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Abstract. The chipping process in a brittle material subjected to a uniformly applied edge load has been investi-
gated. The present analysis extends earlier work by recognizing that as the chip is formed it may bend and change
the loading at the crack tip. This geometry change introduces a nonlinear effect and has significant influence on
the phenomenon. The nonlinear effect was demonstrated by incorporating it into an analytical model for a crack
propagating along an interface parallel to the free surface. A finite-element analysis was then conducted to examine
the crack trajectory formed in a homogeneous material. This numerical analysis showed that the crack reaches a
maximum depth, and then deviates back to the free surface to form a spall. The form of this trajectory results
from the additional bending moment acting at the crack tip induced by the bending of the chip and the consequent
displacement of the applied load. The length of the spall was found to be approximately proportional to the square
root of Ed5/2/K|C, where K¢ is the fracture toughness of the materiél js the appropriate modulus of the
material, and! is the depth over which the edge load is applied.
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1. Introduction

Spalling, in which a crack runs beneath a free surface before breaking through to the surface
and forming a chip, occurs in many situations of technological importance, such as flint
knapping (Fonseca et al., 1971; Cotterell et al., 1985), indentation (Marshall et al., 1982),
failure of layered materials (Hutchinson and Suo, 1992), and in machining. Thouless et al.
(1987) studied this problem both experimentally and analytically. The basic problem studied
in that paper is illustrated in Figure 1a. A homogeneous, isotropic, elastic plate contains a
plane crack of lengtlL, much longer than its depth beneath the free surface. The region
between the crack and the free surface is subjected to a concentrated load per unit tifickness
exerted along a line of actiod,/2 below the surface. This loading configuration is equivalent

to the one shown in Figure 1b, where the laR&dacts along the neutral axis of the segment
between the crack and the free surface, in conjunction with a bending moment

M=Pe=§(h—d) @)

The crack-tip stresses for this class of problem are generally mixed mode and characterized
by stress-intensity factor, and K, given by (Thouless et al., 1987)

K = 0.434Ph~Y2 + 1.934Mh~3/2,

2
Ky = 0.558Ph~Y/? — 1.503Mh~3/2, @)
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Figure 1. Geometry and loading for edge cracking. The physical configuration is shown in (a), while the idealized
configuration is shown in (b). In (b), an eccentric lo&qd has been replaced by a load acting along the neutral axis
of the segment between the crack and free surface and a bending mament

A series of experiments in which sheets of PMMA and glass were subjected to a com-
pressive edge load revealed that, irrespective of the location of initial crack, the crack always
followed a steady-state trajectory parallel to the free surface and at a characteristic depth
below it (Thouless et al., 1987). The occurrence of a steady-state trajectory was explained
with the assumption that the crack followed a trajectory along wiigh= 0. Substitution of
Equation (1) into (2) shows that, for the geometry shown in Figur€,1= 0 whenh = 3.94
(Thouless et al., 1987). Furthermore, it was shown that this is a stable trajectory. A crack
shallower than this depth will be subjected to a positive valu& ptthat will tend to drive
it deeper; a crack deeper than this will be driven towards the free surface. Comparisons of
this predicted steady-state trajectaty = 3.9d) with experimental observations showed a
discrepancy. The crack was observed to be somewhat shaligwer2.54) than predicted.

This difference was believed to arise from surprisingly strong effects of the other free surface
(Drory et al., 1988; Thouless and Evans, 1990). In the vicinity of the depth wheee 0, K,

has a fairly mild gradient with respect to depth. Small changég,inan have alarge influence

on the depth at whiclk;, = 0 (Hutchinson and Suo, 1992). Subsequent work showed that
identical mechanics apply when a film under a state of residual tension delaminates from a
brittle substrate. Provided the substrate is not too tough, the film can delaminate by cracking of
the substrate. Again, the crack seeks okt a= 0 trajectory that is parallel to the free surface
(Drory et al., 1988; Hu et al., 1988). The depth of this trajectory depends on the ratio of the
elastic constants of the film and substrate (Drory et al., 1988; Suo and Hutchinson, 1989).

A major difference observed experimentally between delamination of a film and cracking
of a plate loaded by an externally applied compressive force was that, in the latter case, the
subsurface crack tended to leave the predicted steady-state trajectory, deviating towards the
free surface and forming a spall (Thouless et al., 1987). This spalling is observed anytime a
glass or ceramic plate is hit upon its edge. Thouless et al. (1987) hypothesized that spalling oc-
curs when the material between the crack and the free surface buckles under the applied load.
Swensen and Kaushik (1990) used a finite-element analysis to follow the trajectory of an edge
crack, and suggested that spalling could be caused by the crack approaching a fixed boundary.
However, with these two exceptions the work in this area has predominately concentrated on
cracking associated with residual stresses, rather than with applied loads. Therefore the issue
of chip formation has not been fully resolved. In the present work, prompted by an interest
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in the mechanics of machining brittle materials, this question is revisited. An analytical result
for delamination along a weak interface is presented first to illustrate the principles involved.
This is followed by a finite-element study of cracking in homogenous materials in which
cracks are followed from their initial position through to spalling. These studies permit results
for the geometry of spalls to be determined in terms of the material properties and the depth
below the surface at which an axial load is applied.

