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C O H E R E N T  C O N F I G U R A T I O N S  

II: Weights 

1. INTRODUCTION 

We consider certain partitions ¢V of  X 2 where X is a finite set, and certain 
matrices w: X 2 --> C which we refer to as weights on (X, 0). Under a suitable 
coherence condition there is associated with w an algebra of  matrices 
$: X 2 -+ C which we call the adjacency algebra of  w. In case (X, d~) is a 
coherent configuration, its adjacency algebra as defined in Part I coincides 
with the adjacency algebra of the 'all 1' weight. With certain exceptions the 
ordinary theory of Part I extends to adjacency algebras of coherent weights. 
Our main purpose here is to indicate these extensions. 

Our primary source of  motivation and examples is the fact that the 
centralizer algebra of a monomial representation of  a finite group is the 
adjacency algebra of  a suitable weight. It should be noted, though, that there 
is no shortage of  coherent weights which do not belong to this ' group case'. 
For instance, a regular 2-graph can be viewed as arising from a weight, and 
this weight belongs to the group case if and only if the automorphism group 
of  the 2-graph is 2-transitive. Also, such processes as fusion can carry one out 
of the group case. 

In this paper, [2] is referred to as Part I, and references to (I.a) or (I.a.b) 
are to section a or statement (a.b) of  Part I. Details are frequently omitted 
when the extension from Part I is straight forward. 

The sections of  the present paper are as follows: 
1. Introduction 
2. Coherent and regular weights 
3. The Schur relations and theorems of Frame and Wielandt 
4. The Krein condition 
5. The centralizer algebra 
6. Common constituents 
7. Fusion 
8. The Casimir operator 
9. Regular 2-graphs 

10. The group case 
A detailed discussion of the group case is given in [4]. 

2. C O H E R E N T  AND R E G U L A R  WEIGHTS 

In this paper we consider configurations (X, 0) consisting of  a finite nonempty 
set X and a set 0 of  binary relations on X. By R = R(X, 0) we denote the 
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Boolean subalgebra generated by 0 of the Boolean algebra of all subsets 
of X 2. We say that (,t, 0) is based on X and refer to the members of 0 and R 
as the basic and admissible relations respectively. We call ( X, 0) precoherent 
if the following axioms (I), (II) and (III) are satisfied. 

(I) 0 is a partition of X 2. 
(II) i : =  {(x, x) l x e X} e R. 

(III) f e  0 impliesf V :=  {(y, x) [ (x, y) e f}  e 0. 
These are the first three of the four axioms defining coherent configurations 
in (I.2). The notations and terminology of (I.2) will be used freely. 

Let (X, 0) be precoherent. Then any admissible relation is uniquely 
expressible as a union of basic relations, so in particular i = U~=I E~, 
E ~ e 0 .  

A weight on (X, 0) is a matrix w: X 2 -+ C such that 
(1) w is Hermitian 
(2) [w(x, y)[ = 0 or 1 and w(x, x) = 1 for all x, y ~ X, and 
(3) spt w :=  {(x, y) ~ X2]w(x, y) # 0} ~ R. 

Let w be a weight on (.I, 0). Then spt w = O t ~  f,  where 0~ is a subset of 0 
closed under the converse map f~_~fu, and the basic components E~ of i are 
in 0w. We call r~ :=  10w[ the rank of w. 

The 'all 1' matrix • and the identity matrix I are weights on (X, 0) which 
we refer to as the standard and trivial weights respectively. Clearly 0® -- ¢ 
and 01 = {El, E2 , . . . ,  Et}. 

For S _ X 2, let ws: X 2 --~ C be the matrix which coincides with w on S 
and is zero off S. Thus ~s is the characteristic function of S, i.e., the adjacency 
matrix of the graph (X, S), and ws = w o ~s where o is the pointwise (i.e., 
hadamard) product. Then w = ~ f ~ u  wf, w ~ ' -  wr, for f~O~,  where * 
denotes conjugate transpose, and wE, = ~ ,  for 1 ~< i ~< t. 

