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Abstract 

The Dirichlet distribution provides a convenient conjugate prior for Bayesian analyses involving multinomial 
proportions. In particular, allele frequency estimation can be carried out with a Dirichlet prior. If data from several 
distinct populations are available, then the parameters characterizing the Dirichlet prior can be estimated by 
maximum likelihood and then used for allele frequency estimation in each of the separate populations. This 
empirical Bayes procedure tends to moderate extreme multinomial estimates based on sample proportions. The 
Dirichlet distribution can also be employed to model the contributions from different ancestral populations in 
computing forensic match probabilities. If the ancestral populations are in genetic equilibrium, then the product 
rule for computing match probabilities is valid conditional on the ancestral contributions to a typical person of the 
reference population. This fact facilitates computation of match probabilities and tight upper bounds to match 
probabilities. 

Introduction 

The introduction of DNA profile evidence in crimi- 
nal cases has sparked one of the most spirited and, at 
times, acrimonious debates in recent scientific history 
(Chakraborty & Kidd, 1991; Devlin, Risch & Roeder, 
1992; Jeffreys, Wilson & Thien, 1985; Lander, 1989; 
Lewin, 1989; Lewontin & Hartl, 1991). At the heart 
of this debate are disagreements about techniques for 
computing match probabilities. Defense experts con- 
tend that match probabilities as currently computed are 
meaningless because of the failure of the product rule 
in contemporary American populations. Application 
of the product rule requires that the reference popula- 
tion for the evidentiary DNA be in genetic equilibri- 
um. Because of the racial heterogeneity in the United 
States, no one can honestly claim that the population 
as a whole is in genetic equilibrium. However, this 
fact should not signal the end of the debate. There is a 
conditional form of the product rule that holds even in 
the presence of genetic heterogeneity (Lange, 1993). 
This conditional form provides a wedge for valid cal- 
culation of match probabilities. Of course, to make this 
proposal workable, we must introduce some approxi- 

mations about the nature of the genetic contributions 
from the various subpopulations. This is where the 
Dirichlet dista'ibution proves useful. 

The Dirichlet distribution provides a flexible way of 
parameterizing the contributions of the subpopulations 
to a proposed reference population. By the reference 
population for a particular crime, we simply mean the 
collection of people who could have conceivably con- 
tributed the evidentiary DNA. This vague hypothetical 
construct may vary from locale to locale and from case 
to case, The particular ancestry of the alleged contribu- 
tor of the evidentiary DNA, be he perpetrator or victim, 
is largely irrelevant to the choice of the reference pop- 
ulation. Of course, the postulated racial composition 
of the reference population should be broad enough to 
reflect the ancestry of the alleged contributor. 

The mathematical attractiveness of the Dirichlet 
distribution stems from the fact that it makes necessary 
expectations trivial to compute. The following sections 
document the mathematical manipulations involved in 
computing match probabilities via the Dirichlet dis- 
tribution. Readers primarily interested in general con- 
clusions can skip these details and turn directly to the 
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discussion at the end of the paper. Some limitations of 
the Dirichlet model are mentioned there. 

The Dirichlet distribution is also relevant to the 
related problem of allele frequency estimation. If  one 
adopts a Bayesian framework for estimation, then a 
Dirichlet prior for the multinomial distribution of allele 
counts leads to a Dirichlet posterior. Classical statis- 
ticians will object that the choice of any particular 
prior from the Dirichlet family is bound to be arbitrary. 
When data from several populations are available, one 
can choose the prior empirically from the data. This 
empirical Bayes procedure incorporates some of the 
best features of classical and Bayesian statistics. The 
resulting Bayesian estimates of allele frequencies tend 
to moderate the extremes seen in classical estimates 
based on sample proportions. We develop this per- 
spective in a preliminary digression that may be of 
independent interest to many readers. 

Empirical Bayes estimation of allele frequencies 

Consider a locus with k codominant alleles. To estimate 
the frequencies pl, . . . ,  Pk of these alleles in some pop- 
ulation, suppose one takes a random sample from the 
population and observes ni genes of type i. Then nil  n. 
is the maximum likelihood estimate of Pi, where the 
abbreviation n. = ~ = I  ni relies on the usual sum- 
mation convention. This frequentist estimate based 
on the multinomial distribution can be contrasted to a 
Bayesian estimate using a Dirichlet prior for the allele 
frequencies (Good, 1965). The Dirichlet distribution 
(Kingman, 1993) with parameters 71 , . . . ,  7~ > 0 has 
density 
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on the simplex 
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endowed with the uniform measure. One of the virtues 
of the Dirichlet distribution is the elegant moment for- 
mula 