2. Non-linear effects on crack growth

The bending moment induced on the arm between the crack and the free surface by the eccen-
tric nature of the load (Equation 1) will cause the arm to bend, unless it is restrained by a force
normal to the crack surface. If crack growth is driven by the relaxation of residual tension in a
coating, this deformation has no effect on the mechanics of the problem. The equations given
in Thouless et al. (1987) for the homogeneous case, and the equivalent equations for bimaterial
problems (Suo and Hutchinson, 1989) are then always appropriate, and a steady-state crack
trajectory is anticipated. However, the situation is very different if the load arises from an
applied external force, as in a machining or an indentation process. As the beam deforms, the
point of application of the load may move, and the effective bending moment acting on the
crack tip may change. Even if the load is constrained from moving, the lateral force imposed
by this constraint will also change the effective bending moment. In either case, it can be seen
from Equation (2) that this change in the bending moment will affect the mode-mixedness of
the crack-tip stress field. The linear solution obtained by substituting Equation (1) into (2), in
which the mode-mixedness depends onlyRard and#, is valid only when the applied load

is very low. At higher loads, geometrical nonlinear effects become important.

The nonlinear behavior is illustrated analytically in this section by considering the elas-
tically homogeneous problem shown in Figure 1, but assuming the crack is confined to an
interface that is located at a fixed distankebeneath the free surface. A force (per unit
thickness) of magnitud® is applied at a distancé/2 below the free surface, and the crack
is of lengthL. Assuming that the point of application of the load is free to rotate, the resultant
bending moment acting at the crack tip is given by (Gere and Timoshenko, 1997)

P

wheree is the eccentricity of the load; = E for plane stress anfi = E/(1 — v?) for plane
strain, E is the modulus of the material,is Poisson’s ratio, and+ 4#3/12. Upon substituting
Equation (3) into (2) and normalizing, nonlinear expressions for the crack-tip stress-intensity
factors can be obtained in terms Bf

= oass(£)(4) oo (£) () [ ()]
s (£)(5) 7 (4)]
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Figure 2. Critical load required for crack propagation plotted as a function of the normalized fracture toughness
of the material, for different crack lengths. The crack is assumed to be on a plane trajectory fixed atia=gl@gth
below the free surface, whedig2 is the point of application of the load. The linear linfit; = 0, and the buckling
limit are noted on this figure. (b) shows an enlarged view of (a).
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Figure 3. Critical load required for crack propagation plotted as a function of crack length for different values of
the normalized fracture toughness. The crack is assumed to be on a plane trajectory fixed ak a=d2ptmelow
the free surface, wher#/2 is the point of application of the load. The symbe) {ndicates the buckling limit for

Ki./E+/d = 0.01.

x sec| 2v/3 (;d)l/z (g) > (g) : (4)
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Two features can be noticed immediately from these equations. First, in contrast to Equa-
tion (2), the mode-mixedness depends on the crack length. Second, if a failure criterion of the
form K, = K ¢ (wherekK,¢ is the mode-I fracture toughness of the interface) is assumed, the
force that must be applied to cause fracture decreases as the crack grows. Using this failure
criterion, it is possible to plot the normalized critical load for fractég Ed as a function of
the normalized material propertie!Sc/E«/Z for various crack lengths (Figure 2). This figure
contains three characteristic lines. The linear solution obtained from Equations (1) and (2)
provides an asymptote for the critical load that is appropriate for very low loads. The buckling
limit represents the limit at which the load required to continue delamination exceeds the
maximum load that can be supported by the material between the interface and free surface
without buckling. The third line represents the conditi&n = 0. Combinations of load and
crack length that lie above this line correspond to conditions wliigre> 0. This means
that the crack will tend to deviate down into the substrate. Points below this line correspond
to conditions wherek;, < 0, and the crack will try to deviate up to the free surface. If the
problem being considered is the delamination of a brittle film by an applied load (such as
in the scratch test (Venkatarman et al., 1992), thenkhe= 0 line gives the conditions
at which spalling may occur. It will be observed that the chip length at which spalling may
occur increases as either the toughness of the interface decreases or the modulus of the film
increases. In Figure 3, the results are re-plotted to illustrate how the critical load drops as the
crack extends along the interface.

3. Finite element analysis

In homogeneous materials with no interface to define the crack trajectory, the crack is free to
seek out its own path. Assuming that the initial crack length is small compared to the final
spall lengthL, dimensional analysis shows thatand the maximum depth of the craklare

of the form

().
().

