is now expressed as 

a_2 11/2 0-9e = [ l ( ( o ' r r  - -  0-00) 2 + (0-00 - -  0"33) 2 -t- (0"33 - -  O ' r r )  2)  + -'L'rOI n t- X/3#0-m. (44) 

The generalized tensile effective stress 0-g~ in (44) has a different form from that in (10) 
since in singular plastic sectors 0-33 is determined by/933 = 0 whereas in elastic sectors 
O'33 = l](0-rr n 1- 0-00)" 
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5. Boundary conditions 

The traction along the border between any two sectors must be continuous. This gives 

,*oe( <- ) :  oo( e +), (45) 

and 

cr~o(0~-) = a~o(0 +), (46) 

where 0~- and 0 +, measured in the counterclockwise sense, represent the angles just before 
and after the border angle Oi, respectively. The traction free conditions on the crack surfaces 
are 

(47) 

6. Assembly of stationary crack-tip fields 

For perfectly plastic materials, the solutions of the stationary asymptotic crack-tip fields are 
not unique. Under mode I and plane strain conditions, the fully yielded Prandtl field has been 
proposed and verified for the Mises materials [36, 37]. The fully yielded crack-tip field for 
pressure-sensitive materials based on the Coulomb yield criterion has been proposed in [9]. 
However, the finite element solutions of [ 15] indicate that there exist elastic sectors bordering 
the crack surfaces at physically reasonable distances to the tip for 0 < # < v/3/2. We 
therefore construct the asymptotic crack-tip fields which consist of a constant stress sector, 
a centered fan sector and an elastic sector for pressure-sensitive materials. Because of the 
symmetry of the mode I crack-tip fields, only a constant stress sector can be placed ahead of 
the crack tip, and is followed by a centered fan sector. Figure 2(a) shows the structure of this 
assembly. In this figure 01 and 02 represent the angles delineating these sectors. 

Due to the equilibrium equations, o00 and a~o must be continuous along the border between 
the constant stress sector and the centered fan sector. The other two stress components, a ~  
and a33, in the constant stress sector can be obtained to satisfy the plane strain condition for 
singular plastic sectors in (8) and the yield condition in (5), In the centered fan sector, an extra 
condition P ~  = 0 must be satisfied. In the Appendix, we will show that when a00 and a~0 are 
continuous along the border between a constant stress sector and a centered fan sector, ar~ 
and ~33 must be continuous. 

At 01 the stress state in the constant stress sector should satisfy (21) because of the above 
argument. When a~0 > 0, 01 can be determined uniquely for a given pressure sensitivity # as 

 48, 0 1 =  l t an  - I  [ 1 - 4  21/2 . 
# 

The angle 01 found from (48) gives the same results as those in Li and Pan [9] in which they 
applied the slip line theory of the soil mechanics to rigid perfectly plastic materials. We can 
also see that as # approaches 0, 01 approaches 45 ° which agrees with the solution for the 
Mises materials. 

We now extend the full stress continuity condition to the border of the plastic sector and 
the elastic sector based on the observations of the finite element solutions. From the structure 
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shown in Fig. 2(a) we can find two possible solutions for a given pressure sensitivity. For 
example, for # = 0.4 one solution gave 01 = 32.86 °, 02 = 41.58 °, 0.rr(0) = 0.19530.0 
and 0.oo(0) = 0.92250.0. The other solution gave 01 = 32.860 and 02 = 121.82 °, ar~(0) = 
1.09050.0 and 0.oo(0) = 1.2961a0. The angular stress distributions of the latter solution are 
close to those of the finite element results shown in Fig. 5(a). However, we must recognize 
that the angular stress distribution at the given radius to the tip must be a function of the T 
stress for a given pressure sensitivity. We cannot accept the two solutions as the only two 
possibilities under different T stresses. 

From a close examination of the finite element solutions, we notice a possible plastic 
sector between the centered fan sector and the elastic sector. For simplicity, this sector is now 
considered to have the stress field of a constant stress sector. Therefore, the structure of the 
crack-tip fields, starting from the front of the crack, is in the order of a constant stress sector, a 
centered fan sector, another constant stress sector and finally an elastic sector facing the crack 
surface as shown in Fig. 2(b). In this figure, 01, 02 and 03 represent the angles delineating 
these sectors. 

