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T H E  W O R D  P R O B L E M  F O R  G E O M E T R I C A L L Y  

F I N I T E  G R O U P S  

This note is based on J. W. Cannon's paper [2], in which he gives, among other 
things, a solution of the word problem for cocompact groups of isometrics of 
hyperbolic space of dimension d >1 1. We have thought it worthwhile to show 
how Cannon's ideas can be rearranged to give a rather simple solution of this 
problem. Although the result obtained here is in important respects weaker 
than that of Cannon, it is in other respects more general. In particular, it also 
works for cocompact groups of isometries of Euclidean space and discrete 
groups ofisometries of hyperbolic space whose quotients have finite volume. If 
one accepts as part of the initial information the Nielsen region for G, then it 
can also be used to give a solution of the word problem for geometrically finite 
groups of isometrics of hyperbolic 3-space. 

We view our result as an instance of the Todd-Coxeter coset enumeration 
algorithm (see [5] for a good description), which we formulate as follows. Let a 
group G have a presentation ( X : R ) ,  with G = F/N, where F is a free group 
with basis X and N is the normal closure of the subset R in F. For any natural 
number n, let R(n) be the set of all words in X of the form w = uru- 1 for r in R 
and u an element of F represented by a reduced word of length l ul ~< n. Let F(n) 
be the set of all initial segments of words w in R(n). Let w ~ n w' be the equiva- 
lence relation on F(n) defined by setting wlw2 ~ nW~WoW2 whenever both are in 

F(n) and w 0 is in R(n). 

DEFINITION. Let f be any function f :  1~ ~ N. We say that the presentation 
(X: R ) is f-decidable if, given any element in F represented by a word w of 
length Iwl = m, then w e N  if and only if w ~~1 for n =f(m). 

The Todd-Coxeter algorithm shows that every presentation is f-decidable 
for some function f ,  although, of course, for the general presentation it may not 
be possible to choose f to be recursive. Indeed, the word problem for G is 
decidable in the usual sense if and only if G has a presentation that is f -  
decidable for some recursive functionf. If G is finite, it is possible to choosef  as 
a constant function. If the presentation satisfies Dehn's algorithm (in Cannon's 
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extended sense), then f can be taken to coincide with the identity function 
f(m) = m for all m greater than some M. 

In these terms, our result may be formulated as follows. 

T H E O R E M  1. (i) Let G be a cocompact group of isometries of hyperbolic or 
Euclidean space of dimension d >>. 2, and let ( X: R ~ be a presentation for G 
obtained from a Dirichlet region for G in the usual fashion. Then there is a 
natural number s such that (X:  R )  is f-decidable for the quadratic function 
f (m) = sm 2. 

(ii) Let G be a discrete group of isometries of hyperbolic d-space such that 
either d >12 and H /G has finite volume or d = 3 and G is geometrically finite, and 
let < X: R ~ be a presentation for G obtained from a Dirichlet region in the usual 
fashion. Then there is a natural number s such that ( X: R ) is f-decidale for the 
function f(m) = [e~] ,  the greatest integer in e ~m. 

Remarks. I. It does not seem to be known for H, except in the case d = 2, 
whether the sets T*(n) defined below are simply connected. 

2. From the fact that these groups can be represented as finitely generated 
matrix groups, it follows that they are residually finite and hence have 
decidable word problem. But this argument does not yield any geometric 

insight, nor any usable algorithm. 

1. THE MAIN LEMMA 

In what follows U denotes either Euclidean d-space E or hyperbolic d-space H 
of dimension d I> 2, and G is a discrete group ofisometries of U such that (A) U = 
H or U = E, d I> 2, and U/G is compact, (B) U = H, d t> 2, and U/G has finite 
volume, or (C) U = H, d = 3, and G is geometrically finite but not a Fuchsian 
group. We take as our model for H the interior of the closed unit ball D d in R d, 
with the Poincar6 metric ds 2 -- 4dx2/(1 - r2) 2, where dx 2 = dx~ + . . .  + dxa 2 is 