E _ r(7___L_) IlpT+ '-'dp 
k 

I I  1`(7,) k ' : '  
i----1 

- r ( t  + 7 3  ~ r (7~ )  (2) i=l 

The Dirichlet prior is a conjugate prior for the 
multinomial distribution (Lee, 1989). In the current 
context, this means that if the allele frequency vector 
p = (P l , . . . ,  Pk) has a Dirichlet prior with parameters 
71, . . . ,  7k, then based on the sample, p has a Dirichlet 
posterior with revised parameters n l + 71,-- . ,  nk + 7k. 
This fact follows from an application of the moment 
formula (2) in the conditional density computation 
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A second application of (2) now implies that 
(ni + 7i)/(n.  + 7.) is the posterior mean ofp i .  The 
posterior mean is a strongly consistent, asymptotically 
unbiased estimator of the true pi. 

The primary disadvantage of taking a Bayesian 
stance on allele frequency estimation is that there is no 
obvious way of selecting a reasonable prior. However, 
if data from several distinct populations are available, 
then one can select an appropriate prior empirically. 
Consider the marginal distribution of the allele counts 
(NI, �9 �9 �9 Nk) in a sample of genes from a single popu- 
lation. Integrating out the prior on the allele frequency 
vector p = ( p l , . . . ,  Pk) yields the predictive distribu- 
tion (Mosimann, 1962) 

Pr(N1 = n l , . . . ,  Nk = nk) 

= ( n ) r ( 7 . ) f l P ( n i + 7 i )  (3) 
nl . . . nk  r ( n  +7. )  r(7~) " i=l 

This distribution is known as the Dirichlet-multinomial 
distribution. Its parameters are the 7 's  rather than the 
p 's  

With independent data from several distinct pop- 
ulations, one can estimate the parameter vector 
7 = (71 , . . . ,7k)  of the Dirichlet-multinomial dis- 
tribution by maximum likelihood. Newton's method 



offers by far the fastest means of finding the maximum 
likelihood estimate. To implement Newton's method, 
one needs the loglikelihood L(7), the score vector 
dL(7), and the observed information matrix -d2L(7) 
for each population. Elementary calculus based on the 
likelihood (3) shows that the score has entries. 

0 
- - L ( 7 )  = D(7.) - D(n. + 7.) 
07~ 

+D(ni + 7~) - D(7~), (4) 

where D(s) = d/ds lnF(s) is the digamma function 
(Hille, 1959). The observed information has entries 

02 
0 7 i 0 ~ L ( 7 )  = -T(7 . )  + T(n. + 7.) - X{i:j} 

x [T(ni + 7~) - T(%)], (5) 

where X{i=j} is the indicator function of the event 
{i = j}, and where T(s) is the trigamma function 
d2/d82 In F(s) (Hille, 1959). The digamma and trigam- 
ma functions appearing in the expressions (4) and (5) 
should not be viewed as a major barrier to computation 
since good software for evaluating these transcenden- 
tal functions exists (Bernardo, 1976; Schneider, 1978). 

Extending the above notation for the loglikelihood, 
score, and observed information from a single popula- 
tion to the entire random sample from several popula- 
tions, Newton's method updates the current parameter 
iterate 7 "~ by 

7 ~+1 = 7 TM - d2L(Tm)-ldL(7"~). (6) 

For Newton's method to move in an uphill direction, 
the observed information matrix - aaL(7  "~) should be 
positive definite. This may not always be the case. The 
obvious remedy is to replace the observed information 
-d2L(7 TM) by an approximating matrix that is positive 
definite. 

Equation (5) for a single population evidently can 
be summarized in matrix form by 

-deL(7)  = D - c l l  t, (7) 

where D is a diagonal matrix with ith diagonal 
entry di = T(Ti) - T(ni + 7i), c is the constant 
T(7.) - T(n + 7.), and 1 is a column vector of all 1 's. 
Because the trigamma function is decreasing (Hille, 
1959), d i >  0 when ni > 0; the constant c > 0 
always. Since the representation (7) is preserved under 
finite sums, it holds, in fact, for the entire sample. 