If one more constant stress sector is included as shown in Fig. 2(b), compared to Fig. 2(a) 
we have to determine four more stress components 0.11, 022, 0"33, and 0"12 in this sector and one 
more angle. We can only have four equations from the full stress continuity condition along 
the border between the second constant stress sector and the centered fan sector. Thus, if we 
use this assembly and the full stress continuity condition between the second constant stress 
sector and the elastic sector, we are short of one condition. If we input the value of al 1 from 
the finite element computations, the results showed that the total angular span of the singular 
plastic sectors becomes much larger than that of the finite element solutions. Therefore, we 
decided to impose only the continuity of 0"oo and 0"~o, and allow the discontinuity of 0"~ and 
0"33 along the border between the second constant stress sector and the elastic sector. Then, 
we are short of three conditions. Therefore, we chose the values of 02, 03 (as defined in Fig. 
2(b)) and 0"11 in front of the crack tip from the finite element solutions and used them as the 
input parameters to determine the crack-tip stress fields. 

As described in Section 3.1, once 0"tl is given, the stress state in the first constant stress 
sector can be determined. At 01 which can be obtained from (48), the stress state of the 
first constant stress sector can then be used to start the integration of (26), (27) and (28). A 
sixth-order Runge-Kutta numerical integration scheme was used to find the stress state of  
the centered fan sector from 01 to 02. Here, 02 was chosen from the finite element solution. 
At 0z, the stress state in the second constant stress sector can be determined by imposing 
the continuity of ~r00 and 0"~0. As shown in the Appendix, when 0"oo and 0"~0 are continuous 
between the two singular plastic sectors, 0"rr and 0"33 must also be continuous. The stress state 
at 03 can be obtained from that of the second constant stress sector. For the elastic sector, the 
traction free conditions in (47) can be used to express A8 and A9 in terms of Al0 and All in 
(41) and (42). Then A8 and A9 can be determined from the continuity of 0"oo and 0"r0 at 03. 
When the analytical solutions in (32), (33) and (34) for the centered fan sector were used, the 
numerical results were the same as those from the Runge-Kutta numerical integration scheme. 

7. Finite element computational model 

A crack in a circular domain under mode I loading is considered. Due to the symmetry, the 
upper half of the circular domain is considered as shown in Fig. 1. Twenty equally spaced 
elements are placed in the angular direction and twenty-four semi-circular tings of elements 
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are placed in the radial direction. Crack-tip elements with collapsed nodes are employed to 
simulate 1/r singularity of the strains. The nodal points in the radial direction are generated 
by a logarithmic scale, and the size of the crack-tip elements in the radial direction is set at 
one ten-thousandth of the outer radius. In the models, there are 500 eight-node elements and 
1591 nodal points. 

The displacement fields in terms of K and T near a crack in linear elastic materials were 
given as the boundary conditions along the circumference of the semi-circular domain as 

K v7 Tr  
+ 

us  - 2G 27r 
(49) 

Here, G represents the shear modulus, and f~(O, u) and gc~(O, u) are the dimensionless func- 
tions given by the linear elastic solutions. Here, a has the range of 1 and 2. In order to maintain 
the proportional loading conditions throughout the loading, the biaxiality parameter (Leevers 
and Radon [38]) was adopted as 

B - Tv/-~a 
1( ' (50) 

where a is the crack length. Now, the loading can be applied through mode I stress intensity 
factor K. The nodal points along the crack ligament were constrained in the vertical direction 
to simulate the symmetry of the mode I crack-tip fields. In the computations, E / a o  = 500 
and u = 0.3 were used. 

The finite element program used in the computations was developed in [ 15]. A displacement- 
based finite element method with an iterative procedure based on a modified Newton-Raphson 
method was used in the analysis. Within the context of the small-strain approach, an incre- 
mental plasticity theory with the pressure-sensitive yield criterion and the normality flow rule 
was incorporated to govern the plastic deformation. 

Based on the small-strain assumption the crack tip is assumed to remain sharp during the 
deformation in the asymptotic analysis. However, when finite deformation is considered, crack 
tip blunting must be taken into account. Therefore, in our small-strain finite element analysis, 
the sampling radius for the stresses and strains should be appropriately far from the crack tip, 
where the effect of the crack-tip blunting almost vanishes. Inside of the region bordered by 
this radius, the deformation is so large that the small-strain approach is no longer applicable. 
McMeeking [39] performed a finite element study based on the finite deformation approach 
under plane strain and small-scale yielding conditions. He showed that for the distance from 
the tip, which is greater than two or three times of the crack-tip opening displacement, the 
deviation of the stress fields from those of the small-strain theory becomes unnoticeable. For 
power-law hardening materials, Shih [40] gave the relation between the crack-tip opening 
displacement and the J-integral under small-scale yielding conditions as 