We let C~w denote the r~-dimensional linear subspaee of MatQ~w~X spanned 
by {w t [ f ~  0~}, where Q(w) : = Q({w(x, y) ] x, y ~ X}) and MatQcw)X is the 
Q(w)-algebra of matrices ~: X 2 ~ Q(w). The weight w will be called coherent 
if C~w is a subalgebra of MatQ<~)X. 

If  f ,  g ~ 0~ and w t wg = Y~o btg~wn with b1~n ~ C, then for h E 0 and 
(x,z)~h, 

(1.1) btgn = ~ w1(x, y)w~(y, z)wn(x, z) 
y~X 

= 8w(x, y ,  z ) ,  

where f(x)  :=  {9, e X [ (x, y) ~f}  and 8w(x, y, z) :=  w(y, z)w(x, z)w(x, y). 
If  w is coherent, the structure constants for C~ w with respect to the basis 
{wl I f e  Ow} are given by (1.1), and bi~u = 0 if not all of f ,  g and h are in 0~. 
We call {b/8 , [ f ,  g, h ~ ¢} the set of structure constants for w. We see that 
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(1.2) A weight w is coherent i f  and only i f  the linear subspace K ~  of  Mat~ X 
spanned by -[wt [ f ~ @w} is a subalgebra for some extension field K of Q(w). 

Since Q~ is closed under the conjugate transpose map and I = ~[= ~ w~,, 

(1.3) l f  w is coherent, then ~ is semisimple and contains the identity matrix. 
It will be convenient to say that a triangle (x, y, z) e X ~ has type (f, g, h) 

if (x, y)  e f, (y, z) e g and (x, z) e h. The weight of (x, y, z) is 3w(x, y, z). In 
this terminology, if (x, z ) e  h, then b~n is the sum of the weights of the 
triangles (x, y, z) of type (f, g, h). Thus w is coherent if, and only if, for 
f, g, h e @ and (x, z) e h, the sum of the weights of the triangles (x, y, z) of 
type (f, g, h) is independent of  the choice of  (x, z) e h and is zero if h ~ @w. 

Let X~ = {x e X I (x, x) e E~}, then {X~ [ 1 ~< i ~< t} is a partition of .I. We 
refer to the X, as thefibers of (2,  6). 

(1.4) I f  w is coherent and f e Ow, then d o m f n  X~ ~ ~ implies d o m f  = X~. 
Proof. Here, as in (I.2), d o m f =  {xeX[  f(x) # ~}. Assume d o m f n  X~ 
~ and take x e d o m f c ~  X~ and ye f ( x ) .  Then bruit = 3w(x,x ,y)  = 1. 

If  x~ e d o m f  and Yl ef (xl ) ,  then bE,it = ~z~E|(Xl)t~f~J(~/1) 3W(Xl, Z, Yl) = 
3w(x~, x~, y~) so x~ ~ 2"1 and dom f_ c  X,. On the other hand, write ~ = 
~u~r(x) 3w(x, y, x) = [f(x)l # 0, and if xleX,, wt~z,= ~u~,t(~,) 3w(x~, y~, xx) 
= [f(xx)[. Hence If(x01 = If(x)l so domf. [] 

Thus, if we put @~ = { f e 0 ~  l f--- X~ × Xy}, then by (1.4), 

(1.5) {0~1 1 ~ i , j  <~ t} isapartition of  O. 
A weight w will be called regular if, for all f ,  g, h e 6, (x, z ) e  h, and 

e C, the number ~sgh(a) of triangles (x, y, z) of  type (f, g, h) and weight 
is independent of the choice of  (x, z) e h. Clearly 

(1.6) l f  w is a regular weight on the precoherent configuration ( X, 6), then 
(a) (X, d)) is coherent with intersection numbers algn = ~,~c/31gh(~), 

f , g ,  hE6 ,  and 
(b) w is coherent with structure constants brg n = ~,ec a/3rgh(~),f, g, h e 6. 
Note also that 

(1.7) For a precoherent configuration (X, 0), the following are equivalent. 
(i) (X, 0) is coherent. 

