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Abstract. In this paper, we investigate the effects of the non-singular stress (T stress) on the mode I near-tip fields 
lbr elastic perfectly plastic pressure-sensitive materials under plane-stress and small-scale yielding conditions. 
The T stress is the normal stress parallel to the crack faces. The yield criterion for pressure-sensitive materials is 
described by a linear combination of the effective stress and the hydrostatic stress. Plastic dilatancy is introduced 
by the normality flow rule. The results of our finite element computations based on a two-parameter boundary layer 
formulation show that the total angular span of the plastic sectors of the near-tip fields increases with increasing T 
stress for materials with moderately la~rge pressure sensitivity. The T stress also has significant effects on the sizes 
and shapes of the plastic zones. The height of the plastic zone increases substantially as the T stress increases, 
especially for materials with large pressure sensitivity. When the plastic strains are considered to be finite as 
lbr transformation toughened ceramics, the results of our finite element computations indicate that the phase 
transformation zones for strong transformation ceramics with large pressure sensitivity can be approximated by 
those lbr elastic-plastic materials with no limit on plastic strains. When the T stress and the stress intensity factor 
K are prescribed in the two-parameter boundary layer formulation to simulate the crack-tip constraint condition 
tor a single-edge notch bend specimen of zirconia ceramics, our finite element computation shows a spear shape 
of the phase transformation zone which agrees well with the corresponding experimental observation. 

1. I n t r o d u c t i o n  

In classical Linear  Elastic Fracture Mechanics (LEFM), it is assumed that the fracture processes 
occurring close to a crack tip are governed by the far-field stress intensity factor K .  Then the 

elastic-plastic problem under small-scale yielding is replaced by a boundary layer formulation 

where the boundary condition is set to either the traction or displacement given by the elastic 
asymptot ic  crack-tip field which is scaled by the stress intensity factor K .  

Larsson and Carlsson [ 1 ] investigated the plane-strain crack-tip fields for compact  tension, 
bend, double edge-cracked,  and center-cracked specimens by finite e lement  computat ions.  

They found differences of  10 to 30 percent in fracture surface displacement,  normal stress, 

and plastic zone size between the finite e lement  solutions of  the specimens.  As suggested 

by Rice [2], Larsson and Carlsson [1] were able to eliminate the differences in the fields by 
introducing the non-singular  stress term in their two-parameter  boundary layer formulat ion 

where the remote  traction or displacement  is expressed in terms of  K and the transverse T 
stress. 

The J integral (Rice [3]) and the HRR crack-tip fields (Hutchinson [4, 5]; Rice and 
Rosengren [6]) provide the basis for nonlinear fracture mechanics.  An excellent review of  the 
, /-based fracture mechanics can be found in Hutchinson [7]. McMeeking  and Parks [8] and 
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Shih and German [9] investigated the requirement of one parameter characterization and the 
.]-dominance of the crack-tip fields. Recently, Beteg6n and Hancock [ 10] attempted to charac- 
terize the crack-tip fields for hardening materials under mode I plane-strain conditions using J 
and T. Their results show that geometries which maintain J-dominance are characterized by 
zero or positive T stresses, while geometries with negative T stresses can be characterized by 
J and T under fully yielded conditions. Al-Ani and Hancock [11] showed that edge-cracked 
bars lose ,]-dominance for the crack length to width ratios less than 0.3 in bending and 0.5 in 
tension. The loss of J-dominance can be explained by negative T stresses, while geometries 
with positive T stresses retain J-dominance under fully yielded conditions. The T stress has 
been subsequently validated by experimental results as an appropriate parameter to character- 
ize crack-tip constraint conditions even under fully yielded conditions (Hancock, Reuter, and 
Parks [ 12]). 

Also the angular variations of the mode I near-tip stresses as functions of the T stress 
were studied by Du and Hancock [13] for elastic perfectly plastic materials under plane strain 
conditions. Their results show that the crack-tip field appears to be an incomplete Prandtl field 
with elastic sectors bordering the crack faces. However, they did not attempt to characterize 
the angular variations of the near-tip stresses in their elastic sectors as in Dong and Pan [14] 
and Kim and Pan [15]. Kim and Pan [15] resolved the asymptotic structures of the mode I 
near-tip fields for pressure-sensitive materials under plane strain conditions. Their numerical 
results show that the solution of the elastic sector of finite stress given by Dong and Pan [ 14] 
are essential to obtain the complete angular variation of the near-tip stresses under small-scale 
yielding conditions. The numerical results of Kim and Pan [15] also show the effects of the 
T stress on the near-tip fields and the sizes and shapes of plastic zones for pressure-sensitive 
materials. 

