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C O H E R E N T  C O N F I G U R A T I O N S  

Part I: Ordinary Representation Theory 

1. INTRODUCTION 

Coherent configurations abstract certain features of the combinatorial struc- 
ture induced in a finite set by a group acting on it. This is the first of a series 
of papers in which we undertake a systematic investigation of this class of 
combinatorial structures. Preliminary versions of some of the results have 
appeared in [11], [13] and [14]. The sections of the present paper are as 
follows: 

1. Introduction. 
2. Coherent configurations. 
3. The Schur relations. 
4. Commutative configurations. 
5. Computation of multiplicities. 
6. The Krein condition. 
7. The centralizer algebra. 
8. Common constituents. 
9. Intersection matrices. 

10. Coherent partitions and refinements. 
11. Fusion. 
12. Configurations of small rank. 

In Section 2, after giving the basic definitions and some elementary con- 
sequences, we introduce two fundamental algebraic structures associated 
with a coherent configuration, namely, the boolean algebra of admissable 
relations and the adjacency ring. The action of a group on a finite set induces 
the structure of a coherent configuration in the set, and in this situations, 
which we refer to as the group case, the admissable relations are the invariant 
binary relations in the sense of Wielandt [20] and the adjacency ring is the 
centralizer ring of the permutation representation. Thus coherent con- 
figurations provide a combinatorial setting for centralizer ring theory of 
permutation representations on the one hand, and the possibility of applying 
methods of centralizer ring theory to combinatorics on the other. In practice, 
such processes as fusion (see Section 10) may produce coherent configurations 
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which are not afforded by group actions from ones which are. For such 
reasons, as is to be expected, the development of  a general combinatorial 
theory broadens the scope of applications to group theory. 

One of the elementary consequences of the axioms is the decomposition 
intofibers which exhibits a coherent configuration as a collection of homo- 
geneous configurations pasted together in a 'coherent' fashion. In the group 
case the fibers are the orbits and homogeneity is equivalent to transitivity. 
Homogeneous configurations with trivial pairing are equivalent to associ- 
ation schemes as defined by Bose and Mesner in [2], and pairing coincides 
with the standard notion in the group case. 

The main focus of the present paper is on the adjacency ring, and the 
intersection numbers which turn out to be structure constants for the 
adjacency ring. Sections 3 through 8 are devoted to the ordinary represen- 
tation theory, i.e., to the absolutely irreducible representations, of the 
adjacency ring. A central role is played by the standard character. The 
multiplicities of the irreducible characters in this character are determined 
by the intersection numbers, and possibilities for computing them are dis- 
cussed in Section 4. The Schur relations are established and applied to obtain 
general versions of results of Frame [7] and Wielandt [19] in Section 3, and 
in Section 6 to obtain a general version of the Krein condition of L. L. Scott Jr. 
[16]. Besides being configurational versions, our results are a little more 
general in the group case than the original ones, dropping the assumption 
of transitivity in Frame's result and assumptions of transitivity and multi- 
plicity freeness of the permutation character in the results of Wielandt and 
Scott. Further extensions to weighted adjacency algebras will be given in 
Part II where we study weighted configurations. 

As an application of the present version of the Krein condition we can 
show that if a generalized quadrangle or octagon has s+  1 points on each 
line and t + 1 lines through each point, with t > 1, then s < t 2. We postpone 
this application to Part III where we study homogeneous configurations (and 
where the admissable relations play a more central role). This inequality for 
generalized quadrangles was proved by a completely different method in [12]. 

The centralizer algebra of the adjacency algebra is used in Section 8 to 
relate the representation theory of a coherent configuration to that of the 
configurations based on its fibers. 

The intersection numbers are arranged into matrices in Section 9, called 
the intersection matrices, which coincide in the appropriate situation with 
the intersection matrices introduced in [10]. Sections 10 and 11 are con- 
cerned with the questions of when the processes of refinement and fusion 
produce new coherent configurations. 

Finally in Section 12 we take a brief look at configurations of small rank, 
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indicating connections with strongly regular graphs, projective designs, 
partial geometries and families of linked projective designs. A survey of 
configurations of rank 4 is the subject of Part IV. 

2. COHERENT CONFIGURATIONS 

I fXi s  a finite nonempty set and 0 is a set of nonempty binary relations on X, 
so that 0 is a subset of the power set ~ (X  z) of the cartesian square of X, 
then we call (it, 0) the configuration based on X with 0 as its set of basic 
relations. We call n = IXI the degree and r = [d~l the rank. 

In case Xis a G-space and @ is the totality of G-orbits in X z (under com- 
ponentwise action) we say that (2, 0) is afforded by G, or by the action of G 
on X, or by the G-space X, and refer to this situation as the group case. 

The members of the Boolean subalgebra R of ~ (X  2) generated by t9 are 
the admissable relations of (2, @). In the group case this terminology coin- 
cides with that of Wielandt [20]. 

An isomorphism of a configuration (2, @) onto a configuration (Xi, 01) 
is a bijection of X onto X~ which induces a bijection of 0 onto Oi. Thus 
the automorphism group Aut(X, O) of (X, 0) is the subgroup of the sym- 
metric group Xx on X consisting of those permutations which induce 
permutations of 0. The action of this group on 0 gives an exact sequence 

1 ~ Aut* (2, @) ~ Aut (X, b) ~ X~. 

We refer to Aut*(X, @) as the group of strict automorphisms of (2, ~), 
namely, Aut*(X, 0) is the group of those permutations of X which act 
trivially on 0. If H <  Aut* (2, @) and H affords (X, O), then N(H) < Aut (X, O) 
= N(Aut* (X, 0)) where N(H) denotes the normalizer in 27 x of H. 

In the group case, G acts as a group of strict automorphisms of (X, 0). 
A configuration ()to, @o) is a subconfiguration of (X, ¢) if X o - X  and 

every member of Oo is a subset of some member of O. The configuration 
afforded by a group G acting as a group of strict automorphism of (2", d~) 
is a subconfiguration of (2, ¢) in this sense. The full subconfiguration [Xo] 
of (X, 0) based on a subset Xo # 0 of X is (Xo, {fnX2o ]fE O andfc~X~ ~ 0}). 

A (gl, g2, ..., g~)-pathfrom x to y, where gl,  . . . ,  g~E~(X z) and x, y~X, 
is a (s+ 1)-tuple (xo, x~, ... ,  xs)~X '+l such that Xo=X, xs=y, and (x~_~, x~) 
~g~, i---1. 2 . . . . .  s. Such a path is closed if x=y .  A (g)-path, g ~ ( X  2) is 
therefore just an element of g, that is, an edge in the graph (X, g), and is 
often refered to as a g-edge. 

If K is a commutative ring and X and Y are finite nonempty sets, we write 
Matx(X, Y) for the K-module of matrices with coefficients in K having 
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rows indexed by X and columns by Y. That is, Marx(X, Y) is the totality 
of maps ~b:Xx Y--*K with the structure of a K-module according to the 
pointwise operations. We write MatKX for Matx(X, X) regarded as a 
K-algebra with respect to matrix multiplication. For q~, ~p~MatKX, ~b~o 
denotes the matrix product and ~b o~0 denotes the pointwise (i.e., Hadamard) 
product. 

For F~_X 2, ~F will denote the characteristic function of F, or, what is 
the same thing, the adjacency matrix of the graph (X, F). Thus OeeMatzX 
and t/iv(x, y) = 1 or 0 according as (x, y)~F or X 2 - F .  

The class of configurations to be studied here is defined by the following 
four axioms. 

