Geometriae Dedicata 53: 281-285, 1994, 281
© 1994 Kluwer Academic Publishers. Printed in the Netherlands.

Actions of Superrigid Non-Kazhdan Lattices on
Compact Manifolds

EDWARD R. GOETZE
University of Michigan, 317 West Engineering, Department of Mathematics, Ann Arbor,
MI 48109, U.S.A.

(Received: 23 July 1993)

Abstract. In this paper, we examine the actions of lattices in superrigid non-Kazhdan simple groups
on compact manifolds. The geometric results are obtained by analyzing the properties of amenable
ergodic groupoids.
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In this paper, we study the action of a discrete Lie group on a compact manifold,
continuing the investigation begun by Zimmer in [6]—[8]. In particular, in [8], Zim-
mer was able to deduce a number of geometric consequences by using Kazhdan’s
property as a replacement for measurable superrigidity for cocycles. This was done,
in part, by analyzing the algebraic hull of a cocycle from a Kazhdan group into
an amenable group. Since many Kazhdan groups are superrigid, i.e. satisfy the
hypotheses of measurable superrigidity [5, Ch. 5], one would hope that similar
results hold true in the case of superrigid non-Kazhdan groups. We establish such
results in this paper.

THEOREM 1. Let T be an irreducible lattice in G' a semisimple Lie group with
finite center, R-rank(G) > 2, and no compact factors. Suppose I acts ergodically
on a compact manifold M of dimension 2 preserving a volume density and a
connection. Then M = S? or Py(R).

THEOREM 2. Let I' and G be as in Theorem 1. Suppose T' acts ergodically on a
compact manifold M preserving a Lorentz metric. Then either,

(1) T' leaves a Riemannian metric invariant and hence the action factors to
I' —» K — Diff(M ) where K is a compact Lie group, or

(2) T factorstoT — SL(2, R) X K — Diff(M ) where K is a compact Lie group.
In this case, the simple components of G' must all be locally isomorphic to
SL(2, R).

These results are generalizations of theorems by Zimmer in [6], {8], where I was
assumed to be a Kazhdan group. Consequently, the proofs of the theorems here will
assume I' to be a non-Kazhdan group, i.e. a lattice in a product of rank 1 simple
groups.
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We assume the reader is familiar with the elements of the theory of superrigidity
for cocycles as presented in [5] and [9].

1. Amenable Ergodic Groupoids

Before beginning the actual proof of these theorems, it is necessary to discuss some
related topics. First, we wish to show that the algebraic hull of the cocycle of a
class of lattices cannot be amenable. To do this we will consider the properties of
ergodic groupoids.

Let S be an ergodic G space. Then S x G naturally defines an ergodic groupoid
G. Let R(G) be the naturally associated principal ergodic groupoid, i.e.

R(G)={(s, t)|Ig>s.9g=t} C S x8S.

Next, define 5(G) = {(s, g9)|g € G5} C S X G. Note that there exists natural maps
i:5(G) — Gand p: G — R(G)defined by i(s, g) = (s, g) and p(s, g) = (s, s.9).
As in [4], we have an exact sequence of ergodic groupoids

0— 5(G)— G — R(G)—0.

Recall the definition for an ergodic groupoid to be amenable: G, a measured
groupoid, is amenable if for every separable Banach space E, and for every cocycle
¢: G — Iso( F), the set of isometric automorphisms of E, and for every measurable
field Uy — ET invariant under ¢ ( £} is the unit ball in E*, Ug is the units in G, a
measurable field is an assignment for every = € Ug, A, C E} a compact convex
subset such that {(z, A;)} C S x E} is measurable, and invariant meaning
¢*(z)Ad(z) = Ay, d(z) the right identity of z, and r(z) the left identity of
), then there exists a fixed point in F(Ug, {A}), i.e. there exists a function
a:Ug — E* suchthat a(z) € A, and ¢*(z)a(d(z)) = a(r(z)).

LEMMA 3. If $(G) and R(G) are amenable, then so is G.