O'Dowd and Shih [16, 17] investigated the J - Q annulus concept using a two-parameter 
boundary layer formulation under plane strain conditions. Their work shows that J sets the 
size scale over which large stresses and strains develop and Q is the measurement of the stress 
triaxiality ahead of the tip. Negative (positive) Q values mean that the hydrostatic stress is 
decreased (increased) by Qcr0 from the Q = 0 reference state (here, o0 being a reference 
stress). Therefore Q provides a quantitative measure of the crack-tip constraint. The J - Q 
characterization of the near-tip fields can be used from small-scale yielding to fully yielded 
conditions. 

Most of the research discussed above on the constraint conditions for pressure-insensitive 
Mises materials and on the near-tip fields for pressure-sensitive materials are under plane strain 
conditions. There are asymptotic analyses of near-tip fields under plane stress conditions. For 
example, Hutchinson [5] obtained the asymptotic crack-tip field for power-law hardening and 
perfectly plastic Mises materials. Pan and Shih [18] and Pan [191 obtained the asymptotic 
crack-tip fields for orthotropic materials. Li and Pan [20] obtained the asymptotic crack-tip 
fields for pressure-sensitive materials. Recently, Ben Aoun and Pan [21] obtained the near- 
tip fields for elastic perfectly plastic pressure-sensitive materials under small-scale yielding 
conditions by both finite element computations and asymptotic analyses. 

In this paper, we study the effects of the non-singular stress on mode I near-tip fields 
for pressure-sensitive materials under plane-stress and small-scale yielding conditions. We 
first investigate the near-tip fields for elastic perfectly plastic pressure-sensitive materials by 
finite element methods using the two-parameter boundary layer formulation characterized by 
K and T under monotonically increasing proportional loading conditions. The asymptotic 
near-tip stress fields are assembled and compared with the finite element results. Then we 
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consider the cases where the plastic strains are finite as the phase transformation strains in 
transformation toughened ceramics. We explore the near-tip stress and strain distributions for 
strong phase transformation ceramics where the phase transformation strains are much larger 
than the strains at the inception of phase transformation. We then compare the sizes and shapes 
of these phase transformation (plastic) zones with those of perfectly plastic materials. Finally, 
we investigate the phase transformation zone near a crack by the two-parameter boundary 
layer formulation characterized by K and T which represent the constraint conditions for a 
crack in a single-edge notch bend specimen of ceria-partially-stabilized zirconia polycrystals 
[22]. Our computational result is compared with the corresponding experimental result. It 
should be noted that the phase transformation zone near the crack in the zirconia ceramics 
appears to be a shape of a long narrow spear which has not been simulated by any theoretical 
or computational analysis. 

2. Constitutive laws 

In this study, we account for pressure-sensitive yielding or phase transformation by a Coulomb- 
type criterion [23] which is a linear combination of the mean stress a,~ (= crkk/3) and the 
tensile effective stress cr~ (= (38 i j s i j / 2 )  1/2 where 8ij = aij - a ~ i j  ), as in [15]. Here, ~Sij 
is the Kronecker delta and subscripts i, j ,  and k have the range of 1 to 3. The Coulomb-type 
yield criterion is expressed as 

f(~Tij ) = C% + VY3#crra =crue = (TO, (1) 

where f(c~ij) represents the yield surface in the stress space, crg~ is the generalized tensile 
effective stress, and # represents the pressure sensitivity of the material. For perfectly plastic 
materials, age is taken as a constant and is denoted as a0. The Coulomb-type yield condition 
and the familiar Mises yield condition are plotted in Figure 1. Note that the Coulomb-type yield 
criterion reduces to the Mises yield criterion when # becomes zero. For HY-80, maraging, 
4310, and 4330 steels, Spitzig et al. [24, 25] showed that the values of # lie between 0.014 
and 0.064. For polymers, Kinloch and Young [26] reported that the values of Ft lie between 
0.10 and 0.25. For zirconia-containing ceramics, Chen [27] indicated that the values of # for 
phase transformation are 0.55 and 0.77 for Mg-PSZ and Ce-TZP, respectively. Yu and Shetty 
[22] reported that the value of # for phase transformation can go up to 0.93 for Ce-TZR 
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Figure 2. The  coordinate  conven t ions  and finite ele- 
men t  model .  