(I) 0 is a partition of X 2. 
(II) If feO andfc~I¢0,  where I=Ix={(x, x) I x~X}, thenf_~L 
(III) feO implies/~= {(y, x)[ (x, y)ef}eO. 
(IV) F o r f  g, h ~ 0 and (x, y) ~h, the number a:oh o f ( f  g)-paths from x to y 

is independent of the choice of x and y. 
We call a configuration satisfying axioms (I) through (IV) coherent, and 

say that 0 is a coherent set of relations on X. 
For simplicity we will assume axiom (I) throughout the following dis- 

cussion of the axioms. Then R, regarded as a vector space over GF(2) (with 
symmetric difference as addition) has O as basis and so has dimension r. 
The submodule F =  {q~:X2~Z [q~lfis constant for a l l fe0} of MatzX is a 
free Abelian group of rank r with &={O:  [f~O} as basis. We call & the 
standard basis of F. If K is any commutative ring with identity element, we 
have an obvious homomorphism of F onto a subgroup of MatxX which 
spans the free K-submodule KI-'={(o:X2~K[ (a I f  is constant for a l l fe0} 
of rank r. 

For f, g, ~O, O:o~g=O:g~: (where o indicates the pointwise, or Hada- 
mard, product) so/ ,o  is a subring of (MatzX) ° where the superscript indi- 
cates that the operations are the pointwise ones. 

In terms of the adjacency matrices, axiom (I) is equivalent to 

(2.1) ~¢~a6t# =~s.~o~:=~, the 'all 1" matrix, i.e., qg(x, y) = 1 for all x, yeX. 
Axiom (II) is equivalent to the condition that IeR, or, since ~t  is the 

identity matrix, to the condition 

(2.2) The identity matrix is in 1". 
For F E X  2, FU={(y,x) l(x,y)eF} is called the converse of F. Clearly 

~r~, =(~r )  t, the transpose of ~ r .  Axiom (III) means that d9 is closed under 
the converse mapf--*f V, which we call the pairing on (X, 0), and is equi- 
valent to 
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(2.3) ~ is closed under the transpose map. 
Now assume axiom (IV) and taken  g, he¢  and (x, y)eh. Then asoh is the 

number of subconfigurations 

x h y 

z 

We see that i f f (x)={y~Xl(x ,  y)ef}, then 

(2.4) For f, g, heO and (x, y)eh, asok=lf(x)c~gV(y)l =the number of g-edges 
frorn f(x) to y. 

For E, F ~ ( X 2 ) ,  the composite EF is defined by (x, y)eEFc~.there exists 
zeX  such that (x, z)sE and (z, y)~F. For f, ge0,  axiom (IV) implies that 

(2.5) fg=~h~dsohh where asoh=O or 1 according as as.oh=O or ~0. 
It follows that R is dosed under composition. This property of R is equi- 

valent to the weaker axiom obtained by replacing 'number of'  by 'existence 
of' in axiom (IV). 

Axiom (IV) also implies that _P is closed under matrix multiplication. 
Namely, if f, g, he0 and (x, y)eh, then by axiom (IV), 

•  Oo(x,y) = ZO (x,z)Oo(z,y) 
Z ~ X  

Hence 

(2.6) ~Oo=~h~arohtOafor f, geO. 
Thus P is a subring of MatzX and can be referred to as the adjacency ring 

of (X, 0). In the group case P is the centralizer in Mat z X of the permutation 
representation of G. If K is any commutative ring with identity element, 
then KP is a K-subalgebra of MatrX, so we call it the adjacency algebra of 
(X, 0) over K, and P~KI-' is a homomorphism of rings. Axiom (IV) is equi- 
valent to 
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(2.7) For some field K of  characteristic 0, K/" is a ring. 
It is now clear that coherent configurations are characterized in terms of 

the set ~ of basic adjacency matrices as follows. 

(2.8) g_~MatzX is afinite set of(O, D-matrices satisfying (2.1), (2.2), (2.3) 
and (2.7). Conversely given a finite set gJ ~_ Matz X of  ( O, 1)-matrices satisfying 
these four conditions, then 

= {spt ~b I q~ ~ &} 

(where sptff = {(x, y)e X 2 [ c~(x, y)¢0}) is a coherent set of relations on X. 
A main source of interest in and examples of coherent configurations 

comes from the almost immediate fact that 

(2.9) In the group case, (X, ¢) is coherent. 
We pause to mention two examples, the first illustrating one way, natural 

from a combinational point of view, in which non-group case examples can 
arise from group case ones, and the second showing t h a t / '  does not deter- 
mine (X, ¢). 

(1) In its action on the totality X of lines of aftine space over GF(q), 
assuming that the dimension is at least 3, the affine group affords the rank 4 
configuration with ~=  { I, f t , f 2 , f a ) where 

f t  = all pairs of distinct intersecting lines, 
f2 = all pairs of distinct parallel lines, and 
fa = all pairs of skew lines. 

It easy to verify that the rank 3 configuration (X, t~) obtained from (X, ¢) 
by fusing f2 andfa,  i.e. with ~ = {Lf~ ,f2 +fa}, is again coherent. But if we 
choose two nonintersecting lines a and b and count the number of sub- 
configurations of (X, ¢) of the form 

.Ji .b 

where fl-edges are indicated by lines, we find that, if q>2, this number 
depends on whether a and b are parallel or skew. Hence for q>2, (X, ~) 
cannot be afforded by a group. For q=2, lines are just pairs of points and 
(X, ~) is afforded by the action of ~x on the 2-element subsets. 
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(2) The adjacency r ing / '  does not determine (X', 0). In fact we can have 
two nonisomorphic coherent configurations (X, 0) and (X', ~') with IXI = IX'I 

and a bijection [0--.0' [ f ~ f ,  such that algh=ay,o, h, for a l l f  g, h~¢. An example 

of this is given by the two rank 3 configurations afforded by the action of 
S4(q) on (i) the set of all points and (ii) the set of all totally isotropic lines 
of 3-dimensional sympleetic projective space over GF(q). 

Now we return to some basic consequences of the axioms. For the rest 
of this section we assume that (X, O) is coherent. Then I=EI  + ... + E, with 
E~O, 1 <_i<t. Put X~=domain E~=range E~, then {Xz [ 1 <i<t} is a parti- 
tion of X. We call the X~ thefibers of (X, (P) and say that (X, 0) is homo- 
geneous if there is just one fiber, or, equivalently, if Ie0.  The homogeneous 
configurations with trivial pairing are equivalent to association schemes ~ 
as defined in [2]. Now put Ou= {faO ] domainf=Xi  and rangef=Xj}. 

(2.10) 1 <_i,j<t} is a partition of ¢. 
Proof. Suppose thatfeO. We have to show thatf~@ u for some i,j. We 

have dora fc~Xp~0 for some i, so we can find x~X~ and y e X  such that 
(x, y)~f. This means that assu~,:~0 and ag~ff~0 

x E i x x f y 

y x 

Suppose xleX~, then there must be an (f, fU)-path (xl, yl ,  Xl), but then 
(xl, y l ) e f  so xl edomainf.  Suppose x2~domainf, then there exists Y2 such 
that (x2, Y2)~f, and there must be an (E~,f)-path (x2, x2, Y2). But then 
x2 ~domain E~ = X~. This proves that domain f =  X~. Similarly domainf  ~' = Xj 
for some j. Since range f =  domain f ~, we are done. 

A consequence of (2.10) is that the full subconfiguration [Y] based on a 
union Y of fibers is coherent and has for its fibers the fibers of (X, 0) which 
it contains. In particular (with a slight abuse of notation) [Xd = (X~, or j) is 

1 P.Delsarte, in his very interesting dissertation 'An Algebraic Approach to the Associ- 
ation Schemes of  Coding Theory', presented to the Universite Catholique de Louvain, 
Faculte des Sciences Appliques (1973), uses the term association scheme in a way which 
is equivalent to our use of commutative configuration. Commutative configurations are 
necessarily homogeneous. 



8 D.G. I-IIGMA N 

coherent and homogeneous. The degree of [Xd is n~ = [Xd and 

(2.11) n = ~n~ 
t=1 

We call rts = I¢*JI the cross rank o f  Xs and Xj. Then [Xl] has rank r .  and 

(2.12) r = ~ rij and ris = rjt. 
l < l , J < t  

Aut(X, ~) permutes the fibers, Aut* (X, ~) is contained in the kernel N of 
this action, and we have homomorphisms N~Aut[Xd and Aut*(X, t~) 
-~Aut* [X~]. In the group case the X~ are the G-orbits in X. 

IfxeX~, then {f (x) I f~¢  tJ} is a partition of X~. 