the standard Euclidean metric on •d. We can choose a base point b in U that is 
fixed by no non-trivial element of G and define a (closed) Dirichlet region A = 
(peU: for all gEG, d(p,b)<~ d(p, gb)), where d(p,q) is the distance between p 
and q. If we are in Case C we choose b so that it is in the interior of the Nielsen 
region for G (see I1] or C4] for definitions and details of N). Then A is a convex 
cell bounded by a finite number of ( d -  1)-dimensional cells. The set of all 
images gA of A for O in G then provides a tessellation T of U, that is, a cell 
decomposition with the gA as d-cells. Note that all of the cells of T are convex. 
In each case we shall construct from T a dual G-invariant complex T* whose 
2-skeleton K serves as a Cayley complex for the presentation of G. 
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First we consider Case A, that U/G is compact. Let T' be a G-equivariant 

barycentric subdivision of T with the points gb chosen as barycenters of the gA 

and with the edges geodesic arcs, and let T ° be the tessellation of U dual to T 

with respect to the barycentric subdivision T'. The vertices of T ° are the gb for 
all g in G, and the d-cells of T°are the stars in T' of the vertices of T. We note 
that the cells of T ° are intersections of stars of vertices in T' and need not be 

convex. A l-cell, or edge, of T'will  be made up of two edges from T', lying in 
two adjacent glA, g2A that have a face in common. A 2-cell of T ° will be the 
union of 2-cells in T', lying in a set ofgA that form a cycle about a (d - 2)-ceU of 
T. In Case A we define T* = T °. 

We need to modify the construction of T ° and T* if U/G is not compact. Let 
P be the union of a disjoint, G-invariant family of closed horobaUs around the 

parabolic fixed points of G such that b is not in P. Let H' = H - int (P), and let 
A' = Ac~H'. 

Next we consider Case B, where U = H and U/G has finite volume. Let T ° 
be the tessellation of H' whose cells are components of intersections of cells of 
T with H' or ~H'. Let T'  be a G-equivariant barycentric subdivision of T ° with 

the points fib as barycenters of the gA' and the edges geodesic arcs unless they 
are in t~H', and let T ° be the tessellation of  H'  dual to T ° with respect to T'. Let 
T* be the subcomplex of T ° of cells which are disjoint from c~H'. 

We need a further modification in Case C, where U = H and G is 
geometrically finite. Let N be the Nielsen region for G and let N'  = N c~ H'. 

Then G acts on N' with fundamental region A c~ N' = A'c~ N. Let T ° be the 
tessellation of N'  whose cells are components of intersections of cells of T with 
N' or t~N n H' or N c~ t~H'. Let T' be a G-equivariant barycentric subdivision of 

T ° with the gb as barycenters of the g(A c~ N') and the edges geodesic arcs 
unless they are in ~N', and let T ° be the tessellation of N' dual to T ° with 
respect to T'. Let T* be the subcomplex of T ° of cells which are disjoint from 
t~N'. We shall often abuse notation by writing T ° instead, of IT °] and T* 
instead of [ T* [. 

LEMMA 1. I f  r eR ,  then B(r)c~ T ° is simply connected, where B(r) is the ball in 

U with radius r and center b. In addition, T ° and T* are simply connected. 

Proof. We divide the proof into three cases, depending on the type of G. 
(A) In this case T ° =  T* = U and the lemma is clear. 

(B) Here T ° = H'. For  each r ~  there is a retraction of B(r) onto B(r)c~H', 

so B(r)c~ T ° is simply connected. This implies that T ° is simply connected. 
Since T ° collapses to T*, T* is simply connected. 

(C) In this case T ° = N'  = N c~ H'. If re  R then B(r)c~ N is simply connected 
since it is convex, and B(r) c~ T ° is simply connected since there is a retraction of 
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B(r) n N onto B(r) n T °. This implies that T ° is simply connected, and T* is 
simply connected since T ° collapses to T*. [] 

The 2-skeleton, K, of T* can be made into a Cayley complex as follows. I fX is 
the set ofelements x in G such that A and xA have exactly a (d - 0-dimensional 
face in common, then 1 is not in X, x ¢ X  implies x -  1 eX, and X generates G. At 
each vertex gb of K there is exactly one directed edge e of K from gb to ~gb for 
each x in X, where ~ is the image ofx in G, and we assign to e the label(or color) 
~e)=x.  Then every path ~,--el...e, in K acquires as label a word tl)(~)= 
O(el) . . .~e,)  over X. Conversely, given a word w over X and a vertex gb of 
K, there is a unique path ~ in K beginning at gb and with label ~(y)= w; 
moreover, y will end at ~gb. In particular, y will be a closed path just in case w 
represents the trivial element 1 in G. 