J 
~t = d n - - ,  (51) 

cr 0 

where 6t is a crack-tip opening displacement, J represents the J-integral [36], a0 is a reference 
stress, and dn is a constant as a function of the hardening exponent. For perfectly plastic 
materials Shih [40] suggested dn = 1, although he inferred from the observations of several 
cracked geometries under fully yielded conditions that there is no unique relationship between 
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J and the crack-tip opening displacement for non-hardening materials [41]. For linear elastic 
materials the relation between J and K is 

K 2 
j _ ( 5 2 )  

Et 

where E ~ = El(  1 - u z) under plane strain conditions. Now, we can relate the remote applied 
K and the crack-tip opening displacement. This will lead us to determine the sampling radius at 
a certain load level. As McMeeking [39], Shih [40], and O'Dowd and Shih [21,22] suggested, 
we took the sampling radius at r = 2J/ao, where J is calculated from (52). From the biaxiality 
factor, we can decide the B value corresponding to the sampling radius. The crack-tip stress 
fields for three different values of #, 0, 0.4, and 0.8, under three different values of T/cro, 0.5, 
0, and -0 .5 ,  were studied. 

8. Computat ional  results and asymptotic solutions 

Figures 3, 5 and 7 show the angular distributions of the normalized stresses under different 
T stresses for # = 0, 0.4, and 0.8, respectively. In these figures, the symbols represent the 
finite element solutions at the integration points located at r = 2J/ao and the solid lines 
represent the corresponding asymptotic solutions. Schematic plots of  the assemblies of the 
various crack-tip sectors under different T stresses are shown in Figs. 4, 6 and 8 for # = 0, 0.4, 
and 0.8, respectively. In these figures, 'C.S.' represents constant stress sector, 'C.E' represents 
centered fan sector and 'Elastic' denotes elastic sector. 

In Fig. 3(a) for # = 0 and T/ao = 0.5, the value of aoo/ao ahead of the crack tip is 2.94 
which is about 1 percent lower than 2.97 of the Prandtl solution [36]. The stress field appears 
to be fully yielded as shown in Fig. 3(a) and agrees very well with the asymptotic solution. 
In Fig. 3(b) for # = 0 and T/ao = O, the value of cr00/cY0 ahead of the crack tip is 2.81 
which is lower than that of the Prandtl solution. For this case, the crack-tip field is not fully 
yielded. Figure 3(c) shows the angular distributions of the normalized stresses for # = 0 and 
T/ao = -0.5. For this case, the value of aoo/ao ahead of the crack tip is 2.20 which is about 
26 percent lower than that of the Prandtl solution. The out-of-plane stress component cy33 in 
the constant stress sector ahead of the tip shows some discrepancies from the corresponding 
asymptotic solution. This was also observed by Tracey [42]. The reason for this phenomenon 
is that the radius of the plastic zone ahead of the crack tip is not significantly larger than 
2J/cro for our pressure-insensitive Mises materials with the ratio of ao/E = 1/500. If we go 
closer to the crack tip, we do see in Fig. 15 that a33 of the finite element solution approaches 
to that of the asymptotic analysis. When the plastic zone size ahead of the crack tip becomes 
significantly larger than 2J/ao, the discrepancies decrease. In Fig. 4 for # = 0, we can see 
that as T/cro decreases, the angular span of the centered fan sector decreases and the angular 
span of the elastic sector increases. This trend was also observed in [20]. The angular span of 
the constant stress sector ahead of the crack tip is not changed by the T stress as indicated in 
(48). 

Figures 5(a), 5(b) and 5(c) show the angular distributions of the normalized stresses for 
# = 0.4 under T/or 0 = 0.5, 0 and -0.5 ,  respectively. It should be noted that the value 
of cr00/cr0 ahead of the crack tip is 1.29 for T/ao = 0.5, 1.26 for T/ao = 0, and 1.09 
for T/or0 = -0 .5 .  It should also be noted that the radial stress near the crack surface for 
T/cro = -0 .5  is compressive as shown in Fig. 5(c) for T/ao = -0.5.  In Fig. 6(a) for 
# = 0.4 and T /a0  = 0.5, the angular span of the second constant stress sector is estimated 
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Fig. 3. The angular variations of the crack-tip stresses normalized by ~ro at 2J/o'o for/z = 0. (a) T/o,o = 0.5, (b) 
T/~ro --- 0, (c) T/o'o = -0.5. The symbols represent the finite element solutions and the solid lines represent the 
asymptotic solutions based on the assembly shown in Fig. 2(b). 