X I 

(g(x) 
( f ( x )  

ij 

Since If(x)] =afs~E,, independent ofxeX~,  we denote this number by nf and 
call it the subdegree corresponding to fi We have 

n$ (2.13) For l < i, j < t, nj = f  , 

and 

(2.14) For f ~  tJ, If[=[f~[=nin~=njnf,~. 

In particular n~ =nj implies n r=nfv  for fetP ~. 
The strict automorphisms fixing x¢X~ fix the sets f (x )  for f e e  t.t. In the 

group case these are the orbits for Gx in Xj. 
Put RU-~<OIJ>~F(2 ) s o  t h a t  R=~l<i , j<  t ~ R  tJ. If F~R tJ, F#O, then 

F = f l  +f2 +""  +fs with f~ e el J, i_~ ~ _< s. For (x, y) ~ F we have corresponding 
partitions of F(x) and F~(y), namely 

{f~(x)]l _<~_<s} and {f~(y)[1 _<~_<s}. 

In the group case the fibres are just the G-orbits in X, and (2.10) is im- 
mediate in this case. For xEX~, {f(x) [ f ~ t j }  is the set of G=-orbits in X~. 

We now list some basic properties of the intersection numbers a~raa. 
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(2.15) For f ,  g, h, 

(a) afoh~O implies f eO ~, geO~ ~ and hvO ~ for some i,j, k. 

(b) a~,~ = ao~,:~hU. 

Assertion (a) follows from (2.10) and (b) from (2.4). 

(2.16) (a) I f  f l ,  ...,f~eO, s> 3, then the sum 

as',.r,;~ta~,.r3;t, "'" a~.,_3.r,_t.r,u Ifl 
(~)eOs- "a 

is independent of cyclic permutations off1 . . . . .  f~. In particular 
(b) I f  f ,  g, h~ O, then a rg~v I hl = ah:.~ Igl ---- a~ns~ I f l .  
Proof. Put q ~ = ~ s , .  The total number of closed (fx . . . . .  f,)-paths is 

clearly independent of such cyclic permutations, and this number is 

Y. O~ (x~, x:) ~ (x~, xD ... ~, (x,, xD 
(x) e X s 

= E ( ~ =  "" ~ )  (x, ,  x,) .  
xx eX 

By (2.4) we ace that 

(2.17) For feO tJ, g~OJ k and heO l~, ae,oh=O~O~jOgh, a~E.h=O~JO~kdyh and 

(2.18) (a) I f  geO J~ and heO ~k, then 

E afah = E afgh = nov.  
l e o  f e~J 

(b) I f  feO 's and heO 'k, then 

• ayoh = ~ a y o  h = n$. 
g¢O ge~Jk 

The fact that/~ is a Z-algebra with the ayg h as structure constants implies 

(2.19) ~k~a:okakn z =~k~Oaghkask~fo r all f ,  g, heO. 
The right regular representation of P provides an isomorphism ~ b ~  of 

P onto a subring _P of Matz 0 where 

(2.20) ~s(g, h)=aa:afor all f ,  g, heO, and ~, q~e/~, is defined by linearity. 
Lhe properties (2.15)-(2.18) of the intersection numbers can be regarded 
as properties of the set ~ = {~:  I f e0} of r x r matrices. For example, (b) of 
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(2.15) and (b) of (2.16) imply 

(2.21) A(~,)'  = ~.uA 

where A ~Matz~ is the diagonal matrix such that A (g, h) =~ohng. 

3. THE SCHUR RELATIONS 

We assume once more that (X, d)) is coherent of degree n and rank r, and 
use freely the terminology and notations introduced in Section 3. We turn 
now to the representation theory of the adjacency ring/ ' .  Since we concern 
ourselves here only with the absolutely irreducible representations, we 
replace 7' by the adjacency algebra C= C/" over C and refer to this algebra 
simply as the adjacency algebra. C is a C-subalgebra of MateX containing 
the identity matrix, and, since Cis dosed under the conjugate transpose map, 

(3.1) C is semisimple. 
The vector space CX has the structure of a (left) module over MatcX 

according to 

~x = ~ ~ (y, x) y (~b e MatcX, x e X). 
y e x  

Regarded as a module over C, CX will be denoted by M and called the 
standard module. 

For fed) u and xeX~, ~sx = tS~y~ s~t~)Y. Put x~ = ~ x , X ,  then 

(3.2) #I 'x~ = ~)a~n/xt for fal9 u. Thus (xl ,  . . . ,  Xt)c is a C-submodule of M 
and is deafly irreducible. We call it the principal submodule. 

Let el . . . . .  e= be the central primitive idempotents of C, so that 

C = C16~ "" (9 C,., 

where C, =ere, i <_ i <_ m, is the unique decomposition of C into simple two- 
sided components. Each Ct is isomorphic with a full matrix algebra over C, 
of  degree e,, say, that is, C~-~ C,~, and 

rtt 

(3.3) r = Z e~. 
l = l  

Let ~1 . . . .  , ~m be the irreducible characters of C so numbered that ¢~(1) = et 
and ~(ez)= ~ue,, 1 < i< m. The standard module M decomposes 

M--- M~ ~ " ' ~  Mm, 
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where M~ = e~M is a direct sum of, say, zt isomorphic irreducible submodules 
affording ¢1. Then 

m 

(3.4) n = ~ zlel 
t = l  

and if ~ is the character afforded by M, so that ¢(a)=trace ~r for aeC, then 

m 

(3.5) ~ = ~ z,(,. 
t = l  

We call ~ the standard character, m the reduced rank, et . . . .  ,em the irreducible 
degrees and z~, ... ,  z,, the corresponding multiplicities. 

We choose the numbering so that Mx is the principal submodule. Then 
by (3.2) 

el = t  a n d  z~ = 1.  

We refer to ex as the principal idempotent and ex as the principal character. 
We have 

(3.6) (1(~s) = Oun.r for f e  O 's. 

The algebra C can be completely reduced, that is, there is a nonsingular 
matrix UeMatcX  , and even a unitary one if we need that, such that 

U-~¢ U = diag (Aa(¢), A2(¢) . . . .  , A2(~b), ..., Am(C) . . . . .  A.,(¢)) 
Z 2 Z m 

for all ~ C ,  where At . . . .  , A m are inequivalent irreducible representations 
of C with At affording ¢~, 1 < i < m. We write 

A 1 4 )  = 

There exist dements e~jeC, 1<i, j<e~, l < ~ < m ,  such that Cp(e~'j~b) 
=0~aa~j(tk) for q ~ C a n d  a~t(e~j)=O~pO,,djk. Then {e~ s I 1 <i,j<e~, 1 <o~<m} 
is a basis of C and 8<~)=~'~xe~' t is a decomposition of e <~'> into a sum of 
orthogonal primitive idempotents. We determine this new basis in terms of 
the standard basis. Fix i, j and a for the moment and write 

tg 
e u = e = ~ a s ~  s for g ~ O ,  

SeO 

put ~a = (I/[gl)~b~v. Then, if geOkz, 

J" .t" 
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SO 

t 

¢ (e~0) = (1/Igl) ~ ~ aN:o~e.n,=a. 
s = l  f ¢ ¢  

m Z On the other hand, ~=~#=1 #~#, so 

m 

#=1. 

Hence ao=z~a°~fi~o), and therefore 

~' = z~ ~ a,s(~ba) 4 a, 81j 

and 

(3.7) e (~) = z~ ~ ~(~bo) 4o ,  

where ~b¢=(1/lgl)4go. Applying a~  and ~'# respectively we get 

(3.8) (The Schur relations) 

~ = 
g¢O 

and 

(3.9) (The Orthogonality relations) 

E ~(~o) ~#(4o) = ~# (e~lz,). 