For every n ~ r~ let T*(n) be the union of all d-cells of T* that contain a vertex 
~b, where w is a word of length Iwl ~<n, and let K(n)= T*(n)r~K, the 2- 
skeleton of T*(n). Let T'(n) be the union of T*(n) with all d-cells of T ° -  int (T*) 
which intersect T*(n)in a (d - 1)-dimensional face. Note that T°(n)collapses to 
T*(n). 

If~ is a closed path in K, then y bounds a disc (not necessarily embedded) in 
T* since T* is simply connected. Since the cells of T* are balls, the disc can be 
pushed, keeping all boundary points fixed, into the 2-skeleton K of T*. Thus K 
is simply connected, and a closed path in K(n) is contractible in T*(n) just in 
case it is contractible in K(n). Furthermore, G has a (symmetrized) present- 
ation ( X :  R ) where R is the set of labels on the closed paths at b in K that 
bound the 2-cells of K incident with b (that is, G has an ordinary presentation 
with generators X and relators R together with all relators xx-1 for x~X). 

Let w be a word in X which represents the trivial element 1 in G. Then its 
associated path ~, bounds a disc in K. We want to show that ~ bounds a disc in 
K whose 'combinatorial area' is bounded by a function of lw[. The following 
approach towards 'combinatorial area' seems convenient. Let K 1 be the 1- 
skeleton of K. Let f :  De-,K be a (possibly singular) disc in K, with f(c~D 2) c 
Kl,ftransverse to K 1, a n d f  piecewise smooth. We define its complexity c(f) to 
be I plus the sum, over all components ~r o f f -  I(K - KI), ofldegree(f)~)l. Here 
degree (fl~) is the topological degree of fl~: (0,~0)-~(f(~), Of(O)). There 
is a homotopy o f f  to a disc which is cellular with respect to some cell structure 
on D e, and c(f) gives an upper bound on the number of 2-cells needed for this. 

Theorem 1 is based on the following lemma. 

LEMMA 2. (i) Given U and G in Case A and ( X: R > as above, there exist 
positive integers s and t with the followin 0 property, l f  w is any word over X of 
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length ] w) = m, then w represents the trivial element I in G if and only if the path ? 
at b in K with label rI)(~)= w is closed and bounds a piecewise smooth disc f:  
D z -~ K(sm) with complexity c(f) ~ tm 2. 

(ii) Given U and G in Cases B or C and <X: R > as above, there exist positive 
integers r, s, and t with the following property, l f  w is any word over X of length 
Iwl = m, then w represents the trivial element 1 in G if and only if the path ~ at b 
in K with label ~ ) =  w is closed and bounds a piecewise smooth disc 
f :  D 2 ~  K([r c~"]) with complexity c(f)  <~ tm ¢sm 

Now assume the lemma, and let h be the maximal length of a relator in R. 
Let w be a word over X of length I w[= m, and let ~ be the path at b in K with 
label ~(~)= w. If ~ is closed and bounds a piecewise smooth disc f ,  then 7 
bounds a cellular disc with at most c(f) 2-c¢11s. There is a homotopy of~, to 1 by 
successively pushing across the 2-cells. The number of edges in K 1 of the 
successive boundary curves is bounded by m + (h - 2)c(f) since the number 
goes up at most by h -  2 for each 2-cell, so w ~ ,  1 for n = m + ( h -  2)c(f). The 
theorem now follows directly from the lemma, which implies that the 
presentation is g-decidable for g(m)= m + ( h -  2)tin 2 in Case A and for 
g(m) = m + (h - 2)m e S" in Cases B and C. 

2. P R O O F  OF LEMMA 2 

Lcmma 2 will be derived from the following two lemmas. 

LEMMA 3. There exist positive integers sl and t~ such that, for all positive 
integers n, K(n) ~_ B(Sln + tl). 