Figure 3. The  general ized effective s tress  as a funct ion  
o f  the effective plastic or phase  t ransformat ion  strain 
for perfectly plastic or phase  t ransformat ion  materials.  

Here, we account for both the shear and hydrostatic stresses in the yield or phase transfor- 
mation criterion. It should be noted that both shear and volumetric strains occur in the trans- 
formation from the tetragonal to monoclinic phase. Our phase transformation criterion differs 
from that in the previous studies of transformation toughening by McMeeking and Evans 
[28], Budiansky et al. [29], Rose [30], Amazigo and Budiansky [31], Stump and Budiansky 
[32], and Hom and McMeeking [33] where only the volumetric part of the phase transfor- 
mation was considered. Lambropoulos [34] derived a constitutive formulation of plasticity 
type including the effects of shear for phase transformation ceramics and his results indicated 
that both shear and dilatational components of phase transformation contribute toughening 
based on the unperturbed linear elastic asymptotic crack-tip solution. Giannakopoulos and 
Olsson [35] recently investigated the influence of the nonsingular stress term on transforma- 
tion toughening based on the pure dilatational phase transformation criterion and maximum 
principal stress phase transformation criterion. 

We consider a planar crack problem as shown in Figure 2 where the Cartesian coordinates 
X l and x2 represent the in-plane coordinates, the polar coordinates r and 0 are centered at 
the crack tip, and x3 represents the out-of-plane coordinate. Under plane stress conditions, 
we have O"33 ~ 0"32 = 0.31 = 0 o r  0"33 = 0"37. ~--- 0"30 = 0 .  Therefore, the yield or phase 
transformation criterion can be expressed in the Cartesian coordinates as 

# 
f ( - i j )  = (0.1 ~, + 0.~2 - 0.,,0.22 + 30.,~2) '/2 + ~ ( - l ,  + -22) - 0.0 = o, (2) 

or in the polar coordinates as 

"1~2 ~1/2 ~3 ( f ( 0 - i j )  = (O-2T + °-20 - 0-,0-00 + -'",.oJ + 0.~ + 0.00) - ~o = O. (3) 

Further discussions on pressure-sensitive yielding can be found in Rudnicki and Rice [36] 
and Needleman and Rice [37]. Detailed information on a deformation plasticity version of the 
constitutive law can be found in Li and Pan [38]. 
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For Ce-TZP ceramics, the phase transformation gives an initial perfectly plastic response 
[39]. When both the available effective and volumetric phase transformation strains are 
much larger than the effective strain and the volumetric strain at the inception of the phase 
transformation, we have the so-called strong transformation case [29]. In this case, the phase 
transformation zone size and shape may possibly be close to those of the computational 
results for elastic perfectly plastic materials. Therefore we first investigate the near-tip fields 
and plastic zones for elastic perfectly plastic materials. It should be noted that the increased 
toughness due to phase transformation can be related to the height of the phase transformation 
zone [28]. 



228 ZE.A. Ben-Aoun and J. Pan 

g l  

1.2 

0 . 8 -  

0 .4  -- 

0.0- 

-0.4 J 

-0.8 -1 
- 1.2 

- 1,6 
1.2 .... 

O.8 - 
ta) 

0 .4 -  

"0 0.0 

- 0.4 

- 0.8 

-1.2 

- 1.6 

0 ,8  - 

0 . 4 -  

oo;  
- 0.4 

- 0.8 

-1.2 0~: 

- 1.6 

t~ = 47.0 1~ = 67.7 
~ g=0.4-0.5 

! i T/~o = 
I ' I ' ' ~ I [ "  ' I "- ~ r "~  

i % i° 

: i 0 0  

= 51.0 i [3 = 78.4 
g = 0.4 

f '  ' I ' I ' I ' [ ' I ' I ' I " - r - - -  

I 

- . i ~ :  . i 

r/~=o.s 
I ' I ' "T--' I I 

20 40 60 80 100 120 140 160 180 

Angle 0 

~t = 0 . 4  

T/(~o = -0,5 

Elastic 

g = 0 . 4  

TIo o = 0 

Elastic 

~ = 0 , 4  ~ I  
"I7c~ o = 0.5 ~i'~3 

Elastic 

. . . . .  