The idea now is to approximate -deL(7)  by the 
right side of (7) with a decreased value of the constant 
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c if necessary. If the right side of (7) is to be positive 
definite, then 

l tD- I (D  _ c l l t )D-11 = 1tD-11(1 _ cltD-11) 

must be positive. This implies 

k 1 
1 - c l tD-11  = 1 - c~-'~ ~// > O. 

i=1 

(8) 

Conversely, inequality (8) is sufficient for the right 
side of (7) to be positive definite. This fact can be most 
easily demonstrated by noting the Sherman-Morrison 
formula (Miller, 1987) 

c 
(D - c l l t )  - i  = D -1 + 1 - cltD-11 D - i l l t D - l ( 9 )  

Formula (9) proves that (D - cl l t ) -  1 exists and is pos- 
itive definite under assumption (8). Since the inverse of 
a positive definite matrix is positive definite, it follows 
that D - c l l  t is positive definite. 

These results suggest that c be replaced by 

\~i=1/'x-'k d-l"~i ] }, where e is a small min .c ,  (1 - e)/ 

positive constant. With this substitution and with occa- 
sional backtracking to avoid overshooting the max- 
imum of L(7 ) along the current Newton direction, 
Newton's method can proceed safely. Near the maxi- 
mum likelihood point, -dVL(7) will be positive defi- 
nite, and no adjustment of it is necessary. Throughout 
the iterations the Sherman-Morrison formula can be 
used to invert -d2L(7) or its substitute. 

Example of the empirical Bayes procedure 

Edwards et al. (1992) gathered population data in 
Houston, Texas on the eight alleles of the HUMTH01 
locus on chromosome 11. This is a tandem repeat locus 
whose allele names refer to numbers of repeat units. 
From the four separate subpopulations of Caucasians, 
blacks, Chicanos, and Asians, the eight 7's are esti- 
mated by maximum likelihood to be .11, 4.64, 7.33, 
2.97, 5.32, 5.26, .27, and .10. Using these estimated 
Dirichlet parameters, Table 1 compares the maximum 
likelihood estimates (top row) and posterior mean esti- 
mates (bottom row) of the allele frequencies within 
each subpopulation. It is noteworthy that all posterior 
means are within one standard error of the maximum 
likelihood estimates. (These standard errors are given 
in Table 2 of Edwards et al., 1992.) Nonetheless, the 
empirical Bayes procedure does tend to moderate the 
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Table 1. Classical and Bayesian allele frequency estimates. 

Estimator Allele Caucasian Black Chicano Asian 

Classical 
Bayesian 
Classical 
Bayesian 
Classical 
Bayesian 
Classical 
Bayesmn 
Classical 
Bayesmn 
Classical 
Bayesian 
Classical 
Bayesmn 
Classical 
Bayesmn 

5 .0054 .0000 .0000 .0000 
5 .0053 .0003 .0003 .0006 
6 .2258 .1351 .2083 .1039 
6 .2227 .1380 .2064 .1147 
7 .1586 .3703 .3333 .2597 
7 .1667 .3645 .3301 .2630 
8 .1102 .2108 .0677 .0519 
8 .1105 .2045 .0707 .0609 
9 .1425 .1459 .1432 .4416 
9 .1465 .1498 .1471 .4073 

10 .3522 .1378 .2474 .0909 
10 .3424 .1421 .2445 .1070 
11 .0054 .0000 .0000 .0455 
11 .0057 .0007 .0007 .0404 
12 .0000 ,0000 .0000 .0065 
12 .0002 .0002 .0002 .0061 

Sample size n 372 370 384 154 

extremes in estimated allele frequencies seen in the dif- 
ferent subpopulations.  In particular, all posterior mean 
estimates are positive. The maximum likelihood esti- 
mates suggest that those alleles failing to appear in a 
sample are nonexistent in the corresponding subpop- 
ulation. The posterior mean estimates suggest more 
reasonably that such alleles are simply rare in the sub- 

population. 

Match probabilities for a population at equilibrium 

For a single population in Hardy-Weinberg equilib- 
rium, forensic match probabil i t ies can be computed 
from either a frequentist or a Bayesian perspective. If  
the allele frequencies are known without error, then the 
match probabil i tes for homozygous i/i genotypes and 
heterozygous genotypes i/j are p~ and 2pipj, respec- 
tively. In practice, the frequencies pi can only be esti- 
mated. Assuming codominant  alleles and the maxi- 
mum l ikel ihood estimates/~i = nf fn . ,  the frequentist 
genotype estimates have the fol lowing sampling prop- 
erties (Chakraborty, Srinivasan & Daiger, 1993): 

e(~) = ;7 + 
;,(1 -;{) 

n. 