as small as 2.8 ° which is significantly less than those of  Figs. 6(b) and (c) for T/(ro = 0 and 
- 0 . 5 ,  respectively. Since the angular span of  the second constant stress sector is so small for  
T/cr o = 0.5, the stress field of  the finite element solution therefore is close to one of  the two 

fully determined solutions (see Fig. 2(a)) as discussed earlier. 
Figures 7(a), (b) and (c) show the angular distributions of  the normalized stresses for 

/z = 0.8 under T/cro = 0.5, 0, and - 0 . 5 ,  respectively. The values of  (r00/~r0 ahead of  the 
crack tip are 0.69 for T/cro = 0.5, 0.72 for T/cro = 0, and 0.71 for T/(ro = - 0 . 5 .  The 
variation of  the values of  cr00/cr0 ahead of  the crack tip due to the T stress is small for 
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Fig. 4. The schematic plots of the assembly of various sectors for/~ = 0. (a) T/~o = 0.5, (b) T/ao = 0, (c) 
T/cro = -0.5. 

# = 0.8. From our finite element results the value of  tr00 is slightly less than that of  trrr for 
T/cro = 0.5. This can be seen more clearly in Fig. 17(a). From the asymptotic solutions for 
T/cr o = 0.5 the stress state ahead of  the crack tip is close to pure hydrostatic stress state and 
tr00 is still slightly larger than that of  trr~. The result that the value of  tr00 is slightly less than 
that of  tr~ may come from the accumulation of errors during the computations. Schematic 
plots of  the assemblies of  the various crack-tip sectors under different T stresses are shown 
in Fig. 8 for # = 0.8. In this figure, we can see that the angular span of  the elastic stress 
sector is larger than those of  # --- 0 and 0.4 under the same value of  T/cro. The angular spans 
of  the second constant stress sectors for T/cro = 0.5, 0, and - 0 . 5  are 35.9 °, 13.1 °, and 39 °, 
respectively. 

Figures 9(a), (b) and (c) show the normalized plastic zone sizes and shapes from the 
finite element computations for # = 0. The normalized plastic zone radius ahead of  the 
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the asymptotic solutions based on the assembly shown in Fig. 2(b). 

tip, r/(K/go) 2, for T/go = 0.5 is 0.034 which is almost the same as that for T/go = O. 
For T/go = - 0 . 5 ,  the normalized plastic zone radius ahead of  the crack tip is 0.027. The 
normalized plastic zone shapes are completely different for different values of  T/go. The 
maximum plastic zone radius for T/go = - 0 . 5  is about three times those for T/go = 0 and 
0.5. The maximum normalized plastic zone radius is located at 97 ° ~ 109 ° under T/go = 0.5, 
55 ° ~ 82 ° under T/go = O, and 56 ° under T/go = - 0 . 5 .  These results are consistent with 
those o f  [16], [18] and [21.22].  
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Fig. 6. The schematic plots of the assembly of various sectors for # = 0.4. (a) T/~ro = 0.5, (b) T/~o = 0, (c) 
T/~o = -0.5. 

The normalized plastic zone sizes and shapes are shown in Fig. 10 for # = 0.4 under 
T/cro = 0.5, 0, and -0 .5 .  The normalized plastic zone radii ahead of the crack tip are 0.299, 
0.252, and 0.113 under T/go = 0.5, 0, and -0 .5 ,  respectively. As T varies, the trend of  the 
shape change of  the plastic zones is the same as that of  the/z  = 0 case. As shown in Fig. 
10(a) for T/go = 0.5, the maximum normalized plastic zone radius is 0.446 and it is located 
at 88 ° ,-, 101 °. Among these outmost integration points of  the plastic zone shown in Fig. 
10(a) the highest plastic strain is observed at 97 °. As shown in Fig. 10(b) for T/cro = O, 
the maximum normalized plastic zone radius is 0.299 and it is located at 25 ° ,~ 52 °. Among 
these outmost integration points the largest plastic strain is observed at 43 ° . As shown in Fig. 
10(c) for T/cro --= - 0 . 5 ,  the maximum normalized plastic zone radius increases to 0.561 and 
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it is located  at 29 ° ~ 43 °. A m o n g  these ou tmos t  integrat ion points  the largest plast ic strain is 
obse rved  at 34 ° . 

Figures  1 l(a) ,  (b) and (c) show the normal ized  plastic zone  sizes and shapes  for  # = 0.8.  