N N  

Figure 6. The angular variations of the crack-tip stresses nor- Figure 7. The asymptotic crack-tip structures for 
realized by ,9"o at r = 2J/m~ for It = 0.4. Top: T/cro = - 0 . 5 .  elastic perfectly plastic materials with/~ = 0.4. 
Center: T/~r~ = 0. Bottom: T/cro = 0.5. Top: T/cro = - 0 . 5 .  Center: T/~ro = 0. Bottom: 

TIm~ = 0.5. 

In the experiment of Yu and Shetty [22], an elongated shape of the phase transformation 
zone with a sharp front was shown ahead of a crack tip in Ce-TZE It cannot be explained by 
using the unperturbed linear elastic asymptotic crack-tip stress field and the Coulomb phase 
transformation criterion. The main reason for this disagreement could be that the phase trans- 
formation in these ceramics is strong and therefore using the elastic asymptotic solution is 
inappropriate. Therefore we here consider the large amount of phase transformation from the 
plasticity viewpoint and the constraint condition experienced near the crack tip using the two- 
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Figure 9. The asymptotic crack-tip structures for 
elastic perfectly plastic materials with tL = 0.8. 
Top: T/cro = - 0 . 5 .  Center:  T/~ro = 0. Bottom: 
T/~o = 0.5. 

parameter (K and T) boundary layer formulation from the fracture mechanics viewpoint. We 
also consider the finite plastic (phase transformation) strains that occurred in these ceramics. 

In Figure 3, the generalized effective stress crg~ is shown as a function of the effective plastic 
(phase transformation) strain c~(= 2 -p .p 1/2 f(Scijcij ) dr) accumulated throughout the deformation 
history. As shown in the figure, for perfectly plastic materials the effective plastic strain can be 
infinite. However, for transformation toughened ceramics, only a finite amount of the phase 

T is available. After the exhaustion of the effective phase transformation effective strain G 
transformation strain, the material becomes elastic again. The effective and volumetric plastic 
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Figure 10. The normalized plastic zones from 
the finite element computations for perfectly 
plastic materials with # = 0. Top: T/~o = 
-0.5.  Center: T/ao = 0. Bottom: T/ao = 0.5. 

Figure 11. The normalized plastic zones from the finite 
element computations for perfectly plastic materials with 
# = 0.4. Top: T/(ro = -0.5. Center: T/(ro = 0. Bottom: 
T/(ro = 0.5. 

(phase t ransformat ion)  strain increments  are related by a plastic di la tancy factor. Since the 

normal i ty  f low rule is a s sumed  here, the pressure sensit ivity fac tor  equals  the plastic d i la tancy 
factor. A detai led descr ipt ion o f  the const i tut ive law with the normal i ty  flow rule for  the plast ic 
strain rate can be found  in D o n g  and Pan [40]. 

3. Finite  e lement  model  

We consider a crack in a circular domain of  radius r0. Due to the symmetry of  mode I loading, 
we select the upper half of  the circular domain as shown in Figure 2. The semi-circular domain 
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is entirely discretized by a mesh of  8-node serendipity quadrilateral elements.  In the immediate  
crack-t ip region, we use a ring of  18 wedge-shaped elements  of  size ri and we choose  a ratio 
of  ri to r0 of  1 0 - 5 ( r J r 0  = 10-5).  Elements  in the 0 direction are equally distributed f rom 
0 to 7r. The  wedge-shaped elements  are surrounded by 24 semi-circular  strips generated by 
a logari thmic scale in the radial direction. Therefore,  there is a total of  450 elements  in the 
mesh. For  the wedge-shaped elements,  the collapsed nodes technique is employed  to simulate 
the 1/7" singularity needed for the strains in the plastic sectors near the tip. 
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Figure 15. The  normal ized  plastic zones from the linear elas- 
tic asymptot ic  stress fields for l* = 0.8. Top: T /o 'o  = - 0 . 5 .  