(ii) the standard weight • is coherent on (X, 6). 
(iii) the standard weight ¢b is regular on (X, 6). 
If a coherent weight w is integral in the sense that all the values w(x, y) are 

algebraic integers, then {w I I f e  ew} spans on order Pw over the ring of 
integers in the number field Q(w). If  (X, 6) is coherent. P® coincides with the 
adjacency ring F of  (X, 6) as defined in (I.2). 

We list now some basic properties of the structure constants {blgh If, g, h e 6} 
of  a coherent weight w. 
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(1.8) I f (X ,  ~) is coherent, then [bi~hl ~< atgh, where the a~gn are the intersection 
numbers for (X, 0). 

Proof. For (x, z) e h, 

b,o  = l w (x, z)w (x, z) I 
<- ~ *Ax, y)%(y, z) = a~... [] 

(1.9) blgn = bgutvnu. 
Proof. (w~w. )*  = wouwru. [] 

(1.10) I f  f l , f 2 , . . . , f ~  ~ O, s >1 3, then the sum 

(*) ~ bmaaxbaxr~a~ . . . . .  ba,-,t ,-a.lAI 

is independent of  cyclic permutations o f f l, f z, . . . , f ~. In particular, b y gn o [h I = 
bnt,o[gl = b,ny,,lfl. 

Proof. Put w, = wrt. The expression 4") is equal to 

Xl) = x , ) . . .  
x l ( x  ( x ) e x  s 

which is independent of such permutations. []  

(1.11) I f  f and g are symmetric, then b11g, b m and bg~t are real. 
Proof. Apply 41.9) and 41.10). []  
Clearly 

(1.12) bt~h # 0 implies f ~ $~, g ~ ~p~k and h ~ #v,*k for some i,j,  k. 
And it is easy to verify that 

(1.13) I f  f ~ (P~, g ~ ~)~ and h ~ d~, then bE=gh = ~,a3=j3o~, bt~=n = 3=j3~3s~ 
and blgt ~ = 3,t3~n3tgn t, where n r = [f(x)], x ~ d o m f .  

A consequence of  (1.13) is 

(1 .14 )  t race  w~w~ = b t ~ o l f l .  

3. T H E  S C H U R  RELATIONS A N D  THEOREMS OF 
FRAME A N D  W I E L A N D T  

The results of  Sections 3 through 8 of  Part I can be regarded as results about 
the standard weight ¢ and admit rather straightforward extensions to coherent 
weights w in general. In Sections 3 through 7 of the present paper we indicate 
some of these extensions, omitting proofs where the extension from Part I 
is fairly immediate. 

Let (.t, d~) be precoherent, n = IX], and let w be a coherent weight on 
(X, ~). The notations for the adjacency algebra C~, = CQ~ will be the same 
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as those used for  C in (1.2), with a subscript or superscript w at tached when 
necessary, as in Sections 4 and 6. Thus A , , . . . ,  Am are the inequivalent 
irreducible representations o f  C~ and [ ,  . . . . .  ~,~ are the corresponding 
characters,  with [~(I) = e~. The standard character of  C~, i.e., the character  
afforded by CX, is [ = Y.~= 1 z ~ : ,  and [(ff) = trace ff for  ff ~ C~. We have 

° 2 (3.1) rw = 2 e~ and n = z~e~. 
a=l ¢=I 

We write A~($) = (a~($)) for  6 e C~. There is a basis {e?j ] 1 ~< i, j ~< e,,  
1 ~< ~ ~< m} of  C~ such that  

1 
(3.2) e~ = z~ ~ a~(~,/)w: where ~:  = V~I w~. 