Var(p2) - 4 p 3 ( 1 -  Pl) -t- O 

E(2~i~j)  = 2pipj 2plpj 
n. 

Var(2pipj  ) = 4piPj (pi + Pj - 4piPj ) q- O ( - ~ )  . 
n. 

From the Bayesian perspective, the genotype prob- 
abilities are random variables whose distributions 
depend on the posterior distribution of  the allele fre- 
quencies. Based on the moment  formula (2), it is 
straightforward to compute that 

E (p~IN , = n , , . . . ,  N~ = n~) 

(hi  + 7i) ~ 
- (~ + 7 )  ~ 

Var(PZlN1 = n , , . . .  , Nk  = nk ) 

(.,+%/ 
- [(n.;VV] 
E(2pipj  INt = n ~ , . . . ,  Ne  = n~) 

= 2(n~ +'r~)('~j + T j )  

(n. + 7./~ 
Var(2pipj  [NI = n t , . . . ,  N~ = nk) 

4(n, + -~,)~(~ + 7~)~ 
(~ + %)~ 
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[2(ni + 7~)(nj + 7 r  2 
[ 

where x e = x ( z  + 1) . . .  (x + r - 1) denotes a rising 
power. It is interesting that the above mean expressions 
entail 

E(p~IN 1 = n , , . . . , N ~  = me) > ~2 

E(2piPj IN1 = n l , . . . ,  N~ = nk) < 2~i}j, 

where/)i and t5r are the posterior means of Pi and pC. 
As a numerical example, consider the 5/5 and 5/6 

genotypes for Caucasians at the HUMTH01 locus of 
Table 1. Using the maximum likelihood estimates of p5 
and p6, these genotypes have predicted frequencies of 
.0000289 and .00243, respectively. These values can 
be compared to the Bayesian values E(p52) = .0000412 
and E(2p5P6) = .00235 and their standard devia- 

tions 4 V a r ( p 2 )  = .0000608 and x/Var(2p5P6) = 
.00162. Let us emphasize here that the reference pop- 
ulation for the two matches is Caucasian and that con- 
ditional expectations and variances are abbreviated for 
the sake of convenience as ordinary expectations and 
variances. 

Chakraborty, Srinivasan and Daiger (1993) point 
out that it is probably more relevant to consider the 
sampling distribution of lnp~ and In 2pipe, since the 
log transformation focuses attention on the order of 
magnitude of a match probability and makes the cen- 
tral limit theorem applicable when a match probabil- 
ity is computed over several independent loci. In the 
Bayesian context, one can compute the moments of the 
random vector (ln Pl, �9 �9 �9 In Pk) through its multivari- 
ate moment generating function 

E ( e ~  k~=lt~lnp~lNl = n l , . . . , N k  = n k )  

---- E p~i N1 = nl, . . . , Nk = nk , 

\ i = 1  

which is given explicitly by equation (2) with 
nl -4-7i replacing 7i. Entirely straightforward, but 
slightly tedious calculations show that 

E(lnp~lN, : n , , . . . ,  N~ = n~) 

: 2[D(ni § %) - D(n. + 7.)] 

Va~( lnv~lN,  = ~ , , . . . ,  N ,  = ~ )  

= 4[T(ni + 7/) - T(n.  + 7.)] 

E(ln2pipr  = n l , . . . ,  Nk = nk) 

= ln2 + D(ni + 71) + D(nj  + 7j) - 2D(n. + 7.) 

Var(ln2pipjINs = nl, . . . , N~ = nk ) 

= T(ni  + 7i) + T(n j  + 7j) - 4T(n. + 7.). 

Consider again the 5/5 and 5/6 genotypes at the 
HUMTH01 locus among Caucasians. Using the maxi- 
mum likelihood estimates of p5 and p6, these genotypes 
have predicted log frequencies of - 10.45 and -6 .02  to 
the base e, respectively. These classical values can be 
compared to the Bayesian values E(lnp~) = -10 .99  
and E(ln2psp6) = -6 .31  and their standard devia- 

~/Var(lnp~) = 1.55 and x/Var(ln2psp6) = tions 

.78. 
Now contemplate m codominant loci in Hardy- 

Weinberg and linkage equilibrium. Let Gz be the proba- 
bility of an observed genotype at locus l. Thus, each G1 
corresponds to either an expression p~ for a homozy- 
gote or to an expression 2piPj for a heterozygote. 
Given a random sample of genotypes at locus l, the 
moments of the random variables Gl and in Gl can 
be calculated as indicated above based on a Dirich- 
let posterior distribution of allele frequencies. Since 
the random variables Gt are independent under the 
assumption of linkage equilibrium, a multilocus match 