Center: T/c~o = 0. Bottom: T/m) = 0.5. 

In the classical linear elastic fracture mechanics, the near-tip fields are assumed to be 
governed by the far-field mode I stress intensity factor t(. Consequently, the small-scale 
yielding problem is replaced by a boundary layer formulation with the boundary condition 
along the circumference of the domain prescribed as 

K 0 
ai,i - ~ r f i J ( ) ,  (4 )  
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Figure 16. The normalized phase transforma- 
tion zones tbr/~ = 0.8.  Top:  T/go = - 0 . 5 .  

Center: T/g~ = 0. Bo t t om:  T/~ro = 0.5.  

Figure tZ The normalized fully phase transformation zones 
f o r ~  = 0 . 8 . T o p :  T/ao = - 0 . 5 .  Cen te r :  T/~ro - -  0. Bottom: 
T/m~ = 0.5.  

where crij represent the linear elastic asymptotic crack-tip stresses, and fij  (0) are dimensionless 
functions given by the linear elastic asymptotic solution (for example, see Kanninen and 
Popelar [4t ]). The familiar form in (4) is the leading term of the asymptotic crack-tip stress 
field derived by Williams [42] and Irwin [43]. 

When we include the T stress in the asymptotic crack-tip stress solution, the boundary 
condition along the circumference of the domain becomes 

K 
Oij -- ~ f i j ( O )  -1- r ~ l i ~ l j ,  ( 5 )  

- , / z a - r  
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where T is the normal stress parallel to the crack faces. The magnitude of the T stress is 
defined through a biaxiality parameter B introduced by Leevers and Radon [44] 

B = T ~  (6) 
K 

When (5) and (6) are combined, we can see that the stress field is scaled by the magnitude 
of I( for a given B. Therefore a proportional loading condition is maintained along the 
circumferential boundary as we monotonically increase the magnitude of K. 
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Figure 19. The effective phase transformation strain at 8 = 62 ° as a function of the radial distance normalized by 
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In this study the loading is applied through the in-plane displacements  ui along the cir- 
cumferential  boundary o f  the semi-circular domain as 

K (v0) 1/2 T 
ui = ~ ~ fti(O, u) + ~rofii(O,u), (7) 

where E and G represent Young's  modulus  and shear modulus,  respectively. The dimen-  
s ionless  functions gi(O, u) represent the linear elastic asymptotic  crack-tip displacements  as 
functions o f  0 and Poisson's  ratio u (for example,  see [41]). The d imens ionless  functions 
~i(O, u) represent the solut ions as functions o f  0 and u due to the non-singular stress T.  
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4. Numerical results for perfectly plastic materials 

Finite element computations were performed for # = 0 (for pressure-insensitive Mises mate- 
rials), 0.4, and 0.8. These values of # were chosen to encompass a full range of engineering 
materials. In all the results reported in the following, the ratio of Young's modulus E to the 
generalized tensile effective stress or0 was taken as 500, and Poisson's ratio u was taken as 
0.3. 

The sampling Gauss points for our stress results are chosen at a radial distance of 2J/cro, 
or equivalently 2I(2/(Ecro) [16]. This sampling radius was chosen so that the integration 
points are well inside the plastic zone, to give a good approximation to the near-tip stresses, 
and away from the effects of the crack blunting. A detailed study on crack-tip blunting can be 
found in McMeeking [45]. 

The numerical results are compared with those of the corresponding asymptotic analyses 
based on the research work of Ben Aoun and Pan [21]. It should be briefly mentioned that 
there are three types of sectors for the near-tip fields under plane stress conditions. These are 
constant stress (C.S.) sector, centered fan (C.E) sector, and elastic sector. The assembly of the 
sectors based on the corresponding finite element solutions is detailed in [21]. 