f~Oto 

The central primitive idempotents  o f  Cw are 

(3.3) e (", = ~ e~, = z ,  ~ ~,(~t)wt. 
| *1  

As in (1.3) we obtain the Schur relations 

(3.4) ~, a~(~:)a~,(w:) = 3~,aS,,Sy ~ I 
1~$ Za 

and the orthogonality relations 

(3.5) ~ ~,(~::)~#(w:) = 8~, B e~, 
f~w Za 

It  is sometimes convenient to write the Schur relations as a matr ix equation.  
For  this purpose we list the a~ as a, ,  a2,. • . ,  arw, putt ing ax = a~ and ha = z ,  
if aa = a~. Similarly we list the w t as w, . . . .  , w,~, putt ing w, = w r ,  and 
mt = Ifl if  wt = w I. Then (3.4) becomes 

(3.6) A P M -  ~(.~A) t = H -  1, 

where Aa ,  = a~(w~), H = diag(hl . . . .  , hr-), M = d i ag (ml , . . . ,  mr.), and 
P and .~ are suitable permutat ion matrices with p2  = .~z = L We can rewrite 
(3.6) as 

(3.7) (.~A)~HAP = M 

which means that  

(3.8) 

and hence 

(3.9) 

= 8, [fl. 
Ct,~,,J 

w ,  = 
a,,' l,J 



4 1 8  D . G .  H I G M A N  

In  par t icular  

(3.10) I f  Co is commutative, then 

- -  8 r o l f ] .  

Let us now assume that  w is integral. Then  the structure constants  brgn are 
algebraic integers and we may  assume tha t  the matrices A~(wr) have algebraic 
integer coefficients for  all f e  0o, 1 ~< ~ ~< m. The  derivat ion o f  the version 
(1.3.14) of  F r ame ' s  theorem can now be repeated up  to the point  where appeal  
is made  to the existence of  the principal irreducible character .  This gives 

(3.11) I f  w is a coherent integral weight, then Po/.~o is a rational integer, where 

Po = 1--i~¢. Ig] and .~o = I-im=1 (z~) "2". If, in addition, A~ can be written in O, 
1 <<. ~ <<. m, then Po/.~o is a square. 

On the other hand,  the version (1.3.15) of  Wielandt ' s  theorem extends 
wi thout  change, namely,  considerat ion o f  the e lementary divisors in (3.7) 
gives 

(3.12) I f  w is a coherent integral weight and q is a prime power dividing z~for l 
distinct values a~ . . . . .  ~z of  ~, then q divides Igl for e~ + . . .  + e~ z distinct 

When applied to the group  case (see Section 10) this result should be com- 
pared  with results o f  Curtis  and Fossum [1] and Keller  [5]. 

4. THE KREIN CONDITION 

Let  u and v be weights on the precoherent  configurat ion (X, 0). Then  the 
produc t  u o v is a weight on (X, 0), spt u o v = spt u r~ spt v, and 0~.~ = 
0~ n Cv. We write u ~< v to mean  tha t  spt u _c spt v and u and v coincide on  
spt u. Thus  u ~< v if and only if ¢u ~ ¢~ and u = Y~teo~ Yr. Fo r  example,  
u o • = u and u o fi ~< cI), where • is the s tandard  weight and fi is the complex 
conjugate  o f  u. 

Assume that  wl, w2 . . . . .  ws(s >1 2) and w are coherent  weights on (X, O) 
such that  wl o w2 . . . . .  w8 ~ w. Then  Col ° Co2 . . . .  o Co, - Co. We have 
a basis {e~ [ 1 ~< A ~< r~} o f  C~ for  u = w~, 1 ~< i ~< s, and u = w, such that  

geO~ 

where the nota t ion  is tha t  o f  Section 3. 
Fix ;h, 1 ~< A~ ~< r~,, for  1 ~ i ~< s, and put  h~ = h~ l and a~ t = a~l(wu). 