In Fig. l l ( a )  fo r  T/ao = 0.5, the m a x i m u m  normal ized  plastic zone  radius is obse rved  at 
79 ° ~ 82 ° and 1.8 ° ~ 54 °. In Figs.  l l ( b )  and (c) for  T/ao = 0 and - 0 . 5 ,  the m a x i m u m  
normal i zed  plastic zone radii are located ahead o f  the crack tip for  both  cases. The  m a x i m u m  
normal ized  plast ic zone  radius is located at 1.8 ° ~ 16.1 ° for  T/cro = 0 and 1.8 ° ~ 25.1 ° for  
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Fig. 8. The schematic plots of the assembly of various sectors for/~ = 0.8. (a) T/cro = 0.5, (t3) T/~o = 0, (c) 
T/cro = -0.5. 

T / c 0  = -0 .5 .  The maximum normalized plastic zone radii are 1.868, 0.666, and 0.666 for 
T/ao = 0.5, 0, and -0 .5 ,  respectively. 

In summary, the effects of the T stress on the plastic zone sizes and shapes for pressure- 
sensitive materials are rather complex. However, there are general trends, the plastic zone 
tends to move toward the crack surface as the T stress increases for the same # value. On the 
other hand, as # increases, the normalized plastic zone shifts to the front of the crack tip. 

Figures 12, 13 and 14 show the normalized plastic zone sizes and shapes obtained from 
the linear asymptotic stress fields characterized by K and T under plane strain conditions for 
/z = 0, 0.4 and 0.8, respectively. Although full-field finite element computations should be 
used to determine the plastic zone sizes and shapes, the plastic zones shown in Figs. 12, 13 and 
14 can give us some references for comparisons with the plastic zones from the finite element 
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= 0. (a) 

computations. Figures 12(a), (b) and (c) show the normalized plastic zones, for the Mises 
materials under T/~r o = 0.5, 0 and -0 .5 ,  respectively. In general, the trends of the shapes 
and sizes of the normalized plastic zones in Fig. 12 agree with those in Fig. 9. When both the 
pressure sensitivity and the T stress are considered, the shapes and sizes of the normalized 
plastic zones obtained from the linear elastic asymptotic stress fields deviate from those of 
the finite element computations. If we compare the shapes and sizes of the normalized plastic 
zones for # = 0.4 in Fig. 13 with those in Fig. 10, we can clearly see the differences. For 
# = 0.8 in Fig. 14(a) under T/~ro = 0.5, the size of the normalized plastic zone ahead of the 
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crack tip is twice as large as that of the finite element computation shown in Fig. 11 (a). In 
Figs. 14(b) and (c) for # = 0.8, the shapes of the normalized plastic zones are quite different 
from those of the finite element computations shown in Figs. 11 (b) and (c). However, the 
normalized plastic zones from the elastic asymptotic stress fields and those from the finite 
element computations showed the same general trends of the effects of  the T stress and the 
pressure sensitivity. 

The normalized stresses crij/tr 0 ahead of the crack tip at/9 = 1.9 ° as functions of the 
normalized radius v/(J/tro) are shown in Figs. 15, 16 and 17 for # = 0, 0.4 and 0.8, 
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respectively. As shown in Fig. 15 for # - 0, 0-11 and 0-22 level off whereas 0"33 still increases 
as r decreases. The plastic zone size ahead of the tip is not large when compared with 2J/0"0. 
Therefore the normalized 0"33 shown in Fig. 3, taken at 2J/0"o, does not agree well with the 
corresponding asymptotic solution. In Figs. 16 and 17 for # = 0.4 and 0.8, the plastic zone 
sizes ahead of the tip are large when compared with 2J/0"0. Therefore the normalized stresses 
generally level off at 2J/0-o except in the case of Fig. 16(c) for # = 0.4 and T/0"o = - 0 . 5 .  
This observation has important implications to the generalization of  the Q stress for pressure- 
sensitive materials. 
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9. Discussions and conclusions 

As presented in O'Dowd and Shih [21,22], J sets the size scale of the crack-tip process zone 
over which large stresses and strains develop, while Q scales the near-tip stress distribution 
relative to a high triaxiality reference stress state for pressure-insensitive incompressible Mises 
materials. They proposed two possible reference fields to determine the Q stress. One is the 
field under small-scale yielding conditions and T = 0. The other is the asymptotic HRR 
fields for power-law hardening materials. As plastic hardening decreases to zero, the HRR 
field for power-law hardening materials approaches the fully yielded Prandtl field. Therefore 
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for perfectly plastic materials the stresses with reference to those of the Prandtl field can be 
written as 

~ij = (~ij)~a.dU + Q~o~j, 101 ~ a'/4. (53) 