The crack-tip stress fields for # = 0 are shown in Figures 4 and 5. The angular distribution 
of the stresses in the polar coordinates are plotted in Figure 4 where the top figure is for 
T/~ro -- -0 .5 ,  the middle one is for T/cro = 0, and the bottom figure is for T/cro -- 0.5. In 
these plots, the symbols represent the stresses of the Gauss points which form a fan surrounding 
the crack tip, and the solid lines represent the stresses evaluated by the asymptotic analysis 
detailed in [21]. All the stresses are normalized by the reference stress or0. Figure 5 shows 
a schematic distribution of the crack-tip sectors for various T stresses. In these plots, C.S. 
represents a constant stress sector, C.E represents a centered fan sector, and Elastic represents 
an elastic sector. Similar results for # = 0.4 are plotted in Figures 6 and 7, and the results for 
tt = 0.8 are plotted in Figures 8 and 9. 
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In these figures, we can see that the finite element solutions (symbols) agree well with 
the corresponding asymptotic solutions (solid lines). The excellent agreement attests to the 
accuracy of our finite demen t  computations and the corresponding asymptotic solutions. It 
is also important to note that all the stress components including crrT are continuous in the 
0 direction in contrast to the existence of the radial stress discontinuity in the asymptotic 
solutions where the material surrounding the crack tip is assumed to be fully yielded in [5] 
and [20]. When the crack-tip stresses from our computations are plotted in the Cartesian 
coordinates, the stresses appear to be constant in the constant stress sectors. 

As shown in Figure 6 for # -- 0.4, when the T stress increases, the angular span of the 
centered fan sector increases slightly, from 47 ° for T/cr o = -0 .5 ,  to 51 ° for T/cro = 0, and 
to 58.8 ° for T/cr o = 0.5. This effect is more pronounced for the angular span of the constant 
stress sector, which is 20.7 ° for T/cr 0 = -0 .5 ,  27.4 ° for T/¢r 0 = 0, and 44.7 ° for T/¢r0 -- 0.5. 
Adding these two effects, we can see that the angular span of the plastic sectors increases 
for increasing T stress. This behavior was consistently observed for # = 0.8. However, this 
trend is not observed for the case of # -- 0 where T/cr o = - 0 . 5  results in a slight increase 
of  the angular span of  the plastic sectors when compared with that of T/¢ro = 0. Therefore 
it is reasonable to expect that for # close to 0, the trend should be close to that of # = 0. 
Nevertheless, for a moderately large #, the angular span of the plastic sectors increases as the 
T stress increases. It should be mentioned that for T/~r o = 0, the angular spans of the plastic 
sectors at different # 's  are slightly different from those in [21]. The reason is that the sampling 
Gauss points for the angular variation of the stresses are different in the two investigations. In 
this study the sampling Gauss points are located at r = 2J/cr o whereas the sampling Gauss 
points in [21] are located at r/% .~ 10 -2  where r v represents the plastic zone size at 0 -- 0. 

The plastic zones from the finite element solutions, normalized by JE/cr~ (or K2/cr2), 
are shown in Figures 10, 11 and 12 for # = 0, 0.4, and 0.8, respectively. The dots in these 
plots represent the Gauss points in their plastic state. The normalized plastic zones based 
on the linear elastic asymptotic stress fields under plane stress conditions for # = 0, 0.4, 
and 0.8 are plotted in Figures 13, 14, and 15, respectively. In these figures, we can clearly 
see that the T stress has significant effects on the size and shape of the plastic zone for 
both pressure-insensitive and pressure-sensitive materials. In Figure 12 for a large pressure 
sensitivity of  # -- 0.8, the plastic zone height increases substantially when T increases. As 
shown in Figure 15 for # = 0.8 the linear elastic asymptotic stress fields give a similar 
trend on the plastic zone height as a function of the T stress. However, the linear elastic 
asymptotic stress field cannot give the plastic zone of a long narrow shape as in Figure 12 
for elastic perfectly plastic materials at T/cro = -0 .5 .  In summary, full-field finite element 
computations are needed to accurately characterize the heights and shapes of the plastic zones 
for perfectly plastic materials. The plastic zone solutions based on the linear elastic asymptotic 
stress fields, however, can be used as good approximations for weak transformation materials 
where the available phase transformation strains are much smaller than the effective strain 
and the volumetric strain at the inception of the phase transformation. 