Then  
1" m 

o o . . . o  = . . h ,  c , 4 ,  
I~=]. 



COHERENT CONFIGURATIONS, II 419 

where 

cv -- ~ al ta2t .  . .a,:  

the sum being over all f e  @wl n 0 ~  c~ • •. n Ow,. Assume that for u = u~, 
1 ~< i ~< s, and u = w, the complete reduction of  C, has been effected by a 
unitary matrix, i.e., that A~(~)* = A,(ff*) for 1 <~ ~ <<. m~, ~ ~ Cw, and assume 
that X~ = A~, 1 ~< i ~< s. Then e~'~ is a projection, so e~'~ o e~  . . . . .  e~'~ is a 
positive semidefinite hermitian matrix with all its eigenvalues in the interval 
[0, 1]. Thus, writing c~ = c~ if a~ = a~, we have 

(4.1) For 1 <~ ~ <~ mw, C,  = (c~) is a positive semidefinite hermitian matr ix  
with all its eigenvalues in the interval [0, 1/hxh2. . .h~]. 

In particular 

(4.2) Let  wa, w2,. . ., ws and w be coherent weights on a precoherent configura- 
tion (X, (~), such that w~ o w2 . . . . .  w~ <<. w, and let p~, p2 . . . . .  p~ and p be 
linear characters o f  C~I, Cw~,. . ., C~, and C~, respectively. Then 

0 <<. ~ p1(w,:)p2(w2:)...lfls Ps(wst)P(wt) <~ __I 
ZIZ 2 . . . Z s 

where the sum is over all f e @w, ~ Ow2 c~ . . .  n 0 ~  and z~ is the multiplicity o f  
p, in the standard character o f  Cw. 

Concerning the applicability of (4.1) and (4.2) to the group case see the 
end of Section 10. The obvious extension of the argument of Part I from 2 
factors to s >1 2 factors was pointed out by Norman Briggs. 

5. THE CENTRALIZER ALGEBRA 

Let w be a coherent weight on the precoherent configuration (X, 6). The 
centralizer algebra of  Cw in Mate X will be denoted by V(Cw) and its standard 
character, i.e., the character afforded by CX, will be denoted by X = Xw, 
Then X has the decomposition 

mw 

X = ~ ,  e~x,~, 
c Z = I  

where x~ = X~', 1 ~ 2 ~ m~,, are the irreducible characters of V(Cw) and X~ 
has degree z~. Moreover 

(5.1) X~(z)e~ = ~ ( z ) z ~ f o r  all z e Cw n V(Cw). 

Assume that btoh e R for all f ,  g, h e 0~,. Then the irreducible characters 
of C~0 and V(Cw) are classified into three kinds in the usual way. For 1 ~< a ~< mw 
put 

e~ ~ .  1 
= 
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Then 

(5.2) ~, is of the first, second or third kind according as v~(a) = I, - I or O. 

(5.3) The number of symmetric f ~ ~w is the number of irreducible constituents 
of x~ of the first kind minus the number of the second kind, counting multi- 
plicities. 

6. COMMON CONSTITUENTS 

Let w be coherent on the precoherent configuration (X, d~) and assume that 
X = X <~) O X <2~ where X <~ and X ~2) are nonempty unions of fibers. Assume 
in addition that for f e t e ,  f___ X <° x X <~ for some i , j~{1,2} ,  so that 
{d?,j [ 1 ~< i, j ~< 2} is a partition of t~, where ~,j = ( f e  d~ l f - c  X~o x X<'~). 
Put ¢~ = (P~ n ¢~. Then [X "~] = (X ~°, d ~ ) i s  preeoherent and w~ = 
= w I X"~ x X <° is a coherent weight on [X<°], i = 1, 2. Moreover ~ ,  = ~ ,  
so IX "~] has rank p~ where ~ = [dT,~[, 1 <~ i,j <~ 2. 