Proof. Let ¢ and {(z, A;)} be as above. Since S(G) is amenable, the set of
S(G) fixed points in F(Ug, {A-}) is nonempty. Call this set Ag. Thus a € Ag
means ¢*(s, g)a(d(s, g)) = a(r(s, g)) where g € G. But we have thatd(s, g) =
(s.g, e)and r(s, g) = (s, e). Since g € G, this translates to ¢*(s, g)a(s) = a(s)
(viewing a: § — A, since S = Ug). For the moment, assume that Ag is a G
invariant set in F(S, {A,}). Since S(G) fixes Ay, we have a natural action by
R(G)on Ag C F(S, {As}) (note thatUp(g) = §). Since R(G) is amenable, there
exists an R(G) fixed point in ag, we must then be a G fixed point. Therefore G is
amenable.
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Thus, it remains to show that Ag is a G invariant set. We need to show that
g.a € Ap provided a € Ayp. Since (g.a)(s) = a*(s, g)a(s, g), this amounts to
showing that (g;5.(g.2))(s) = (g.a)(s) where g, € G 5. But we have

(9:(g.a))(s)

a(s, gs)a" (s, 9)P(sgs9)

= a*(s, 9:;9)P(sgs9) (since g; € Gy)

= " (8, 99sg)P(899s) (Where g5y € Gy)
= (s, g)((sg, gsg)P(39))

= a*(s, 9)$(sg) = (g9-a)(s),

thus completing the proof. a

We will now make use of Lemma 3 to prove the following.

THEOREM 4. Suppose S is an ergodic G-space, and a: S x G — H is a cocycle.
Suppose also that G acts tamely on S X, H.If H is amenable and all stabilizers
of G on S are amenable, then G acts amenably on §.

Proof. Note that there exists a stable orbit equivalence between the G action on
S and the H action on (S X, H)/G. This follows simply because there is a 1-1
correspondence between the G orbits on S and the H orbitson (S x, H)/G. If G
acts tamely on S X, H then the Mackey range of the G action on  is the H action
on (S X4 H)/G. This provides a stable orbit equivalence between the A action on
the Mackey range and R(G), which is just the groupoid formed from the G orbits
on S. Since stable orbit equivalence preserves amenability, the amenability of H
implies that R(G) is amenable. Since all the stabilizers of the G action on S are
amenable, we have that S(G) is also amenable. The result then follows immediately
from Lemma 3. a

We now provide one more result that will be useful in the proof of Theorem 1.

PROPOSITION 5. Let ' C G$ be an irreducible noncocompact lattice where
R-rank(G) > 2. If : ' — K is a homomorphismwhere K is a compact Lie group,
then ¢ has finite image. L

Proof. We may assume that ¢(I') = K. Since I' is F-simple, it suffices to show
that the kernel of ¢ is infinite. If G has a nontrivial center, we obtain a map

&:T/(2(G)NT) — K/H(Z(G)NT).

Since Z(G) N T is finite and normal, and as ¢(T) = K, ¢(Z(G)NT) is also finite
and normal. Hence if ® has finite image, so does ¢. So we may reduce to the case
where G has trivial center. By [5, Th. 6.1.10], we may assume that I is the Z-points
of a semisimple Q-group H, and if K = Ly for some R-group L, then ¢: H — L
is an R-map. Since I is a noncocompact lattice, by [5, 6.1.9], Hg has nontrivial
unipotent elements, and hence so must Hy. In fact, H; must then contain an infinite
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number of nontrivial unipotents. Since the image of a unipotent element under ¢
must again be a unipotent, and as K is compact, we have that all the unipotents in
Hy, are in the kernel of ¢. Thus the kernel is infinite. a

2. Proof of Theorem 1

Since I' acts ergodically, and finite actions cannot be ergodic on manifolds of
positive dimension, to demonstrate the action is trivial it suffices to see that it
is finite. Let a: M x I' — SL(2, R) be the cocycle determined by the natural
induced action of I' on P(M), the frame bundle over M. Since the I’ action
preserves a volume density, we may safely assume that the image of « does lie
inside SL(2, R). Let H be the algebraic hull of the cocycle a. If H is compact (i.e.
H = 0O(2, R)),the I action on M must preserve a measurable Riemannian metric
on M, [9, Prop. 2.2]. In addition, I' preserves a connection, so by [9, Th. 2.5}, T’
preserves a smooth Riemannian metric on M. Hence, there exists a homomorphism
0O:T — Isom(M). As M is compact and 2-dimensional, Isom(}/) is compact and
at most 3-dimensional. Thus ©(T) is either abelian or O(3, R) (or SO(3, R)). In
the former, since I' is F-simple, ©(T') must be finite. In the latter case, [2, Th. 2.3.1]
implies that M must be either S or Py(R), 2-dimensional projective space. Note
that Proposition 5 assures us that this cannot happen in the noncocompact case.