For perfectly plastic materials under plane stress conditions, a centered fan sector is located 
ahead of the tip. The stresses in the centered fan sector are fully determined [21]. Therefore 
the T stress has no influence on the stresses and hydrostatic tension directly ahead of the tip. 
However, the T stress can affect the angular spans of the centered fan sector, the neighboring 
constant stress sector and the elastic sector bordering the crack face as well as the sizes and 
shapes of plastic zones. On the other hand, for perfectly plastic materials under plane strain 
conditions, a constant stress sector is located ahead of the tip. The angular span of the front 
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constant stress sector is determined for a given pressure sensitivity [15]. Therefore the T stress 
has no influence on the angular span of the front constant stress sector. The T stress, however, 
affects the angular spans of the other crack-tip sectors: a centered fan sector, another constant 
stress sector and an elastic sector. It turns out that the T stress has significant effects on the 
stresses and hydrostatic tension directly ahead of the tip for materials with small pressure 
sensitivity. However, as the pressure sensitivity increases, the effects on the stresses and 
hydrostatic tension directly ahead of the tip decreases, as shown in [15]. In general, when the 
value of T decreases, the stresses and hydrostatic tension directly ahead of the tip decrease. 
The T stress can also affect the sizes and shapes of plastic zones as shown in [15] under plane 
strain conditions. 

5. Numerical results for phase transformation materials 

Chen [27] reported that # = 0.55 for Mg-PSZ and # = 0.77 for Ce-TZE Yu and Shetty 
[22] reported that # = 0.93 for Ce-TZE Because of the high computational cost due to the 
introduction of the second elastic behavior after the exhaustion of the phase transformation 
strains, we only investigate the case with a large pressure sensitivity of # = 0.8. The results 
will be used to compare with those of # = 0.8 for perfectly plastic materials. The available 
effective plastic (phase transformation) strain E~ is taken to be 0.029 which is related to the 
volumetric phase transformation strain of 0.04 by the normality flow rule for # = 0.8. 

The normalized phase transformation zones for # = 0.8 are given in Figure 16 for various 
T stress values. The phase transformation zone is defined where the phase transformation 
criterion is met and/or the phase transformation strains are not zero. In these plots, the phase 
transformation zones are normalized by JE/cr 2 (or I(2/~r 2) in the zl-  and zz-directions. The 
dimensions in both directions are kept to the same scale to illustrate the actual geometry of 
the transformation zones. In the top plot of Figure 16 for T/cro = -0.5 ,  we note that the 
plastic zone is narrow and concentrated in front of the crack. In the bottom plot of Figure 
16 for T/ao = 0.5, the phase transformation zone becomes wider. The height of the phase 
transformation zone increases substantially as T/~ro increases from -0 .5  to 0.5. 

When we compare Figure 16 for phase transformation materials with Figure 12 for perfectly 
plastic materials, the phase transformation zone and the plastic zone are almost identical for a 
given T/cro. The only difference is that the front of the phase transformation zone appears to 
be sharper for phase transformation materials (note that two fronts appear for T/ao = 0.5). 
This sharper front for the phase transformation materials can be thought of as the consequence 
of the second elastic response after the exhaustion of phase transformation strains. A similar 
trend of a sharper front of the phase transformation zone is also shown due to the second 
elastic response after the exhaustion of the phase transformation strains under plane strain 
conditions (Kim and Pan [46]). 

The normalized fully transformed zones are plotted in Figure 17 for various T stresses. 
The fully transformed zone is defined where the material is in the second elastic state after 
the exhaustion of the phase transformation strains (see Figure 3). In these plots, the phase 
transformation zones are normalized by JE/cr 2 (or t(2/a 2) in the z l- and z 2- directions. The 
dimensions in both directions are kept to the same scale to illustrate the actual geometry of the 
fully transformed zones. We note that the heights of the fully transformed zones are relatively 
small when compared to those of the phase transformation zones for T/~ro = 0 and 0.5. The 
fully transformed zone is leaning forward for T/cro = -0.5.  It shifts toward the faces of the 
crack as T increases. 
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The radial variations of the generalized effective stress aae at 0 -- 62 ° are plotted in 
Figure 18 for various T stresses. Note that in Figure 16 the angle 0max, where the maximum 
height of the phase transformation zone occurs, varies approximately from 30 ° to 60 ° as T/c~o 
increases from -0 .5  to 0.5. If the phase transformation zone is assumed to be controlled by 
the hydrostatic stress only and the phase transformation zone shape is assumed to be based 
on the unperturbed linear elastic asymptotic crack-tip stress field, the maximum height occurs 
at 0 = 60 ° [28]. Here the results at 0 = 62 ° is used to compare the distribution of the phase 
transformation stress at this angle for the three cases with different values of T/cro. In these 
figures, the generalized effective stress is normalized by the reference stress cr 0 (at which 
the transformation occurs), and the radial distance is normalized by JE/cr 2, or equivalently 
K2/cr 2. As shown in Figure 3, a fully transformed material element can be recognized by 
the value of the generalized effective stress which is larger than the reference stress cr 0. The 
transformation zone size in the 0 = 62 ° direction therefore can be recognized by the extent of 
the flat region in these plots. As shown in Figure 18, the transformation zone size increases 
as T increases. 