For pressure-sensitive materials, the fully yielded perfectly plastic solutions are given in [9]. 
When the sampling radius distance 2J /a0  for the stresses is well within the plastic zone at a 
very small ratio of ~r0/E, the asymptotic solutions for singular plastic sectors become good 
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approximations. Then a generalization of the above equation for pressure-sensitive materials 
is 

~rij = (crij)L P + QlltTOt~lit~lj + QE2~ro~2i~Ej + Q33tTot~ai~aj , 10[ ~ 01, (54) 

where 'LP' denote the solutions of Li and Pan [9], and 0l is given by (48). Q22 and Q33 can 
be expressed as functions of Qll from (23) and (9) as 

[1 - / . t 2 / 3 ]  I/2 - - / t  Q l l  (55) 
Q22 = [1 /z2/311/2~# 
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Fig. 15. The stresses normalized by or0 plotted as functions of the radial distances normalized by J/o'o in a 
logarithmic scale for # = 0 from the finite element computations. (a) T/O'o = 0.5, (b) T/o'o = 0, (c) T/o'o = -0.5. 

and 

3 + 2# 2 
Q33 = 3([1  -- # 2 / 3 ] 1 / 2  n t- # ) [1  -- #2 /311 /2  Q I 1 .  (56 )  

As shown in Figs. 15, 16, and 17, the rate of  change of  o33 is finite for most of  the cases 
except in the case of  # = 0.4 under T/ao = 0.5 and 0. Under the circumstances, we select 
the crack-tip fields under small-scale yielding and T = 0 as the reference field. Then we have 

crij = (crij)T=O -~ QltaO~li~lj + Q22oo~2i~2j q- Q33ao63i~3j, I01 ~< 01. ( 57 )  
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Fig. 16. The stresses normalized by tr0 plotted as functions of the radial distances normalized by J/tro in a 
logarithmic scale for # = 0.4 from the finite element computations. (a) Tfiro = 0.5, (b) T/tro = 0, (c) 
T/o'o = - 0 . 5 .  

The difference fields are plotted as functions of  r/(J/~ro) in Fig. 18. We see positive 
slopes for Qll, Q22 and Q33 for # = 0. As r decreases to 0 .3J / t r  0, Qll, Q22 and Q33 seem to 
approach to one value which agrees with the results for incompressible materials in [21,22] 
(the value of  Q33 at 0.3J/~r 0 seems to be a numerical perturbation). For pressure-sensitive 
materials with # = 0.4 and 0.8, we do see relative flat difference fields. For # = 0.8, we see 
some oscillation of  the numerical results. For # = 0.4 under T/tro = 0.5, Q tl, Q22 and Q 33 
can be described by (55) and (56) quite well. This can be seen from the relative flatness of  the 
stresses in Figs. 16(a) and (b). 
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In conclusion, well within the plastic zone the normalized hoop and hydrostatic stress 
ahead of the crack tip decrease, and the normalized plastic zone size increases as the pressure 
sensitivity increases. As the T stress decreases, the normalized hydrostatic stress ahead of the 
crack tip decreases for a given #. As the T stress increases, the plastic zone shifts toward 
the crack surfaces and expands ahead of the crack tip. For # = 0 and 0.4 the plastic zones 
concentrate as two narrow strips inclined at certain angles to the crack line. The plastic zone 
sizes at these angles are much larger than those ahead of the crack tip. However, for # = 0.8 
under T/cro = 0 and -0 .5 ,  the plastic deformation is concentrated along the crack line. 
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The computed stress state in the second constant stress sector which is located between the 
centered fan sector and the elastic sector does not agree well with the asymptotic solution in 
most  o f  the cases. Specifically, the values of  033 of  the finite element solutions in the second 
constant stress sector showed some discrepancies from those of  the asymptotic solutions. 
If  this sector is considered as a transition sector between the centered fan sector and the 
elastic sector, it can be regarded as a non-singular plastic sector as discussed in [23]. But the 
asymptotic  in-plane stress distributions of  this sector are sometimes very close to those of  the 
finite element  computations for several cases as shown in Figs. 3, 5 and 7. Here we allow 
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the discontinuity of 0-,.~ and 033 along the border between the second constant stress sector 
and the elastic sector in our asymptotic analysis. Then we can input more parameters from 
the computations so that the results of asymptotic analysis can be fitted well with those of 
the finite element computations. If we closely examine the stresses obtained from the finite 
element computations in and near this sector, we find that all the stresses are continuous to the 
neighboring sectors. Further investigation of the stresses in this transition sector is needed. At 
least in this paper, we show that (40)-(43) for finite stress elastic sectors can be used to fit the 
computational results quite well. 