So, we may assume that H is noncompact. Since I acts preserving a connection,
we have a homomorphism ¢: I' — A(M ), the affine transformations on M. Since
there is a natural inclusion of A(M) in Isom (P(M)), we have a homomorphism
®:T — Isom(P(M)).Let L = (®(T))° and A = &(T) N (&(T))". Since A is
normal in ®(T'), using the F-simplicity of ', we have A is either finite or of finite
index in ®(I'). So, we may assume that A is either trivial or ®(T").

If A is trivial, then ®(T') is closed in Isom( P(M )), and therefore T acts properly
on P(M). Discreteness of I then implies that I' acts tamely with finite stabilizers.
Since H C SL(2, R) and is noncompact, H is either SL(2, R) or is amenable. If
H is SL(2), applying Superrigidity we have that « is equivalent to a cocycle corre-
sponding to a homomorphism 3: T' — SL(2), which extends to 2 homomorphism
B: G — SL(2). This is equivalent to the existence of a measurable trivialization of
P(M)to M x SL(2) such that I' acts by the product action (where I acts on SL(2)
via f8). By [1], the existence of such a (3 is impossible unless the Lie algebra of G
consists of simple Lie algebras all of whose complexifications equal sl(2, C). In
this case, irreducibility of I' implies that 5(T") is dense in SL(2). Hence, there exists
a sequence of elements {, } — oo in I' such that {5(7,,)} — 1in SL(2). Select a
compact set K containing 1 in SL(2) of nonzero Haar measure. Then for sufficient-
ly large N, n > N implies y,. K N K # (. Hence, v,.(M X K)N (M x K) # 0
for sufficiently large n, contradicting the properness assumption.

If H is amenable, noting that the stabilizers are finite and therefore amenable,
then applying Theorem 4, T' acts amenably on M. However, M is compact and
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therefore of finite volume, so I' itself must be amenable. Since T is a lattice in G,
this is clearly impossible.

The final case to consider is that when A = ®(T'), i.e. (F) C L. By [3, Th.
9.6.15], L must be semisimple. Since H is noncompact, I, must also be noncompact.
(L compact implies the existence of a smooth invariant Riemannian metric on M,
which, by [9, Prop. 2.4] implies a is equivalent to a cocycle into O(2, R).Hence, H
is compact.) Thus, we may apply Superrigidity to obtain a homomorphism G — L.
L must therefore contain a group locally isomorphic to a simple component G’ of
G, and so must T C A(M). By [10, Cor. 3.6], there is an open dense conull set
of this subgroup for which the stabilizers are discrete. But this is impossible since
any such G’ is at least 3 dimensional and M is only 2 dimensional.

3. Proof of Theorem 2

Retaining the notation from the proof of Theorem 1 it will suffice to show that
L must be compact. Again, we have two cases to consider: either A is trivial or
equals ®(T'). In the former, we may rule out the possibility that H is amenable
(using Theorem 4), hence, we once again obtain a homomorphism 3: G — H C
SO(1, n — 1). Thus, H must contain a subgroup locally isomorphic to a simple
factor of G. Asin [8, Th. 4.1], this must be locally isomorphic to either SO(1, m) or
SU(1, m). But, again, irreducibility of I implies that §(T') is dense in this subgroup.
As in Theorem 1, this is impossible.

If A = ®(T'), since L is semisimple and noncompact, we have by Superrigidity
a homomorphism G — L. By [8, Th. B], either L C SL(2, R) X K, where K
is a compact Lie group, or L is amenable. F-simplicity of I’ rules out the latter
possibility, so L = SL(2, R) x K’. However, this is impossible unless G is of the
requisite form (using the main result from [1] and Superrigidity).
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