For some applications it is convenient to rewrite the Schur relations. First, 
list the a~; a t ,  a2, . . . ,  a,. We can assume that a~, az, ..., a: are the a~j in 
some order. Ifaa = a~'j, put ag = a~'~ and ha =z~. In this notation, (3.8) becomes 

( 3 . 1 o )  Z a~(~,) a,(4o) = ~ O/h~). 
g¢O 

Now list the 4 o:41,  42 . . . .  , 4 , .  We can assume that 4 t  = 4 e , ,  1 < i <  t. 
I f  4 j = 4 o ,  put m~=lg[ and 4~ = 4 o r .  Define matrices A=(Ax~), H=(Hx , )  
and M =  (Ma~) by 

A~, = a~(4,), Ha, = ~h ~  and M~, = ~a,m~. 

There exist permutation matrices P and Q with pz = Q2 = 1, such that (AP),, 
=ax(4~) and (QA)a~=a~(4s). Now (3.8) becomes 
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(3.11) (Matrix form o f  the Schur relations) 

A P M -  1 (QA)' = H -  i 

which can be rewritten as 

(3.12) (QA)' HAP = M .  

The orthogonality relations (3.9) can be written in terms of  the character 

table 

Z = (~(0,.)) 

as  

(3.13) Z P M -  1Z' = diag (t, (e2/z2) . . . . .  (em/Zm)). 

But we do not have an analogue of(3.12) unless r = m  (i.e., Cis  commutative) 
in which case Z = A. 

Consideration of determinants and, more generally, of elementary divisors 
in (3.12) gives the following two results which are extensions of  results of  
Frame [7] and Wielandt ([19], (30.4)) respectively. Together with the further 
extensions to be given in Part II (cf. [14]) they should be compared with 
Curtis and Fossum [4] and Keller [15]. We use the fact that, since the struc- 
ture constants a~-gh are rational integers, we may assume that the matrices 
A~(~j) have algebraic integer coefficients for a l l f z~ ,  1 <0~<m. 

(3.14) The Frame Quotient 

t r \ l m  

,g. JLo. N = n~ 2 mi z~ 

..Ho..)I.O... n ~I+ .i.rk z 2 

is a rational integer. I f  the irreducible representations At,  1 <_ i <_ m, can be 
written in ~, i.e. i f  ~ is a splittingfield for  C, then N is a square. 

The factor ' -2 1-]~= 1 n~ comes from the fact that, by the Schur relations, 

det A = [ I  nk • det Ao 
k = I  

where Ao is a suitable submatrix of  A. 

(3.15) I f  a prime power q divides z~for I distinct values oq . . . . .  o~l o f  oq then q 
divides Igl for e z z ~1 +""  + e~, distinct gee9. 
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A nondegenerate bilinear form ( , ) on C is defined by 

(#s,  #~) = ~ ' ~  Ifl (f, g e ~). 

The basis ~ =  {#s If~¢9} is dual to the standard basis in the sense that 
(#s,  #o)=~sg for all f ,  g~d~, and the form is associative in the sense that 
(~fl, 7) =(0~, fiT) for all o~,/3, 7~C. In fact, if f ,  g and he$,  then 

(#s#o, #h) ---- ~ asgh (#k, #h) = asah,, Ihl = a,hS~ Ifl 
ke~ 

ge$ 

This form will play a role in studying the integral and modular representation 
of / ' .  

4. C O M M U T A T I V E  C O N F I G U R A T I O N S  

We shall say that a coherent configuration (X, ~) is commutative if the 
following equivalent conditions hold: 

( 1 ) / ' i s  commutative 
(2) C is commutative 
(3) asah =aosh for all f ,  g, heO 
(4) r = m  

(5) e~=e2 . . . . .  em=l. 

A commutative configuration is necessarily homogeneous. The pairing 
f ~ f u  on (X, ~) is trivial if and only if all the basic adjacency matrices 
#s ,  fEO, are symmetric; such a configuration is commutative. 

(4.1) A homogeneous configuration of  rank < 5 is commutative. 
(4.1) follows at once from 

(4.2) I f  r>2 and t=l ,  then m> 3. 
Proof. Assume r>2, t =  1 and m=2.  Then r =  1 +e  2 and (=~'1 +z2~2 with 

~1(1)=1, (2(1)=ez. We have ~ s ~ s = ~ ,  the 'all 1' matrix, and ((¢i)=n. 
Moreover, ( l (~s )=ns  for fetP. Hence ( l (~b)=~s~ns=n,  so ¢2(~)=0. On 
the other hand, f o r f e ¢ , f # L  

0 = C(~s) = ns + zz¢~ (a~:) 

so C2(¢is)= - (nf lz2)< --1 since C2(q~s) is an algebraic integer. Hence 

0 = C 2 ( # )  < C 2 ( 1 ) - ( r - 1 ) = e 2 - ~ < 0  

which is a contradiction. [] 
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The configuration of rank 6 afforded by the action of PSL3 (q) on the set 
of incident point-line flags in the projective plane over GF(g) is homogeneous 
of rank 6 and is not commutative. 

5. C O M P U T A T I O N  OF THE M U L T I P L I C I T I E S  

The following parameters have arisen for a coherent configuration (X, 0) 

n degree 
r rank 
aso h intersection numbers 
t number of fibres 
n~ degrees of the fibres 
r u cross ranks 
ns subdegrees 
m reduced rank 
~ irreducible characters 
a~'j coefficient functions of the irreducible representations 
e~ irreducible degrees 
z~ multiplicities. 

Assume that the family (afgh If, g, he0) of intersection numbers is on 
hand. We claim that all the remaining entries in the list are determined 
(though the configuration itself is not as we have noted in Section 2). Put 
~ = { ~ s  If~0} where ~ e M a t z 0  is defined by (2.19). As in Section 2, the 
entries in the list through the subdegrees are easily obtained explicitly, 
starting from the fact that the diagonal matrices in ~ are the t~E,, 1 <i<t, 
and 

0 u = {f~ 0 ] aE,ss -~ 0 and asr~s -~ 0}. 

Since ~ s ~ s ,  f~0,  determines an isomorphism ~ of C onto the sub- 
algebra C= CF=  (~s  I f e O ) e  of Mate0, C and ~ have the same number m 
of simple two-sided components and the same character table 

z = = 

If z]~ is an irreducible representation of ~ affording ~ then A~(~) = z]~(~), 
f~ O, determines an irreducible representation of C affording ~ .  The char- 
acter of C afforded by C0 is ~ = ~ = a  e ~ .  The multiplicities z~ are obtained 
from the character table Z by the orthogonality relations (3.9). The integrality 
of the z~ is a condition on the intersection numbers which is readily seem to 
be independent of the previously mentioned conditions. 



16 D . G .  H I G M A N  

Note that the semisimplieity of ¢~ is not an independent condition since 
it is implied by (2.20). 

There are other possibilities for computing multiplicities which sometimes 
have advantages. We make some remarks in this connection here. 

(i) Reduction of the character table to the form 

$1 $2 . . . . .  

Im 

by elementary column operations produces elements ~ . . . . .  ~bme(~ such 
that ~,(~J)=~u. If  O,=~3`~,sOs, then 0 , =  E~,s~3` is the inverse image 
of O~ in C. Since ¢ = ~ z j ~ .  

t 

(5.1) z, = ¢(~,) = Y'. oq:¢ (~/i3 )̀ = E oqr~nk. 
J '¢0  k = l  

(ii) Let ~b be in the center of C. Then A,,(4,)=Od~,, a scalar matrix, and 
0~ =(~(~b)]e~ is an eigenvalue of ~b. Suppose that ~b has the maximum number 
m of distinct eigenvalues (in fact there is such an dement  ~k e/ ' ) .  Then the 
multiplicities of these eigenvalues as eigenvalues of ~ and ~ respectively, 
where ~ is the image in ~ of 4, are respectively e~, 1 < i < m and e~z~, 1 < i < m. 