The adjacency algebra Cw has the vector space decomposition 

where C~ = <w:lf~ ~B>c. We identify C~ with the adjacency algebra 
Cw, under the map g ~ ~ [ X<° x X ">, ~ e Cff, i = 1, 2. 

We have CX = CX <t) @ CX (2) as a module over V(C~,) so we have 

representations 

V(Cw) ~ Mate X <*> 
II,: k~ ~ ~ I xu> x x ' ,  

i = 1, 2, with II~(V(Cw))~_ V(C~,~). The standard character Xw of V(C~) 
decomposes accordingly into a sum xw = )tl + A2, where ~ = X~II~, X~ 
being the standard character of V(Cw,). 

Put m ¢1'2) oqual to the number of  distinct irreducible constituents common 
to A1 and A2 and number the irreducible characters X~' of  V(Cw~) so that 
X~III~ = X~2II2, 1 ~< c, <~ m <i'm. T h e n  

m(1,2) 

(6.1) P~'2 = ~ e~xe~ ' 

and 

f/l(l.2) 

(6.2) max{rank ~ I 4' e CI°2} = ~ min(e~l, e'~2)z~. 
a = l  
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If  we ~,rite Xt==x~ilIt ,  i~<cc~<m~,, i =  1,2, and X~=Xxa=X2=, 
1 ~< = ~< m cx'2>, then 

m(1.2) 2 m~l 

(6.3) X~ = ~ (e=~ + e==)X,~ + ~ ~ e:'x,, 
u=l f=l if=re(l,2) + i 

is the composition of  x w into irreducible constituents. 
In particular, therefore 

(6.4) The irreducible degrees of  C~ are e~  + e~= with multiplicity z ~  = z~2 for 
1 <<. cc <~ m ~1,2~, ande~d, with multiplicity z~,for m ~x'2> < ~ <<. mw,, i = 1, 2. 

7. FUSION 

Let w be a coherent weight on a precoherent configuration (At, d~) and assume 
given an equivalence relation ,,, on 0. For f ~  0 write f =  I,.Jg~ig and 
¢ = { f l f ~  ¢}. Then 

(7.1) (X, 6) is precoherent and w is coherent on (X, 0) i f  and only i f  
(i) f ~ E, for some i implies f = Ej for  some j, 

(ii) f ~  g implies f U ~ g•, and 
(iii) i f  f ,  g, h, hi ~ Cw and h ~ hi, then ~=~:;~~g b=~ = Y=~::~~g b=vn~. 

In this case, the structure constants for  w on (X, ¢) are bto~= Y.~~s:v~g b=~n. 
For example 

(7.2) I f  C~ is commutative and f = f u f ~  for f E ~, then (X, ~) is precoherent 
and w is coherent on (X, ~). 

8. THE CASIMIR OPERATOR 

The trace form 

($, ~) = trace $~ ($, ~ ~ C~,) 

is a nondegenerate symmetric associative bilinear form on C~, and 

(w:, ~0) = ~:g, 

so {w: ] f e  0~} and {#: ] f ~  Cw} are dual bases. Hence 

is a linear map of Cw into its center (independent of the particular choice of 
dual bases). By the Schur relations, the (i, j)-entry of 

Ie~?M 
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is ~,a~,j~st(1/z~), so 

8~ ~ 1 
e(8~) = s~ F~ ~°)" 

In particular, therefore 

Now assume that w is integral and let ~ be the ring of integers in •(w), so 
that I'~ is the ~-subalgebra of Cw spanned by {wf I f ~  0~}. The i dea l / - /=  
H(Pw) of all t s ~ such that M = e(~) for some ~ e .~(w)Qw such that ~wt E P~o 
for all f e  0~ is of interest ([3], [6; Vl 1 ]). In principle we can calculate H by 
the method described in Section 4 of [4]. By (8.1) 

(8.2) 1--[ Ifl  ~ H .  
feOw 

9. REGULAR 2-GRAPHS 

These were defined originally by G. Higman and were studied extensively by 
D. Taylor [8]. A 2-graph on a nonempty set X is a set A of 3-element subsets 
of X, called coherent triangles, such that the number of coherent triangles 
amongst the 3-element subsets of each 4-element subset of Xis even. A 2-graph 
is regular if the number of coherent triangles containing two given points is 
constant. 