LEMMA4. Let k(m) = m in Case A and k(m) = e r~/2 in Cases B and C. Then 
there are positive integers s 2 and t 2 such that for all positive integers m, 
(T° c~B(m)) c_ T°([s2k(m) + t2])" 

Proof of Lemma 3. Since X is finite we may choose an integer sl such that 
s~ >1 d(b, xb) for all x e X .  Ifp and q are vertices of K which arc joined by an edge 
in K, then d(p, q) ~ sl. Thus if geG is given by a word w of length [wl = n, then 
d(b, gb) ~ sln. If p is any point of K(n), then p lies on a 2-cell a of K containing 
some vertex 9b for g given by a word w of length I wl ~< n. Each 2-cell containing 
b has finite diameter, and there are only finitely many 2-cells. Let t~ be any 
integer not less than the diameters of the 2-cells in K containing b. Then every 
2-cell in K has diameter at most t~. Since p and gb lie on the same 2-ceU a, 
d(b,p) <, d(b, gb) + d(gb, p) <. sin + t I and hence K(n) ~_ B(sxn + tl). [] 

Proof of  Lemma 4. Let/a be any positive real number. (The choice o f / t  
affects both the efficiency of the algorithm and the amount of work involved in 
computing t 2 .) Since G acts properly discontinuously on T" and A" = A n T" is 
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compact, the number of elements g in G with d(A",gA")<<. Iz is finite. Let 
t2 =max(lg[:  d(A",gA")<~I~). Let p be any point of T" with O<d(p,b)<~m. 
Then there is an arc ;~ in T" from b to p of length L <~ k(m). [This uses ~3] in 
Cases B and C.] Let r = [L/Iz] + I, whence (r - 1)/~ ~< L ~< r#. Subdivide g into 
segments by points b = Po, P~ . . . . .  p, = p such that each d(p~_ t, P~) ~</z. Each p= 
is contained in glA" for some gi in G, where go = 1. Since d(A", gi-_ lgiA") = 
d(g i_ IA", giA") ~ d(p~_ 1,Pi) ~< ~, each [g~_lt g~l <~ t 2. Thus 

IoA - -  gT-~o,  la~--~a,I ~< t2r. 
i = l  " =  

Since r <~ (L/#) + 1, this gives Ig,[ ~< szk(m) + t2, where s2 is any natural number 
with s2 >1 t2/Ig. Thus p is in T'([s2k(m) + t2]). []  

Note that we can choose larger constants Yl and s[ so that K(n) ~_ B(s'tn) in 
I.emma 3 and (T°nB(m))~_ T'([s'2k(m)]) in l.emma 4. This makes the final 
algorithm less efficient, but it makes the statement and notation simpler. We 
shall use these simpler forms, and shall leave it to the interested reader to make 
the necessary changes for increased efficiency. 

Proof of Lemma 2. ( ~ )  This direction is clear, since if ~ is closed then w 
represents I in G. 

(=}) Let w be a word over X of length IwJ = m which represents I in G. The 
path 7 at b in K with label w is contained in K(m), and hence, by Lemma 3, in 
T°c~ B(s'lm ). Coning ? to b gives a (singular) disc f :  D 2 --, B(s'~rn) whose image 
has boundary ), and is a union of 2m geodesic triangles in B(s'lm). In Cases B 
and C the disc f (D 2) will not be in T ' n  B(s'lm) if it intersects the horoballs P, 
but by retracting along geodesics asymptotic to the parabolic points we get a 
new disc, which we still call f ,  whose image f (D  2) lies in T°nB(s'~m) and is 
made up of geodesic pieces and pieces in the horospheres that bound P. We 
can then deformffurther to smooth the corners where the geodesic pieces meet 
the pieces of horospheres. Let v be the maximum length of an edge in K 1. In 
Case A the disc f (D  2) is a union of 2m geodesic triangles, each with one edge of 
length ~< v and the other two edges of length ~< s'~m. In Cases B and C the disc 
f (D  2) is a union of 2m 'smooth triangles', each with one boundary arc of length 
~< v and two boundary arcs of length ~< e ;~m/2. 

Let k(m) = m in Case A and k(m) = e ~'/2 in Cases B and C. By Lemma 4,f(D 2) 
lies in T°(s'2k(s'~m)). As in the proof of Lemma 4, one can show that there is a 
positive integer j so that f (D  2) intersects at mostjmk(s'lm) d-cells of T*. Since 
T ° collapses to T* and all of the cells of T* are balls, f can be deformed, 
keeping its boundary fixed, into a piecewise smooth disc g: D 2--} K. By a 
subdivision argument like the one in Lemma 4, we can show that 
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c(g) <, Jmk(s'~m) for some positive integer J. Lemma 2 follows with s = s'l 
and t=Js'~ in Case A and r=s'2, s=[1 + s'x/2] and t=J  in Cases B and C. 

[] 
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