(iii) If ~beC and 0 is an eigenvalue of ~b, then the multiplicities of 0 as an 
eigenvalue of q~ and ~ respectively are 

(5.2) 

and 

traceFo(~) 

Fs(O) 

(5.3) #e = 
traceFo(~) 

F~(0) 

where F(T)e  C[T] is a nonzero polynomial such that F(~) = 0 (i.e., F(~) = 0) 
and F~(T) = F ( T ) / ( T -  ~)~' where # is the multiplicity of¢  as a root ofF(T) = 0. 
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To use these formulas we need trace ¢~=¢(~)  and trace ~ = ~ ( ~ ) .  I f  
~b ~ = ~he* fl~Cih, then ~ = ~ ,  fl~h~h and 

while 

$ 

~(4 '*) = E b~,~ 
k=l 

her h~O g¢O 

(iv) If the distinct eigenvalues 01,02, . . . ,  Os of $ e C are given, then their 
respective multiplicities/~t . . . . .  /~s and/~1, ...,/~, as eigenvalues of 6 and q~ 
are determined by 

/t 

(5.4) ~/~,0~'  = ~(~P) (0 < o~ < s - 1) 
1=1 

and 

(5.5) y.  ~,0~ = ¢(¢~) (0 _ ~, ___ s - 1). 

6. THE K R E I N  CONDITION 

The notation of this section is that of Sections 2 and 3. Our aim is to deter- 
mine the positive semidefinite Hermitian matrices in (7, and to apply Schur's 
theorem on pointwise products of such matrices to get a condition on the ax. 
We call the resulting condition (6.4) the Krein condition because of its 
relation to what L. Scott calls the Krein condition in [16]. 

We use C O to denote C regarded as an algebra with respect to pointwise 
addition and multiplication, and determine the structure constants of C O 
with respect to the basis {e a I 1 <2 < r}, where ez =ei~ if a, =a~'j, so that 

Y¢~ 

by (3.7). Write 

e 2 o et~ = ~ C,~pve v 
v = l  

and evaluate at (x, y)efu to get 

(6.1) h~h~ a~(Os) a~(~A _ Z c~,,h~a, (~,~). 
Ill 2 
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Multiplying by a~#:~,) and summing overfeO we obtain by (3.10) that 

(6.2) cau~ = hxh~, ~ ax(q~:) aj,(¢r) as(#.ru) 
:~0 ]fl 2 

Now assume that the following equivalent conditions (1) through (3) hold. 

(1) A~(~)*=A~(9*) for all 9eC, l<o~<m, where * denotes conjugate 
transpose. 

(2) ax(~0:)=a~:v)  for allf~0, 1 <2<r .  
(3) : = ~ ,  l_<~_<r. 
This is equivalent to assuming that the complete reduction of C has been 

effected by a unitary matrix. Then for 2=2, ea is a projection, i.e., an Her- 
mitian matrix with eigenvalues 0 and 1. 

Fix 2=2  and #=ft .  By Schur's theorem, e~oe~ is a positive semidefinite 
Hermitian matrix with all its eigenvalues in the interval [0, 1 ]. If a6 = a~'j, put 

(6.3) c,~ = ~ aa(#:) a#(#:) a~(#.r) 
:~ I/I 2 

Then A~,(ex oe~)=h~h~(c~j), so 

(6.4) l f  2=2 and t*=#, then for l <o~<m the e~xe~ matrix C~=(c~'l) is a 
positive semidefinite hermitian matrix with all its eigenvalues in the interval 
[0, 1/h~h A. 

If ¢~,, ¢# and ~y are linear characters, then (6.4) becomes 

(6.5) 0 _< Z ~ ( ¢ : )  CP(¢:) ~,(a>A _< 1 . 
: s t  [f[ 2 zaz a 

The first inequality of (6.5) is that of [16] in the case considered there. 
That the Krein condition is already effective for rank 3 (as already observed 

by Scott) will be shown in Section 12. An application to generalized polygons, 
which does not depend on any of the rest of Part I or on Part II, is given in 
Part III. 

7. TIlE CENTRALIZER ALGEBRA 

We apply the theory of centralizer algebras. Let V= V(C) be the centralizer 
algebra of C, 

V = {~ e MatcX [ Y~9 = 9*P for all 9 ~ C}. 
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Then V is semisimple and the central primitive idempotents ca, ... ,  em of C 
coincide with those of V. If Z~ . . . . .  Zm are the corresponding irreducible 
characters of V, then Z~(1)=z~, l<_i<_m. The irreducible character of V 
corresponding to the principal idempotent is called the principal character 
of V. The standard character of V is the character g=~'"~=ae~g~ afforded 
by CX. 

The centers of C and V are both equal to Cc~ V, and 

(7.1) Z~0P) = (zJe,) ~(~) for ~oe C n F, i < o~ < m. Setting c(9 ) = ~s~,~sg#s  
for ~0~C defines a linear map c of C onto its center. 

(7.2) A~,(c(~0)) = (¢~(q~)/z~) Ie~for q~ E C, 1 < o~ < m. Namely, the (i,/)-coefficient 
of A~(c(q~)) is 

Z a,5( A ajS( o) 
t ,J,k 

= Z a~'k(cP) Z a~'j(~.t.) ak(O.r) 
J, k J" 

= 8,, Z ah( ) Z = 8,, 
J Z a Za 

by the Sehur relations (3.8). By (7.1) and (7.2), 

(7.3) X~(c(qO)=¢~(qO for ~oeC, 1 <~ <m. 
In the group case, let I I : G ~ M a t c X  be the permutation representation 

of G affording (X, 0). Then V= <H(G')>c and C = V(V(C)) is the centralizer 
algebra of H. The permutation character is %II=~=le~(xJ1) and x~H, 
1 < i< m, are its irreducible constituents. In particular, in the group case, 
the irreducible degrees and multiplicities of (X, 0) are the multiplicities and 
degrees of the irreducible constituents of the permutation character. 

In the general case, Aut*(X, 0) is isomorphic with the group of all 
permutation matrices in V. If G is a group acting on X as a group of strict 
automorphisms of (X, 0) and I I : G ~ M a t e X  is the corresponding permuta- 
tion representation of G, then ZH is the permutation character of G. The 
characters Z~I-I are all irreducible if and only if G affords (X, 0). 

Recall that an absolutely irreducible character ~ of H is of thefirst kind 
if it is afforded by a real representation, of the second kind if it is afforded 
by a representation which is equivalent to its complex conjugate but is not 
of the first kind, and of the third kind if it is not of the first or second kind. 
We say that Z~ is of the same kind as ¢~. We want to prove the following 
result which is well-known for the group case. 
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(7.4) The number of symmetric f e ~  is equal to the number of irreducible 
constituents of g of the first kind minus the number of the second kind, counted 
with their multiplicities. 

We begin by proving the version of a theorem of Frobenius and Schur 
which holds for adjacency algebras. 

(7.5) Put ~(a) = ~,,s,~(1/Ifl)¢~(~). Then 

I (e~/z~) if(~ is ofthefirst kind 

~(o~) = -(e~/z~) if ~ is of the second kind 

0 if ~ is of the third kind. 

Proof We may suppose that A~(~)* =A~(~0*) for all o~ and all CeC, i.e., 

that at~(~s)=aj%(~s,,) for all o~, i, j and all fed~. 

N o w  so 

Schur relations, if ¢~ is of the third kind, then ~(a) = 0. Suppose that ¢~ is of 
the first or second kind. Then there is a unitary matrix U= (u~j) such that 

A~(q:) = U-IA~(q~) U for all ~0eC, and such that Ut= U or - U according as 

~ is of the first or second kind. Then alj(¢)= + ~ .  l~l~a~(q~)utj, so 

• = + Z 
i ,J ,k f 

~.~ z~ za 

(7.4) is equivalent to 

(7.6) The number of symmetric f e ¢  is Z'e~-~"e~, where the first sum is over 
the o~ such that ~ is of the first kind and the second sum is over the ~ such 
that ~ is of the second kind. 

Proof We evaluate the sum ~:~(1/]f])~(O~), where ~ = ~ ' f f i l z ~  is the 
standard character of C, in two ways. On the one hand this sum is equal to 
~=lz~(~) ,  and so to 2:'e~-2:"e~ by (7.5). On the other hand, (1/If[)~(O~) 
=Jsyv,  so the sum is equal to the number of symmetric fetid. [] 

The adjacency algebra of the configuration afforded by the regular action 
of a group G on itself is anti-isomorphic with the group algebra CG in such 
a way that the standard basis corresponds to the group elements and the 
standard character to the regular character. Thus group algebras are a 
special class of adjacency algebras and such results as (3.8), (3.9) and (7.6) 
reduce to standard results in this case (with e~=z~, 1 <~ <m, and Ifl =[GI 
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for all feO). In particular, (7.6) reduces to a well-known result about 
involutions. 