The radial variations of the effective phase transformation strain ee are plotted in Figure 19 
for 0 = 62 ° for various T stresses. The flat regions in these plots are representative of the fully 
transformed zones. In the top plot of Figure 19 for T/cr o = -0.5 ,  we can see that most of the 
Gauss points where the phase transformation occurs are actually fully transformed (18 out of 
21 phase transformed points are fully transformed). This demonstrates that, for the negative 
T stress, the size of the phase transformation zone in the 0 = 62 ° direction becomes close to 
that of the fully transformed zone. 

As shown in [22], the phase transformation zone near a crack in ceria-partially-stabilized 
zirconia polycrystals (# = 0.93) appears to be a long narrow spear. This spear shape of the 
phase transformation zone cannot be explained by the analysis based on the unperturbed linear 
elastic asymptotic crack-tip stress field. Yu and Shetty used single-edge notch bend specimens 
with w (width) = 15 mm, S (support span) = 60 mm and a (precrack length) = 3.0 to 3.5 mm. 
For the zirconia ceramics, the available volumetric phase transformation strain is 0.04 and 
the generalized tensile effective stress cr 0 for phase transformation is 295.8 MPa. We take the 
biaxiality factor B = -0 .3  for the single-edge notch bend specimen with a/w = 0.2 from [44]. 
For the geometry and the loading of the specimen at K = 9.03 MPa, T/~r o is estimated to be 
-0.094. In our calculation, we use an effective phase transformation strain ce of 0.025 which 
is related to the available volumetric phase transformation strain of 0.04 by the normality flow 
rule for i t = 0.93. 

Figure 20 shows the normalized phase transformation zone from our computation. Our 
computational result gives a transformation zone of a spear shape which has the length to 
height ratio of about 7. Yu and Shetty [22] reported the transformation zone of a spear shape 
with the length to height ratio of about 13 in their experiments. At least our computational 
result presented here gives a phase transformation of a spear shape which cannot be produced 
by the unperturbed linear elastic asymptotic stress field as presented in [22]. 

6. Conclusion 

In this paper, we studied the effects of the T stress on the plane-stress crack-tip fields for elastic- 
plastic pressure-sensitive materials. For elastic perfectly plastic materials, good agreement 
between the computational results and the corresponding asymptotic solutions attest the 
accuracy of our numerical procedure. Due to the high computational cost, we only investigated 
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the case with finite phase transformation strains for t t = 0.8. The computational results 
indicate the effects of  the T stress on the radial distribution of  the phase transformation 
strains. The computational results also indicate that the sizes and the shapes of  the phase 
transformation zones for strong phase transformation materials with large pressure sensitivity 
can be approximated by those for elastic perfectly plastic materials. 

Finally we obtained the phase transformation zone based on the two-parameter boundary 

layer formulation to simulate the constraint condition experienced by the crack in the experi- 
ment of  [22]. Our computational result shows a spear shape of  the phase transformation zone 
which agrees well with the experimental observation. It should be noted that the spear shape 
of the phase transformation zone has not been explained previously. In this study, we at least 
identify three important factors that result in the spear shape of  the phase transformation zone: 
the pressure and shear sensitivity of  phase transformation, the finite phase transformation 
strain, and the constraint condition (the T stress). Further modification of  the phase trans- 
formation criterion at large hydrostatic stress and the hardening or softening behavior of  the 
phase transformation may result in better agreement with the experimental results. 
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