A finite-element analysis is required to determine the functiBpgnd F,. A commercial,
multipurpose finite-element package, ABAQUS, was used. The model consisted of a plate,
constrained by simply-supported boundaries on the bottom and on one end. The top surface
and the other edge were free. Linear elasticity was assumed, and quadratic-order, isotropic,
plane-strain elements were used for the mesh. A uniform compressive load was applied in a
normal direction to a portion of the edge of the plate above some initial crack. The absolute
direction of this load was kept constant as the crack propagated. A sensitivity analysis demon-
strated that the dimensions of the plate were sufficiently large to ensure that the boundaries
had a negligible effect on the cracking. A series of calculations were performed with different
values ofK,c/Ed to investigate the influence of this parameter on the crack trajectory.

To begin the analysis, an initial crack of lengtli5 and parallel to the top surface was
introduced at the edge of the plate (Figure 4). The mode-I and mode-II stress-intensity factors,
K, andK , were determined by a crack-opening-displacement method combined with the use
of collapsed quarter-point-elements (chosen for their capability of capturing the stress-strain
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Figure 4. Initial finite-element mesh used for analyzing the edge-crack problem.

singularity at the crack tip (Shih et al., 1976; Murti et al., 1985)). The computed valués of
and K;; were used to determine the direction of the maximum hoop stress with respect to the
orientation of the original crack tip. This direction,

411 K Ki\?
0. =2tant{= | —+ /[ — 8|}, 6
4| Ky (Ku) * ©

was taken to be the direction for any new increment of crack growth. The condition for
incremental crack extension along this new direction was determined using the analysis of
Cotterell and Rice for a kinked crack (Cotterell and Rice, 1980). From this analysis the local
mode-| stress-intensity factat;, at the tip of a small kink inclined at an anglgto a crack

tip subjected to global stress-intensity factas,and K, is given by

1 0, 30, 3/ .6 .36,
kl_Z(ScosEJrcos 2)K|—Z<SII’IE+SIH Z)K"' @)
The kink was assumed to form whén reached a valu&,¢, the fracture toughness of the
material. The size of the kink chosen for each step of the calculation depended on the mag-
nitude ofé.. When this angle was large, the size of the kink was kept small so as to capture
the details of the crack trajectory. When the change in angle was small, a larger increment
in crack growth was chosen. The precise criterion for determining each increment of crack
length depended upon the results of the analysis and upon the experience developed during
the simulations. After each new increment of crack growth had been established, the model
was then remeshed to describe the new configuration with an extended crack, and the analysis
was repeated.

To demonstrate the validity of the algorithm, a linear analysis was performed using the
model and procedure described above. A unit load was applied at each incremental step of
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Figure 5. Crack path obtained using a linear analysis. The figure shows the trajectory and the mesh used just after
the crack has entered the steady-state.

crack growth to obtain the ratio &, /K used for calculating the crack-growth direction.

Figure 5 shows the crack path obtained using this linear analysis. It can be observed that

the initial crack propagates down from the free surface and reaches a steady-state trajectory.

The nondimensional load/K../h, whereh is the maximum crack depth, required to cause

the crack to propagate along this trajectory was determined to have a value of 0.88. This is

essentially identical to the analytical result, 0.87, found for a quarter plane (Thouless et al.,

1987). The numerical calculations predicted a nondimensional crack dgjtof 3.64. This

is quite close to the analytical result of 3.9 (Thouless et al., 1987). The small differences

between the analytical solution and the finite-element results are probably caused by the finite

geometry of the numerical model, since it has been shown that the depth at&hieh0 is

very sensitive to the size of the specimen (Hutchinson and Suo, 1992; Drory et al., 1988).
When nonlinear effects were included in the numerical analysis, additional computational

steps were needed. At each increment of crack growth, the ratig of, and, thus, the

crack propagation angle no longer depended only on the crack geometry; it also depended

on the magnitude of the applied load. Therefore, at each step in the analysis, the load was

incrementally increased from zero. For each load increment, the valuEs arid K, were

computed to determine the angle at which a kink would form and what the magnitude of the

local mode-I stress-intensity factéy at the tip of such a kink would be. i, was less than

K¢ then the load was incremented, and the analysis repeated for the same crack geometry.

Whenk; = K¢, the crack was incrementally advanced, and the model re-meshed. The results

of this analysis are presented in the following section. In addition to examining the effects of

nonlinearity on the crack trajectory, the influence of the nondimensional paraetdt/d

on cracking was also investigated.