�9 , f r ~  

probablhty 1]l=~ GI has posterior mean and variance 

E az = s  
1----1 = 

Var  Gl = 1-[ E ( G 2 ) -  X E(Gl)Z 
/ : 1  l : l  /=1  

~72 

= l- I[Var(G,)  + E(G;)  2] 
l = l  

- f i  E(G~)< 
I=1  

Similarly, In 1-1~=1 Gl has posterior mean and variance 

E lnGz = E( lnGt )  
\ I = 1  / I=1  

( 5 ) 5  V at  In Gz = Var(ln GI). 
\ I = 1  / I=1  

Of course, all of these means and variances are condi- 
tional on the sampled data. 
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Match probabilities in admixed populations 

Once the assumptions of Hardy-Weinberg and link- 
age equilibrium fail, calculation of match probabilities 
become problematic. In particular, the product rule for 
combining match probabilities across separate loci no 
longer holds. One device for rescuing the product rule 
is to condition on the ancestry of a typical person from 
the reference population (Lange, 1993; Mickey et al., 
1983). This ancestry should consist of contributions 
from a finite number of specified ancestral populations 
that individually are assumed to be at equilibrium even 
when the reference population is not. A convenient 
way of parameterizing these contributions is to pos- 
tulate that a proportion xi of the maternal genes and 
Yi of the paternal genes of the typical person originate 
from ancestral population i. The mother and father of 
the typical person are assumed to be unrelated. 

Assuming that there are n ancestral populations, 
it is again convenient to assign Dirichlet distribu- 
tions to the random vectors x = ( x l , . . . ,  x,~) and 
y = (yl, . . . ,  y~). If the common Dirichlet parameter 
associated with the components xi and yi is ai ,  then 
ancestral population i contributes a proportion ai/~. 
of the genes observed in the reference population. Of 
course, the exact ancestral contributions will vary from 
person to person in the reference population. If the total 
ct. of the ai is close to 0, then most people will exhibit 
maternal and paternal vectors x and y having a single 
component close to 1 and the remaining components 
close to 0. This is consistent with little mixing of the 
races in the reference population. Large values of c< 
suggest a thorough mixing of the races. 

Two extremes relating x and y are apt to be impor- 
tant in practice. On one hand, the maternal contribu- 
tions x might be independent of the paternal contri- 
butions y. On the other hand, total endogamy might 
prevail, in which event x and y coincide. In between 
these two extremes is partial endogamy, where x and y 
are independent with probability f3 and coincide with 
probability 1 - /3 .  

To compute a multilocus match probability, we 
adopt the allele frequency notation pij k with three sub- 
scripts i, j, and k, indicating population, locus, and 
allele, respectively. The posterior Dirichlet parameter 
that corresponds to Pijk we denote by 0ij~, condens- 
ing into a single symbol the sum of the prior Dirichlet 
parameter and the number of genes sampled for this 
combination of population, locus, and allele. Because 
sampling to estimate allele frequencies in ancestral 
populations has little to do with determining the racial 

composition of a hypothetical reference population, it 
is sensible to assume that the racial admixture propor- 
tions are independent of the posterior allele frequen- 
cies. It is also reasonable to assume that posterior allele 
frequencies are independent from one ancestral popu- 
lation to the next and in view of linkage equilibrium 
from one locus to the next within an ancestral popula- 
tion. 

Now consider a multilocus genotype defined by 
genotype kj/lj at locus j, where j ranges over some 
prescribed set ofm loci situated on m different chromo- 
somes. The conditional probability of observing this 
multilocus genotype is 

W I-[__ XuPujkj YvPvjlj 
j / 

2 

x (10,  

where the random variable w is independent of all other 
random variables in sight and indicates whether the 
ancestral proportionsx and y are independent (w = 1) 
or agree (w = 0). In similar fashion, the function 
;~{kj#lj} indicates whether the observed genotype at 
locus j is heterozygous. The expectation of (10) is by 
definition the multilocus match probability. 

The best methods of evaluating the match probabil- 
ity all hinge on first computing the conditional expec- 
tation of (10) with respect to the ancestral proportions 
x and y. Owing to the various independence assump- 
tions and to the fact that E(w) = /3, this conditional 
expectation reduces to 

3 

~-X{kjr ~u ~v XuYvE(PujljPvjkj) 1 (11) 

if h heterozygous genotypes are observed among the 
m loci. The expression (11) evidently reflects the fact 



that conditional on ancestry, match probabilities obey 
the product rule. Motivation and explanation for this 
conditional product rule is given in Lange (1993) and 
will not be repeated here. 