One of the motivations to study the near-tip fields for pressure-sensitive materials is to 
investigate the toughening in phase transformation materials. We can compare the phase 
transformation zones of the computational results with those observed in experiments. For 
CeO2-TZP ceramics, the phase transformation gives an initial perfectly plastic response 
[6, 7]. When both the available effective and volumetric phase transformation strains are 
much larger than the effective strain and the volumetric strain at the inception of the phase 
transformation, we have the so-called strong transformation case [4, 33]. In this case, the phase 
transformation zone size and shape should be close to those of the computational results for 
elastic perfectly plastic materials presented here. Indeed, in the finite element computations 
with the consideration of finite phase transformation strains (or plastic strains) as occurred 
in phase transformation materials, the plastic zone size and shape are very close to those 
presented here [43]. However, these computations take much longer computational time than 
the computations for elastic perfectly plastic materials. 

With the consideration of finite phase transformation strains, the computational results of 
Ben Aoun and Pan [44] showed an elongated plastic zone shape with a sharp front under plane 
stress conditions. The elongated phase transformation zone is remarkably close to that reported 
in [8] for both stationary and growing cracks. On the other hand, the phase transformation zone 
based on the linear elastic asymptotic crack-tip stress field and the corresponding Coulomb's 
phase transformation criterion has a completely different shape from that of  the experimental 
observations as reported in [8]. Therefore this close agreement in phase transformation zone 
shape indicates that the constitutive law and the computational modeling presented here can 
be used as a tool to examine the toughening in this class of materials. 

It should be noted that the height of the plastic zone has an important implication to the 
crack growth resistance (R-curve) behavior [5]. As shown in Figs. 9, 10, and 11 for elastic 
perfectly plastic materials, the height of the plastic zone can be influenced significantly by the T 
stress. These results can be considered as approximations for strong transformation materials as 
discussed earlier. Another extreme case is when the phase transformation strains are extremely 
small when compared with the strains at the inception of the phase transformation. In this 
case, we have the so-called weak transformation materials [4, 33]. As shown Figs. 12, 13, 
and 14 which are obtained from the linear elastic asymptotic crack-tip stress field, the height 
of the plastic zone can also be influenced substantially by the T stress. These results can 
be considered as approximations for weak transformation materials. The normalized plastic 
zone heights from the finite element computations for elastic perfectly plastic materials and 
the linear elastic asymptotic crack-tip stress field are listed in Table 1. In general as T/0"o 
increases or decreases from 0, the normalized plastic zone height increases for pressure 
sensitive materials. For # = 0.8, the plastic zone height for elastic perfectly plastic materials 
increases by a factor of 10 when T/0"o increases from 0 to 0.5. However, the normalized 
plastic zone height from the linear elastic asymptotic crack-tip stress field only increases by 
a factor of 3 for # = 0.8 when T/0-o increases from 0 to 0.5. These results suggest that the 
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Table 1. The maximum heights of the plastic zone normalized by 
(K/o'o) 2 from the elastic-perfectly plastic finite element com- 
putations and the linear elastic asymptotic analyses 

I~ T/o'o Plastic zone heights normalized by (K/tro) 2 
Elastic-perfectly plastic Linear elastic 

0 0.5 0.133 0.112 
0 0 0.133 0.132 
0 -0.5 0.370 0.323 
0.4 0.5 0.446 0.377 
0.4 0 0.236 0.293 
0.4 -0.5 0.383 0.496 
0.8 0.5 1.850 1.478 
0.8 0 0.191 0.525 
0.8 -0.5 0.283 0.636 

T stress can significantly affect the toughening due to the phase transformation, especially 
for strong transformation materials. Of course this is based on the assumption that the plastic 
zone heights in terms of  K and T for growing cracks are similar to those for stationary cracks. 