Given a 2-graph (X, A) define F: X 3 --> {1, - 1} by F(x, y, z) = - 1 or 1 
according as {x, y, z} is in A or not. Then (i) F is symmetric in the sense that 
the value F(x, y, z) is unchanged by any permutation of x, y, and z, 
(ii) F(x, x, y)  = 1 for all x, y ~ X, and (iii) ~F(x, y, z, w) = 1 for all 
x, y, z, w ~ X, where 

8F(x, y, z, w) = F(y, z, w)e(x, y, w)e(x, z, w)F(x, y, z). 

Conversely, a map F: x 3 --->{1,-1} satisfying (i), (ii), and (iii) defines a 
2-graph (X, A). But these are precisely the maps F =  3w, where 
w: X 2 --> {1, - 1} is a weight of rank 2 on the rank 2 configuration based 
on X. Regularity of w in the sense of Section 2 is equivalent to regularity of 
the 2-graph defined by 8w. There is no distinction between coherence and 
regularity of w in this situation. 

In addition to the fact that a substantial number of the known 2-transitive 
permutation groups are automorphism groups of regular 2-graphs, interest 
attaches to 2-graphs because of their connection with the problem of equi- 
angular lines in Euclidean space and the related Seidel classes of strong graphs 
(cf. [7]). 
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10. THE GROUP CASE 

Let M :  G -+  Mat  c X be a monomia l  representation o f  a finite group G. Then 
there is an action X x  G - + X ,  ( x , ~ ) ~ x  °, of  G on X and a map  
u: G x X--* C, (o, x) ~-+ Uo(X), such that  for  all ~, • E G, x, y • X, 

M(a)(x, y )  = 3xauUo(X), 
ul(x) = 1, and Uo,(X) = u~(x)u~(x°). 

We assume, as we may  without  loss in generality, that  the value group 
Uu = (Uo(X) I cr • G, x • X )  is a group of  IGI-th roots  o f  unity. 

Let V(M) be the centralizer algebra o f  M, V(M) = (4' • M a t c  X I 4M(~) = 
M(~)4 for  all a • G}, and let ¢ be the totality o f  G-orbits in X 2. In  [4] we show 
that  

(10.1) There is a regular integral weight w on (X, d)) whose values are 21Gl-th 
roots of  unity such that Cw = V(M). 

We say that  w as in (10.1) is afforded by M, and refer to this situation as 
the group case. Because o f  (10.1), the results o f  Sections 2 th rough  9 can 
be applied in the group case. For  this we must  make the following two 
observations.  

(1) The matrices M(cr), ~ • G, span the centralizer algebra o f  V(M). Thus, 
if ~7 is the monomia l  character o f  G afforded by M, then 

= ~ z ~ ;  ~ ( 1 )  = e~, 
g = l  

where vx . . . . .  V,, are the distinct irreducible constituents o f  V, m = mw, and 
~(o)  = x~(M(e)), cr • G, in the nota t ion o f  Section 5. 

(2) I f  M,:  G --~ Matc  X, 1 ~< i ~< s, are monomia l  representations o f  G 
corresponding to a given act ion o f  G on X, then so is M = M1 o M2 . . . . .  M,, 
where M(a) :  = Ml(o)o  M2(o) . . . . .  M,(cr) for  ~ • G. Let w, be a weight 
afforded by M~, 1 ~ i ~< s. Since V(M~) o V(M2) o . . . .  V(M,) ~_ V(M), there 
is a weight w afforded by M such that  w~ o w~. o . . . .  w, ~< w. This means that  
(4.1) and (4.2) can be applied. 
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