The ordinary expectations appearing in (11) fortu- 
nately yield to the moment formula (2). Indeed, 

I O~jkj O~jzj 
O~j. O~j. u C v 

O u j k j O u j l j  
E(pujk jpvj l j )  = - - ~ -  u = v kj ~ lj. 

_ O ~ j .  

0 2 
u_j_ h i u = V kj = lj 
0 2 . 

u3. 

As before, the dot subscript indicates summation over 
an omitted index. 

If we now naively take the expectation of (l l) and 
use the distributive rule, we are faced with evaluating 
n 2m terms of type 

and 2hn 2m terms of type 

where q u j j  ~ P u j j k j  and r v j j l  j ~ P v j j l j ,  or q u j j  
[ \ 

Pujjlj and rvjj = Pvjjkj. To evaluate E II-[j xu j ) ,  
suppose the variable mk counts the number of uj = k. 
Then 

E Xuj -- ~-~ �9 

Similarly, if mk counts the number of uj = k plus the 
number of vj = k, then 

Thus, the principal barrier to computation is not eval- 
uation of the various expectations, but rather the sheer 
number of terms that must be summed. 

If we are satisfied with an upper bound on the match 
probability, we can consider the x~ and yv appearing in 
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(11) to be parameters rather than random variables and 
then find the maximum of (11) with respect to x and y. 
This is the point of view taken in Lange (1993). The 
resulting bound is valid regardless of the joint distri- 
bution assigned to x and y. A better bound is available 
under our current Dirichlet assumptions about x and y. 
This improved bound follows from the simple observa- 
tion that the function s ~ (a + s) / (b + s) is increasing 
provided 0 < a <_ b. Given this fact, the expectation 
F-,(p~jjkjpvjjzj) satisfies the inequality 

E(PujjkjPvjj l j)  <_ Cujjkjdvjjlj 
< dujjkjdvj j t j ,  (14) 

where c~jjkj = O~jjkj/O~jj. and d~jj b = 
(O~jjlj + 1)/(Ovjj. + 1). Both upper bounds in (14) 
will be close to c~jj ki c~ jjzj if the random gene sample 
from population vj at locus j is reasonably large. 

When the first upper bound in (14) is substituted in 
(12) and (13), it follows that the match probability is 
bounded above by 

In the absence of endogamy, this bound is vastly sim- 
pler to evaluate than the original match probability. 
Indeed, the expectation (15) now splits into 2 h terms 
of type 

where euj = Cujk j  and fvj = dvjl i, or euj : Cuj l j  

and fvj = dvj ~j. Evaluation of 
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involves summing only n r~ terms rather than n 2'~ 
terms. It is easy to imagine evaluating match proba- 
bilities involving n = 10 or 20 populations at rn = 5 
or 6 loci. 

As an alternative to exact computation of an upper 
bound, one can estimate the match probability by 
Monte Carlo simulation based on expression (11). 
To simulate the ancestral proportions x and y, it 
is helpful to note that if Z1,. . . ,Z,~ are indepen- 
dent random variables with Zi having gamma den- 
sity z~ ~ - l e - ~ / F ( a i ) ,  then the random proportions 
W1, . . . ,  Wn defined by 

z~ 
W /  - -  - -  

j----1 

follow a Dirichlet distribution with parameters 
~1, . . . ,  o~n (Kingman, 1993). Gamma distributed ran- 
dom variables can be simply and economically simu- 
lated by an acceptance-rejection method for c~i _< 1 
(Ahrens & Dieter, 1974) or by a ratio method for 
o~i > 1 (Cheng & Feast, 1979). 

Sample  match  probabi l i ty  calculat ions 

As an example of the above calculations, consider 
the four loci HUMHPRTB, HUMTH01, HUMRENA, 
HUMFABP featured in Edwards et al. (1992). These 
tandem repeat loci occur on chromosomes X, 11, 1, 
and 4, respectively. For the purposes of this example, 
we will pretend that locus HUMHPRTB is autosomal 
and seek the match probability of the typical multi- 
locus genotype 6/12, 7/9, 818, and 10/11. As already 
described for the HUMTH01 locus, it is possible to 
estimate the parameters of the Dirichlet-multinomial 
distribution for each locus from the data of Table 2 of 
Edwards et al. (1992). Once this is done, the poste- 
rior allele frequency parameters Oij k are immediately 
available. For the ancestral parameters, we select the 
approximate American proportions 

O~Caucasian _ . 7  

0~. 