4. Results and discussion

The crack trajectories corresponding to three different values of the nondimensional parameter
K./ E~/d are shown in Figure 6. The crack is initially driven down from the free surface, fol-
lowing the same trajectory as for the linear analysis. As the deformation of the arm increases,
the nonlinear effect starts becoming important as the bending moment acting on the crack tip
increases. This causes the crack trajectory to move closer to the free surface than predicted
from the linear analysis. The effect becomes more marked as the crack grows, and eventually
the crack returns to the free surface to form a spall. It is important to emphasize that it was
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Figure 6. Crack trajectories for three different values &f./E£+/d: (a) 20 x 1072, (b) 20 x 1073 and (c)
20x 1074,

verified that the deflection of the crack was not influenced by the presence of any boundaries
This is in contrast to the studies described in (Swenson and Kaushik, 1990) where the cracks
approached a boundary, and then deviated towards the free surface.

The characteristics of these trajectories are shown in Figures 7 and 8. Figure 7 shows
how the length of the spall increases as the paraniéteit:+/d decreases. It has previously
been proposed that the spall length is dictated by a buckling condition. It was suggested that
the crack would grow for an extended distance along the steady-state trajectory and then,
when the buckling condition was met, the crack would deviate to the free surface and form a
spall. This would result in a nondimensional spall lendtli¢, that is inversely proportional
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Figure 9. Critical load required for crack propagation plotted as a function of crack length for different values

of KWE«/Z. The analytical results of Equation (2) (using a crack depth approximately corresponding to the
maximum depth obtained by the finite-element analysis) have been superimposed on this plot.

to (K./E~/d)Y? (Thouless et al., 1987). Figure 7 demonstrates that the numerical results
closely follow this trend, especially a&./E+/d decreases. However, as can be seen by a
comparison between Figure 7 and Figure 2, the spall lengths are considerably shorter than
would be predicted from such a buckling analysis. Although the crack trajectory may reach an
approximate steady-state depth, the crack never really grows parallel to the free surface, and
it starts coming back up to the free surface before the buckling conditions are met.

Figure 8 shows how the maximum depth of the crack varies with the nondimensional pa-
rameterk,./ E+/d. When this parameter is large, so either a large force needs to be applied to
cause crack growth or the material is very compliant, the nonlinear effect becomes important
even for very short cracks. Consequently, the crack deviates back towards the free surface
at relatively short lengths, resulting in a shallower maximum depth. As the magnitude of
the nondimensional parameter decreases, the nonlinear effect becomes important for longer
cracks and the crack follows the linear trajectory further. As shown in Figure 8, the maximum
depth of the crack then becomes asymptotic to the depth of the linear steady-state solution as
K\./E~/d approaches zero.

Edge-loading experiments on PMMA specimens were described in (Thouless et al., 1987).
The shape of the spalls observed in that work were very similar to those predicted here. How-
ever, the spall length was much longer than predicted by the present analysis. This difference
probably arises because the specimens were loaded by a plate that exerted a lateral frictional
force and partially restrained the deformation of the chip. Further numerical analyses are
currently being performed to explore the effect of lateral forces on the chipping phenomenon,
with a particular interest on investigating how friction and rake angles of cutting tools might
affect the crack path. It should be noted that even if the lateral constraint is sufficiently large
to prevent any lateral motion of the applied load, the crack trajectory is not expected to be the
same as predicted by the linear analyses developed previously. The lateral force will impose
an additional bending moment at the crack tip that will affect the mode-mixedness.
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Figure 9 shows how the load required to propagate a crack is predicted to vary with crack
length. Superimposed on this plot is the analytical solution for the load (Equation 4) for
cracks growing at the appropriate depths. It will be observed that when the crack is short,
the load drops very quickly from a maximum value to a value approximately described by the
analytical result. Eventually, when the crack trajectory starts deviating quickly towards the
free surface, the load rapidly drops to zero.

5. Conclusions

Previous analyses of cracks propagating parallel to a free surface have neglected the nonlinear
effects that can be introduced by bending of the material above the crack. These effects
have been demonstrated by an analytical model for crack growth along an interface driven
by an externally applied compressive load. This model illustrates how the nonlinear effect
becomes important as the crack length increases and as the nondimensional material parameter
K\./E+/d increases. The trends predicted in this model have been confirmed by finite-element
calculations exploring spalling in homogeneous materials subjected to a uniform edge load.
The numerical analysis demonstrates that while the spalling crack initially follows the linear
trajectory that would establish a steady-state crack depth, the nonlinear effect tends to cause
the crack to deviate back towards the free surface and to form a spall. The nondimensional
spall lengthL /d is approximately proportional toK|./E~/d)~*/2. Further studies are being
conducted to examine the effect of a lateral force on the spall, as might be imposed by fric-
tional forces or forces applied at an angle other than normal to the edge. A lateral force would
introduce an additional moment at the crack tip that would also affect the mode-mixedness
of the problem. Consequently, even if the point of application of the load were not free to
move, the effects considered in the present paper are expected to have an influence on chip
formation.
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