Further standard results can be obtained by letting G x G act on G 
according to 

x(g, h) = g -  txh (x. g, h ~ G). 

In this case the adjacency algebra is isomorphic with the center of CG in 
such a way that the standard basis corresponds to the class sums. 

8. COMMON CONSTITUENTS 

We know by Section 2 that the full subconfiguration based on a union of 
fibers is coherent and it is natural to ask how its irreducible degrees, etc., 
are related to those of the configuration (X, 0). 

Assume that X = X  "~ + X  c2) where X ") is a nonempty union of fibers of 
(X, 0), i=  1, 2, and put Ou= {f~O I f ~ X  <° x X <J~} and put ~u= [Oul. Then 
[X ")] = (X (°, 0 . )  is coherent of rank Q,. 

We use a superscript (i) to indicate parameters attached to IX")]. Thus 
C ") is the adjacency algebra of IX")], e~ ° are its central primitive idempotents, 
and e~ ° and z~ ° are the corresponding irreducible degrees and multiplicities, 
1 <o~<_m (°. V ") is the centralizer algebra (in Mate X(°) of C ") and Z ") 

Vm(O e o) .,) =/.~,=~ ~ Z~ is the standard character of V "), afforded by CX "), where 
1(~ ° is the irreducible character of V (° corresponding to e(~ °. As usual we 
choose the notation so that e(~ ° and Z(~ ° are principal. 

The adjacency algebra C of (X, (9) has the vector space decomposition 

C = C11 ~ C~2 ~ C21 e (722, 

where C~j= ~ I f~01j)c, and dimC~j=Ou. We identify C,  with C "> under 
the isomorphism cr~r  l X<:> x X c°, creC,.  

Take ~ V =  V(C), then ¢k commutes withevery a~ C (°. Taking" cr = ~<"= ~ e~°) 
we see that ~ [ X <° x X<J)=0 for i# j .  So CX= CX el) (3 CX <2) as V-module 
and we have representations 

H~: { V--, Matc X ") 

¢, ~ $ l X " )  x X ") 

with//~(V) __. V (°. For the standard character 7, of V we have Z = t l  +22 
where 

m(O 

2, = ZIO//f = ~, el f' (g(o/-/,) 
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is the character of  V afforded b y / I t .  We show that Z(~°/ir~ is irreducible and 
~it(V) = V  m for 1 < ~ < m  m, i=1 ,  2. 

I f /~  and ,, are characters of  V a n d / z = ~ t ~ , o q l g ,  "=~t"--, fltZt are the 
decompositions into irreducible constituents, we write (# ,  ~,> =~,%loqfl, ,  
Now 

01, + 20,2 + 022 = dime C 

= <z, z> 

= <~1, ;tl> + 2 <,~,, ,~2> + <a2, ~ >  
and 

But 

<~,, ~t> = £ (~y,)2 <z,t)rst, zY'/I,> 
og 

>-- E (d°Y = o,,. 
o¢ 

C12 "-+ Mate  (X ~1), X ~2)) 

¢k ~ b l X  " )  x X ~2) 

maps C12 isomorphicaUy onto the intertwining module V(H1,  II2) so 012 
= (2x, 22>. The irreducibility of  the .m rr Z~ ~ t  and the equa l i ty / I t (V)  = V m 
now follow. 

We put m ~'' 2) equal to the number of  distinct irreducible constituents 
common to 2~ and 22 and choose the numbering so that 

•(1) r - r  
~x 1 ~ I  ~--" Z(2)/~2 for 1 _< ~ _< rn ¢1' 2~ 

Then 
r e ( l ,  2 )  

(8.1) 0,2 <Z~, Z2> ~ _m_(2) ~ ¢:ro¢ ~ • 

o ¢ : i  

Note that 

(8.2) The maximum rank o f  d/~C,2 is 

re(l, 2) 

rain {e~ l,, e~2'} • z~. 
t X = l  

Write Zt~=y,~°l-Tt, 1 <~ <m m, i= l, 2, and Z, =Z,~ =Z2~, 1 <o~ <m (1' 2). 
Then 

r a ( l .  2 )  2, m (1)  

(8.3) x = E (4" + d 2,)x~; £ ,£~ Y'x,~ 
~ , = 1  t---1 ~ = m  , ) + 1  e 

is the decomposition o f  z into irreducible constituents. 
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The reduced degree of C is 

( 8 . 4 )  m = m (~) + m (2)  - m (x' 2)  

and 

(8.5) The irreducible degrees and multiplicities for (X, (9) are 
e~ ~) + e~ 2) with multiplicities z~ ~) = z~ ~-), 1 < ~ < m (~" 2), and e~ ~) with multipli- 

city z~ °, m(l' 2) <o~ < m (1), i=1 ,  2. 

(8.6) Assume that [X (1)] and IX (2)] are commutative (and so are fibers). Then 
(a) the number o f  irreducible constituents common to Z (~) and z (2) is rl2, and 
(b) assuming further that r l~=r i2  and that G is a group of  strict auto- 

morphisms of  (X, 0), we have that 
(i) the number of  G-orbits in X(1) < the number of  G-orbits in X (2), and 
(ii) for  x e X  (~), y e X  (2) and G transitive on X (2). The number o f  G~-orbits 

in X(1) < the number of  G~-orbits in X (2) = the number of  G,-orbits in X (~) 
= the number of  G,-orbits in X (2). 

Proof. Commutativity of the X (° implies that all the _m % are 1, so (a) 
follows from (8.1). In particular, if  r~l =r l2 ,  then Z(2)=Z(1)+0, with 0 a 
character of V. If  G is a group of  strict automorphisms of  (X, (9) and 
/-/: G-~MatcX is the permutation representation, then Z(°/-/is the permuta- 
tion character afforded by the action of G on X m. Now (1) and (ii) of (b) 
follow by standard arguments. 

It is easy to see from the above considerations that the primitive central 
idempotents of  V ( =  those of  C) are 

and 

_(2)  1 < o¢ < m (x' 2)  t~a = ~(a 1) q- % , _ _ 

f(t)  m ( 1 , 2 )  < oc ~ m ( 0 ,  i 1,2. 

Hence the simple components of C are C = C ~ l ) ~ U ~ U ~ C ~  2), 1<~ 
< m  tl'2), and ¢7 °) m(1,2)<oc<m (0, i=1 ,2 ,  where <0 _(or, to C~ =% t .  are the - -  v d [  , 

i n , - ,  ~2) Thus Ct2 = Ui @ "'" ~) Um~.~ simple components of  C (° and U~ =% ,~12~ • 
where each U~ is the sum of the members of  anisomorphism class of  irre- 
ducible submodules of C12 as a (C (1), C(2))-bimodule. The corresponding 
components of M are M~ = M~ x) + M~ t2), 1 < oc < m (1, 2), and M "), m ix' 2) < o~ 
< m  (°, i=  1, 2, where M~°=e~°CX°) .  

If  e~ ° and ¢[o are principal, i = 1, 2, then e~ and ¢~ are principal. 
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9. INTERSECTION MATRICES 

The matrices ~, OeFintroduced at the end of Section 2 can be broken up 
into sums of matrices ~¢~), 1 < ~ < t, as follows. ChoosexeX~, then {g(x) Ig~ ¢, 
domg=X~} is a partition of X. Taker, g, hed~ with domg=domh=X~. For 
(x,y)~, 

~ -  (z, y) = [g(x) r~f~'(y)[ = a ~ ,  
z • # ( x )  

which is independent of the choice of (x, y)~h. That is, each block of • s, 
blocked according to this partition of X, has constant column sum. This 
block has column sum ao~, 

x, 

~f:g(X) 

x h(x) 
- f 

ly 
I 

J¢" 
11 

A matrix O~)eMatz¢, fed), is obtained on putting 

• ~> (g, h) = { oa°S~otherwiseif dora g = dora h = X~ 

For ~e/ ' ,  qb=~a,~ s, ay~Z, and we can put ~¢~)=~a/bT)EMatz ~, 
and ~t~) can be obtained from ~ by the same blocking process. It is clear 
that ~ = ~ = l  ~t~), and it follows that ~ b ~  <~> is a ring homomorphism o f / '  
onto a subring/'<~) of Matzt~, such that ~ - , , , ~ = t ~  . Of course in the 
homogeneous case, ~1>=~ and/'~l>=j,.  