OZblack 
- .15 

Ol. 

OLChican~ - -  .1  

0~. 

O~Asian 
= .05. 

Ol. 

The total a. of the ancestral parameters is more difficult 
to determine. As mentioned earlier, large values of ~. 
are consistent with widespread racial admixture and 
small values of a. with little admixture. The parameter 
/3 controls the degree of endogamy between the parents 
of a typical person of the reference population. Because 
of doubt about the exact values of c~. and t ,  it is crucial 
to test the sensitivity of the match probability to a range 
of values of these two parameters. 

Table 2 presents the results of our calculations. The 
Monte Carlo estimates are based on 10,000 samples 
each of the ancestral proportions x and y. As noted 
above, the Dirichlet upper bound is relevant only when 
endogamy is absent (/3 = 1). By way of comparison, 
the upper bound to the match probability previously 
suggested in Lange (1993) is 6.3 x 10 -6, about double 
the Dirichlet upper bound. If one naively ignores the 
racial stratification of the population, then one arrives 
at a match probability of 3.5 x 10 -6 or 1.9 x 10 -6 
(Chakraborty & Kidd, 1991 ). The first of these depends 
on allele frequencies estimates derived by pooling the 
sampled genes from the four separate subpopulations. 
The second depends on allele frequencies that are 
weighted averages of the maximum likelihood allele 
frequencies calculated for the separate subpopulations, 
with weight c~i/c~, given to subpopulation i. 

It is noteworthy how close the naive match prob- 
abilities are to the match probabilities based on the 
Dirichlet model. The parameters a. and fl appear to 
have little effect on computed values under the Dirich- 
let model. 

Discuss ion 

The empirical Bayes approach to allele frequency esti- 
mation has much to offer. Because populations are 
never totally isolated, allele information from one pop- 
ulation is bound to be relevant to other populations. 
Empirical B ayes procedures permit propagation of par- 
tial knowledge from the whole to its parts. At the same 
time, Bayesian estimates conform to the dictates of data 
as more data are gathered. The practical effect of these 
adaptive features is a moderation of the extreme allele 
estimates produced by the sample proportions in each 
population. In particular, small allele frequency esti- 
mates tend to increase under the Bayesian procedures. 
Since match probabilities are sensitive to small allele 
frequencies, Bayesian multilocus match probabilities 
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Table 2. Calculations for a multilocus match probability. 

Ancestral Monte Monte Monte Dirichlet 

Total c~. Carlo/3 = 1 Carlo/3 = .5 Carlo/3 = 0 Bound 

.1 2.7 • 10 - 6  2.5 • 10 - 6  2.4 • 10 - 6  2.8 • 10 - 6  

1 2.9 • 10 - 6  2.8 • 10 - 6  2.7 • 10 - 6  3.0 • 10 - 6  

10 3.1 x 10 - 6  3.1 • 10 - 6  3.1 x 10 - 6  3.3 • 10 - 6  

100 3.2 • 10 - 6  3.2 • 10 - 6  3.2 x 10 - 6  3.3 • 10 - 6  

are less influenced by rare genotypes than classical 
match probabilities. 

In our example dealing with just four populations, 
the empirical Bayes estimates show these desirable 
properties. Doubtless, sampling a larger number of 
populations would enhance the empirical choice of a 
prior. The empirical Bayes procedure is apt to be most 
advantageous when the number of populations is large 
and the sample size per population is relatively small. 
Economic constraints on data collection suggest that 
this situation is likely to occur as more populations are 
sampled. 

Stochastic variation enters at two levels in com- 
puting match probabilities. First, match probabilities 
are usually computed under the assumption that allele 
frequencies are known with infinite precision. When 
limited samples are available to estimate allele fre- 
quencies, it is helpful to include this uncertainty in 
match probability estimation (Chakraborty, Srinivasan 
& Daiger, 1993). We have shown how to accomplish 
this in the Bayesian context for a population at genet- 
ic equilibrium. Our explicit expressions for posteri- 
or means and variances of genotype probabilities and 
their logarithms are straightforward to evaluate. 