When the phase transformation strains are considered to be finite, the results in [43, 44] 
show that as the radial distance to the crack tip approaches to zero, the near-tip stress and strain 
fields recover the 1/v/7 singularity and the amplitude of the singularity, the near-tip K,  is the 
same as that of the remote applied K. The radial distance to the crack tip, at which the 1/v/7 
singularity is recovered, depends upon the magnitude of  the available phase transformation 
strains. When the full amount of the phase transformation strains (about 4 percent volumetric 
strain) is considered for # = 0.8, the crack-tip opening stress is about 30 times the initial 
generalized phase transformation stress at the radial distance where the near-tip stresses begin 
to be governed by the near-tip K as r decreases. If we assume that the material element of 
the transformation toughened ceramics can sustain such a high stress or more without fracture 
at this radial distance or smaller to the tip, then the phase transformation does not influence 
the near-tip stresses governed by the near-tip K and consequently the initiation value of K.  
However, the phase transformation does affect the R-curve behavior of  growing cracks due 
to the plastic wake. If the critical stress and/or strain at fracture are determined at the critical 
length scale larger than the radial distance where the near-tip K is dominant, then the phase 
transformation strains can affect the initiation value of K.  This should be investigated further 
for different transformation toughened ceramics. 

The values of  I (  at fracture initiation and the R-curve behaviors are quite different under 
plane strain conditions and under plane stress conditions. Under plane strain conditions, the 
T stress has significant effects on the hydrostatic stress ahead of the tip due to the asymptotic 
structure of the crack-tip fields for perfectly plastic materials. On the other hand, under 
plane stress conditions the T stress does not affect the stresses ahead of  the crack tip for 
perfectly plastic materials because of a centered fan sector located ahead of  the tip [47, 44]. 
But the T stress does affect the plastic zone size and shapes for perfectly plastic materials 
under plane stress conditions. When the finite phase transformation strains are considered, the 
general trend of the radial dependence of the crack-tip stresses is the same as that under plane 
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strain conditions. When the full amount of the phase transformation strains (about 4 percent 
volumetric strain) is considered for # = 0.8, the crack-tip opening stress is about 100 times 
the initial generalized phase transformation stress at the radial distance where the near-tip 
stresses begin to be governed by the near-tip K as r decreases [44]. The above discussion on 
the effect of phase transformation on the initiation value of K and the R-curve behavior under 
plane strain conditions should apply to the plane stress conditions but with the understanding 
that the crack-tip hydrostatic stress is lower under plane stress conditions. 

Appendix 
In this appendix, we will show that all the stress components under plane strain conditions 
must be continuous along the border between a singular constant stress sector and a singular 
centered fan sector. First, we combine the plane strain condition in (9) and the yield condition 
in (10) for singular plastic sectors and we arrive at a quadratic equation for art  in terms of 

crro and ~roo as 

Aa2r + Barr + C = O, (A.1) 

where 

A = 1 / 4 -  #2 /3 ,  

B = ( - 1 / 2  - #2/3)tree + #eo/v/'5, 

C = ( 1 / 4 -  #2 /3 ) a2  o + (#ao /x /g)aoo  + (1 - #2 /3 )a2  o - a2 /3 .  

If 1/4 - #2 / 3 # 0 and 

((#~ee oo'~2 _ -TJ  422) (1 - 5# )are /> 0, (A.2) 

Eqn. (A.1) gives real roots for crrr in terms of tr00 and aro. In general, when B 2 - 4AC > 
0, we should have two real roots for trr~. This is the reason that we can have a radial 
stress discontinuity between two constant stress sectors (see some results on radial stress 
discontinuity for the Mises materials in [34, 35]). When B 2 - 4AC = 0 and # # x/3, then 

( O'~33) 2 4 2,2 (A.3) #croo - (1 - 5#  )are = 0. 

Under this condition, we have only one double root for (A. 1) 

(A.4) 

We have closed form solutions in (32) through (34) for centered fan sectors. From the solutions 
of at0 and tr00 in (32) and (33), the condition in (A.3) can easily be shown to be satisfied. 
Therefore in centered fan sectors where an extra condition Pr~ = 0 must be enforced, art  
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must be uniquely determined from 0.re and 0.0o as a double root. This actually leads to a linear 
relation between crr~ and 0.00 as in (A.4). 

Along the border between a constant stress sector and a centered fan sector, or,0 and 0.00 
must be continuous due to the equilibrium. Then 0.~0 and 0.00 of  the constant stress sector 
must satisfy (A.3). On both sides of the border, trrr is linearly related to 0.00 as in (A.4.) From 
(9) 0"33 now can be uniquely determined as a function of 0.r0 and 0.00. Therefore we can say 
that along the border of a singular plastic constant stress sector and a singular plastic centered 
fan sector, when 0.00 and 0.r0 are continuous due to the equilibrium equations under the 
plane strain conditions, 0.r, and 0.33 must be continuous. This full stress continuity condition 
between a constant stress sector and a centered fan sector should be valid for any quadratic 
yield condition by following the above general argument, for example, see the crack-tip fields 
based on Hill's quadratic yield conditions [45, 46]. 
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