In the inhomogeneous case it is often convenient to discard blocks of 
zeros. We have 

F = ~ ~ F ~J (vector space direct sum) 
l < l , J < t  

where FIJ= <t/iy [f~¢lJ) z. For ~b~P IJ, ~ [ X~ x Xp - 0  unless ~=i and fl=j. 
Thus ~b~b [ X~ x Xj is an isomorphism of/ '~J onto a subgroup M IJ of 
Matz(X~, Xj). M IJ has basis {/~f If~d~lJ}, where 

#I =~s[ X, x X~ 
and 
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(9.1) For f~(9 tJ and g~(gjk, 

In particular, /~"~M" is an isomorphism o f / ' "  onto the adjacency ring M u 
of [Xd and (#:  IfE(gu} is the standard basis of M". 

We have further that 

pt~> = ~ ~ / ' ~  (vector space direct sum) 
l < | , J < t  

when /~ l={~ t~  I ~beFtJ}. If ~b~F ~, then ~b<~>(g, h)=0 if (g, h ) ~ x ( 9  a. 
Therefore ~bt~>~bt~> I (9~x (9~ is an isomorphism of/'~J onto a subgroup 
M~ 1 of Matz((9 "~, (9°0). Clearly the diagram 

F U  .-~ M U 

(*) L 

commutes. For f~(9~1 we put ~ t  =~-: I (9~x (9~, then [f~(9~1} is a 
basis of M~ J. 

We call (#~> [f~(9, 1 < ~ < t )  the family of basic intersection matrices for 
(X, (9). Then (#~> I f~(9~) is the family of basic intersection matrices for 
[X~]. If (X, (9) is homogeneous, then #~t )=~:  and ~ = ( ~ s  If~(9) is the 
family of basic intersection matrices in this case. We have 

(9.2) I f  f ~  (gu, then #~> ~ Matz ((9~, (9~J) and #~> (g, h) = ag:~ for g ~ (9~s, h ~ (9~J. 

(9.3) For f~(9 tJ and g~(gJk, 

~ t a ) .  ta) 

Knowing the family of basic intersection matrices is equivalent to knowing 
the family of intersection numbers. Conditions on the intersection numbers, 
especially (2.15) through (2.19) are readily interpreted as conditions on the 
basic intersection matrices. We translate some of these here which are often 
used in matrix form. 

(9.4) /z(~ ) is the identity matrix in Matz(9 ~. 

(9.5) I f  re(9 ~J, then t.os" (~>~_.,e,.(~)xte_vv.,: U) where 0eMatz(9 ~J and 0eMatz(9 ~ are 
diagonal matrices such that Q(h, h)=n~for  h~(9 ~J and tr(g, g )=ngfor  g~(9 al. 

(9.6) #(~> has column sum ny U and t~> ~.,s~'J#: (g, h) =ngfor  all g~&~, h~(9 ~J. 
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10, C O H E R E N T  P A R T I T I O N S  AND REFINEMENTS 

Let (X, d~) be coherent. A partition ~ of X is coherent (for (X, ~)) if, for all 
S, T, e ~  and all fetP, the number off-edges from S to a point y e t  is in- 
dependent of the choice of yeT. We then denote this number by tD~'(S, T), 
thus defining ¢~'eMat z ~ such that 

¢~ (S, I") = IS c~ f~(y)l = ~ ~ y (x, y) 

for S, T e ~  and yeT. Thus, a partition ~ of Xis  coherent if and only if, 
for all f e e ,  the blocks of ~y blocked according to ~ have constant column 
sum; and then ¢~ is obtained from ~j, be replacing each block by its column 
sum. For ~e/~ we can write tk ~' for the matrix in MatzO'obtained from 
in this way. It follows that 

(I0.1) l f  ~ is a coherent partition for (X, ~), then ~ c k  ~ is a homorphism of I '  
onto a subring 1 ~ of Mat z ~.  

Let ~ be a coherent partition for (X, ~9) and let S e ~ .  Then Sc~Xt#d? for 
some i, and i fxeSc~Xt  and yeS,  then the number of Eredges from S to x, 
namely one, is equal to the number from S to y. Hence yeX~ and S~_X~. 
In particular 

(10.2) l f  # is a coherent partition for (X, d~), then { S e #  I S~_X~} is a coherent 
partition of [X~], i=  1, 2, ..., t. 

A first example of a coherent partition arose in Section 10 where we chose 
xeX~ and showed that ~={g(x)  I ge¢, domg=X~} satisfies the coherence 
condition. In this case, for ~e/~ and g, heO such that domg=domh=X~,  
d?*(g(x), h(x))= ~bt~)(g, h) as defined in Section 9. 

A refinement ~o of the partition 0 of X 2 will be called coherent if the 
subconfiguration (X, ~o) of (X, ~) is coherent. We also refer to (X, ~o) as a 
coherent refinement of (X, 0) in this case. 

(10.3) The fibers of a coherent refinement (X, ~o) of(X, tg) constitute a coherent 
partition of (X, ¢). 

Proof. Let S, T be fibers for (X, ~o) and take fete. Thenf=~g~ag for a 
uniquely determined subset .~ of ¢o. The number off-edges from S to y e T  
is the sum for gE.~ of the numbers of g-edges from S to yeT, and so is equal 
to ~g~aonov, where -~o = {ge.~ [ d o m g = S  and range g=T}.  [] 

(10.4) The subeonfiguration afforded by a group H acting as a group of strict 
automorphisms of(X, ~) is a coherent refinement of(X, t9), and hence the set 
of H-orbits in X is a coherent partition for (X, ~). 
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(10.4) is an immediate corollary to (9.3) since the orbits for H in X are 
the fibers of the configuration afforded by H. Of course (10.4) is also easily 
obtained directly. 

11. FusIoN 

As always, (X, to) is coherent. Suppose that a partition ~ of X 2 is obtained 
by fusion from to, i.e., that to is a refinement of ~. This means that there is 
an equivalence relation ,-~ on to such that 

= { f [ f ~  to}, 

where f = ~ g ~ f g .  

(11.1) (X, to) is coherent i f  and only i f  

(i) f ~  E~ for some i implies f =  E~ for some L 
(ii) f .~g  implies f v ,.~g~', and 
(iii) for all f ,  g, h, hleto, h'.,hl 

implies that ~u~ ya~vh = ~ ~ j ,  auvh~. 
V ~ g  V ~ g  

If (X, ¢) is coherent, then its intersection numbers are aT~=~u~ya~vh. 

(11.2) Let H be a group acting on tO and suppose that ~ is obtained by fusion 
of  the H-orbits, so that for f~to, f =  w ~ n f  ¢. Then each of  the following 
conditions (a) and (b) implies coherence of(X,  ~). 

(a) (i) for each f~to and a~H there exists a z ~ H  such that (f¢)u = (fv),, and 
(ii) each tr e H induces an automorphism o f f  according to q~ y ~ ytr for f e  to. 
(b) the action of  H on to is induced by an action of  H as a group of auto- 

morphism of (X, to). 

(ll.2a) is a consequence of (11.1) and (ll.2b) follows from (11.2a). In 
particular, (11.2b) implies that fusion of the orbits for Aut(X, to) in to yields 
a coherent configuration, which, in the group case will be just the configura- 
tion afforded by Aut(X, to), and in general will be a refinement of that. 

(11.3) Assume that 0 is obtained from 0 by fusing each feto with its converse 
fu ,  so that f = f w f  ~'. Then each of  the following conditions (a) through (c) 
implies coherence of  (X, ~). 