The second source of stochastic variation arises 
from our uncertainty about the degree of racial admix- 
ture in contemporary populations. Even within groups 
that society lumps into a single ethnic category, there 
can be considerable genetic heterogeneity. Hispanics 
are a good case in point. Because genetic equilibrium 
is required for application of the product rule, it is nec- 
essary to revert to a weaker form of the product rule. 
As argued in Lange (1993), the product rule is valid 
conditional on the ancestry of a typical person in the 
reference population. In other words, if we imagine 
tracing back the pedigree of the typical person to his 
ancestors in defined populations at equilibrium, then 
the presence of equilibrium in the ancestral populations 
implies independence of his genotypes at loci occur- 

ring on different chromosomes. In practice, we replace 
this hypothetical pedigree by the proportion xi  of his 
maternal genes and yi of his paternal genes contributed 
by the ith ancestral population. 

If we make the further assumption that these pro- 
portions follow Dirichlet distributions, then we can 
write explicit expressions for multilocus match prob- 
abilities. Even with a moderate number of loci, these 
expressions involve large numbers of terms. Nonethe- 
less, it is possible to evaluate them accurately by simu- 
lation and to provide simple upper bounds amenable to 
exact evaluation. The example in Table 2 illustrates the 
close agreement between simulated values and upper 
bounds that can be achieved in practice. Although this 
particular example suggests that naive use of the prod- 
uct rule is acceptable, it is premature to make this gen- 
eralization. As more allele frequency data accumulate 
from different ancestral populations, further compar- 
isons of the Dirichlet match probabilities and those 
computed by the product rule should be undertaken. 

Although the Dirichlet model does provide a more 
sophisticated basis for calculation, it still entails 
approximations and intentional simplifications. For 
instance, the model omits laboratory errors, the possi- 
bility of confused DNA samples, and fraud within the 
criminal justice system. The later two issues are hard to 
quantify, but juries need to bear them in mind. Incor- 
poration of data from the currently used VNTR loci 
necessarily involves an analysis of laboratory mea- 
surement errors (Devlin, Risch & Roeder, 1992). It 
is debatable whether the additional information con- 
tent of these highly polymorphic loci is worth their 
price in phenotypic ambiguity. One can argue that sub- 
stituting more loci with less information content per 
locus is preferable (Lange, 1991). This substitution 
would help, for example, in distinguishing the culprit 
or victim from his close relatives such as siblings, an 
important issue not directly addressed by the Dirichlet 
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model. Evett (1992) suggests computational remedies 
for the sibling problem. 

One can also criticize the Dirichlet model as insuf- 
ficiently flexible in parameterizing the contributions of  
the various ancestral populations to a typical person 
of  the reference population. While this may be true, 
application of  the Dirichlet model surely is better than 
incorrectly assuming the validity of  the product rule 
when genetic equilibrium fails. Note  that numerically 
bounding a match probability by adjusting ancestral 
gene proportions entails no distributional assumptions 
at all (Lange, 1993). Unfortunately, there are no obvi- 
ous alternatives to the Dirichlet model, either mech- 
anistic or phenomenological, that permit exact calcu- 
lation of  match probabilities in the absence of  genetic 
equilibrium. The fact that the Dirichlet model involves 
substantial computation should not be a deterrent to 
its use. These calculations can easily be done on a 
personal computer. Whether a judge or jury can under- 
stand the nature of  the calculations is another matter. 
However, this objection is irrelevant if a scientific con- 
sensus develops affirming the usefulness of  the model 
and the feasibility of  its attendant calculations. Finally, 
the Dirichlet model fails to be fully Bayesian. A match 
probability is not, after all, a posterior probability that 
the suspect or victim contributed the evidentiary DNA. 

Despite these reservations, the Dirichlet model 
advances our approximate understanding of  how to 
compute match probabilities. It is not ideal, but no 
scientific theory or technique ever is. Doubtless the 
Dirichlet model can be refined and improved. At some 
point, however, the legal and scientific professions 
need to reach a consensus about how to compute match 
probabilities; otherwise, DNA profiling can serve only 
to exonerate the innocent and never to convict the 
guilty. Our legal system constantly contends with 
approximations to the truth. This attitude, embodied 
in the phrase 'beyond a reasonable doubt ' ,  is as much 
a part of  our scientific heritage as it is of  our legal 
heritage. A rigid insistence on infallible procedures is 
antithetical to both professions. 
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Editor's comments 

The author continues the formal Bayesian analysis introduced by Gjertson & Morris in this volume. He invokes Dirichlet distributions, and so 
brings rigor to the discussion of the effects of population structure on match probabilities. The increased computational burden this approach 
entails should not be regarded as a hindrance. 