(a) ~b~ and ~£ commute for all f ,  g~to. 
(b) I '  is commutative. 
(c) there is a subgroup H o f  Aut(X, to) having { { f u f  U} If~to} as its set of  

orbits in to. 
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(ll.3a) follows from (11.1), (ll.3b) from (ll.2a) or (ll.3a), and (11.3c) 
from (11.2b). 

Remarks about (11.3) 

In the situation of (11.3): 

(i) Coherence of (X, ~) implies homogeneity of (X, ¢). 
(ii) We do not have examples of homogeneous configurations (,Y, ¢) for 

which (X', ~) is incoherent, not do we have such examples for which (l 1.3c) 
fails to hold. 

(iii) It is easy to prove, and presumably well-known, that if a group (7 
acts transitively on X and has a regular elementary Abelian normal sub- 
group F, then there is an involution (tEN((;) such t h a t f  = f  U for all (;-orbits 
f i n  XL 

12. CONFIGURATIONS OF SMALL RANK 

We now take a brief look at coherent configurations (X, d)) of degree n and 
rank r for some small values of r. 

Suppose first that r<3.  Then the Equation (2.12) implies that t=  1, i.e., 
(X, ¢) is homogeneous. If r = 1, then n = 1 and the configuration is just a 
loop. If r=2,  then ¢={Lf=X2-1}  and (X,f) is a clique. This is the 
configuration afforded by a group acting doubly transitively on X. The first 
possibility for non-trivial application of our theory is r = 3, where ¢ = (Lf, g}. 
In fact this case served as a model for the general development and can be 
used now to illustrate it. 

There are two cases according as the pairing is trivial or not. 

(1) Rank 3 Configurations with Trivial Pairing 

In this case (X,f) and (X, g) are a pair of complementary strongly regular 
graphs, and every strongly regular graph arises in this way from a coherent 
rank 3 configuration with trivial pairing. A rank 3 permutation group of 
even order affords a configuration of this kind. We refer to [9] and [8] for 
discussions of rank 3 permutation groups and strongly regular graphs. 

In the notation of [8], A =¢~s, B=¢~o, k=ns, l=ng, 2=asss and p =ass~. 
The intersection matrices 4:1 are 

(il o) 
.4  = 2 # a n d  B = 

k - $ - I  k - p  

(i °1  ) t - p  t - 2 - 1  

p ~L 
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with ~ = l - k + # -  1 and k i = l - k + 2 +  1 and # l = k ( k - $ -  1). These condi- 
tions, together with the assumption that the entries of  ~ and B are non- 
negative integers embody all the conditions on intersection numbers men- 
tioned in this paper, except for the integrality of  the multiplicities z2 and z3 
and the Krein condition. 

The character table is 

I A B 
(1 I 1 k 1 
(2 Ill r - ( r + l )  
Za s - ( s+  1) 

where {~} = (2- /~ + x/d)/2 with d =  ( ; t -  #)2 + 4 ( k -  #). Namely k, r and s are 
the eigenvalues of  A and F(A) =/~J where F(T) = T 2 _ Q._ #) T -  ( k -  tO and 
J i s  the 'all I' matrix. We have k _ > r > 0 > s ,  with k=r if and only i f /~=0  if 
and only if (X,f) is not connected, and r = 0  if and only if # = k  if and only 
if (X, g) is not connected. 

Various methods as in Section 5 can be used to compute z2 and z3. From 
some points of  view at least, the most convenient formulas are given by 
solving the system (5.5), which in the present case is, 

1 " ~ Z  2 " } - Z  3 = n  

k + r z  2 + s z  a = 0 

to get {z2} 1 { ( k + l ) ( 2 - 1 ~ ) + 2 k }  

z3 = 7  k+t-v- 
as in [7]. This divides the rank 3 configurations with trivial pairing into two 
types, (I) and (II), according as A = 0  or A S0,  where A =(k+l)(2-#)+2k. 
We have type (I) if and only if z2 = zz, and then k = I=  2/~. For  type (II) we 

know that d is a square and v/dl A, 2~/d v A if n is even, while 2~/dl  A 
if n is odd. 

In the present case 
inequalities. 

0 _ < 1 +  

0 < _ 1 +  

0 < 1 + - - -  

0 < 1 +  

the Krein condition (6.5) gives the following set of 

n 2 r 3 (r + 1) 3 _< 

k 2 l 2 zz 2 ' 

s2r (s + 1) 2 (r + 1) 

k 2 12 

r2s (r + 1) 2 (s + 1) 
k 2 l 2 

w . n 2  s_.~_ a (s + 1)___.___ 3 < _  
k 2 l 2 z 2 " 

n 2 

z2z3 

n Z 

Z2Z3 
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The following are some sets of rank 3 parameters which satisfy all the other 
conditions mentioned in this paper but fail to satisfy the Krein condition. 

n k 2 r s 

28 9 0 1 - 5  
56 22 3 1 - 1 0  
63 22 1 1 - 1 1  
64 21 0 1 - 1 1  

144 65 16 1 - 2 5  
154 51 8 2 - 1 5  

(These are the first 6 on a list of such cases found by a program written by 
R.Scott.) The first 5 have a character value - ( r + l ) = - 2  and have been 
eliminated by other means as part of the classification of strongly regular 
graphs with minimum eigenvalue - 2 .  ([17], see also [18] and [8].) 

Unfortunately the Krein condition is vacuous for type (I). 

(2) Rank 3 Configurations with Nontrivial Pairing 

A rank 3 permutation group of odd order affords such a configuration. 
Such a group is solvable by the Felt Thompson Theorem, and primitive. 
The solvable primitive rank 3 groups have been classified by Foulser [6] 
and, independently, by Dornhoff [5]. 

For a rank 3 configuration with nontrival pairing we have k=l  and 
At=B, where k=n s, l=ng, g=fV, so A = ~ t  and B=~g.  The intersection 
matrices # 1 are seen to be 

(i '° ) A = a a + 1 and B = 

a a 

( 0a 
a + l  

with k = 2a + 1. The character table is 

(iki) r 

r 

where r = ( -  1 + ix/4a +3)/2 and r is the complex conjugate of r. The multi- 
plicities are z2 =z3 =k. The Krein condition is not an independent condition. 

An analysis of homogeneous configurations of rank 4 will be made in 
Part V of this series of papers. We now glance briefly at inhomogeneous 
configurations of small rank. We have seen that r>  4 if t_> 2 from the 
Equation (2.12), and the same equation implies that r > 8 if t > 3. If t = 2 and 
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4_<r__7, then r ~ = l  for some i , j ,  so r12=1. We can always join two homo-  

geneous configurations (2"1, ~91) and (X2, d)2) together in a 'trivial' coherent 
way by forming 

(x l  u x~, ¢1 u ~2 u {xl  x x~, x2 x x d )  

where we assume without essential loss in generality that X1 and X, are 
disjoint sets. The result is a coherent configuration having X1 and X2 as it 
fibers and r12 = 1. Thus the possible coherent configurations with t = 2  and 
4_< r < 7 can be obtained by joining together trivially two configuration of  

ranks rlx and r22 such that r l l  +r22 = r = 2 .  
The first 'nontrivial' inhomogeneous case has t = 2 ,  r = 8  and t i t = r 1 2  

=r22=2 .  Such a configuration has two fibers X1 and X2, and Ol2 ={f ,  g}, 
so that (X1, X2 , f )  and (X1, X2, g) are complementary incidence structures. 
By (8.6), IXll--IX21, so the coherence conditions imply that these incidence 
structures are (possibly degenerate) projective designs. Conversely, every 
(possibly degenerate) projective design arises from a coherent configuration 
in this way. The degenerate ones correspond to the cases n s =  1 and 

nf = IX21-1. 
More generally, if (X, tg) is a coherent configuration with t fibers and 

ri~ = 2 for 1 < i, j <  t, then (X, ¢) is equivalent to a family of l inked projective 

designs as defined by P. J. Cameron. 
In the same way we see that partial geometries (cf. [12]) are equivalent 

to certain coherent configurations with t = 2 and 9 < r < 11. 
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