On a Problem of H. N. Gupta

ANDREAS BLASS ${ }^{1}$ and VICTOR PAMBUCCIAN ${ }^{2}$
${ }^{1}$ Department of Mathematics, University of Michigan, Ann Arbor, MI 48109-1003 U.S.A. e-mail: ablass@umich.edu
${ }^{2}$ Department of Integrative Studies, Arizona State University West, Phoenix, AZ 85069-7100 U.S.A. e-mail: pamb@math.west.asu.edu

(Received: 23 January 1995)

Abstract

It is shown that the axiom 'For any points x, y, z such that y is between x and z, there is a right triangle having x and z as endpoints of the hypotenuse and y as foot of the altitude to the hypotenuse', when added to three-dimensional Euclidean geometry over arbitrary ordered fields, is weaker than the axiom 'Every line which passes through the interior of a sphere intersects that sphere'.

Mathematics Subject Classifications (1991): 51M05, 12D15.
Key words: Euclidean geometry, arbitrary ordered fields, Cartesian spaces.
In [4], H. N. Gupta has provided an elementary axiomatization of finite-dimensional Cartesian spaces coordinatized by arbitrary ordered fields (cf. also [9]). After introducing, in [5], axioms (B) - stating that for any points x, y, z such that y is between x and z, there is a right triangle having x and z as endpoints of the hypotenuse and y as foot of the altitude to the hypotenuse - and (E) - which implies that the coordinate field is Euclidean (i.e. every positive element is a square) - he asked the following question:

Are the axioms (E) and (B) equivalent when added to Euclidean geometry of arbitrary dimension $n \geq 2$ over arbitrary ordered fields? It is easily seen that (E) and (B) are equivalent for $n=2$. On the other hand, it has been shown by Schwabhäuser [8] that the answer to Gupta's question is negative for $n \geq 5$ (with $F=\mathbb{Q}$). We shall fill in the gap between these results by showing in the present note that the answer to Gupta's question is negative for $n \geq 3$.

Axiom (B) holds in the n-dimensional Cartesian space $\mathfrak{C}_{n}(F)$ over an ordered field $F(n \geq 2)$ if and only if for all $a_{1}, \ldots, a_{n}, l \in F$ with $l \geq 0$, the system

$$
a_{1} x_{1}+\cdots+a_{n} x_{n}=0 \quad \text { and } \quad x_{1}^{2}+\cdots+x_{n}^{2}=l \cdot\left(a_{1}^{2}+\cdots+a_{n}^{2}\right)
$$

has a solution with x_{1}, \ldots, x_{n} in F.
It was shown in [8] that (B) holds in $\mathfrak{C}_{n}(F)$ if and only if every positive element of F is in the range of every diagonalized positive definite quadratic form in $n-1$ variables.

We shall prove that there are ordered fields (F, \leq), which are not Euclidean, that is $F_{\geq 0} \neq F^{2}$, but for which

$$
\begin{equation*}
F_{\geq 0}=a F^{2}+b F^{2} \text { for all } a>0, b>0 \text { in } F . \tag{1}
\end{equation*}
$$

This will show that (B) does not imply (E) for $n=3$ (and hence for all $n \geq 3$).
In what follows we shall point out two different examples of such ordered fields. The first one is nonconstructive, as it depends on the Axiom of Choice; the second one is a primitive-recursive model.

FIRST EXAMPLE. Let (F, \leq) be a pseudo-real-closed (prc) ordered field (for definitions and axiomatizations see [1], [2] and [7]). In [2, Lemma 2.3] it is shown that any prc ordered field (F, \leq) satisfies (1) with $a=b=1$. The same proof can be used to show that (F, \leq) satisfies (1).

In [2, Cor. 2.7] it is shown that there exists a prc ordered field (F, \leq) in which 2 is not a square; that field is not Euclidean and satisfies (1).

SECOND EXAMPLE. Let (F, \leq) be a maximal subfield of the field of real algebraic numbers that does not contain $\sqrt{2}$. F is clearly not Euclidean, but it does satisfy (1).

To see this, let $a>0$ and $b>0$ be two elements of F, and let x be any element in $F_{\geq 0}$. If F does not contain \sqrt{x}, then, by the maximality of $F, F(\sqrt{x})$ must contain $\sqrt{2}$, i.e. $\sqrt{2}=u+v \sqrt{x}$, for some $u, v \in F$. Squaring, we get $2 u v \sqrt{x}=2-u^{2}-v^{2} x$. Since the right-hand side is in F and \sqrt{x} is not in F, we must have $u v=0$. Since $\sqrt{2}$ is not in $F, v \neq 0$; therefore $u=0$ and $\sqrt{x / 2}=1 / v$. This shows that

$$
\begin{equation*}
\text { for all } x \in F_{\geq 0} \text { either } \sqrt{x} \in F \text { or } \sqrt{\frac{x}{2}} \in F . \tag{2}
\end{equation*}
$$

If $\alpha=\sqrt{x / a}$ or $\beta=\sqrt{x / b}$ is in F, then $x=a \cdot \alpha^{2}+b \cdot 0 \in a F^{2}+b F^{2}$ or $x=a \cdot 0+b \cdot \beta^{2} \in a F^{2}+b F^{2}$. If $\alpha \notin F$ and $\beta \notin F$, then, by (2), $\alpha / \sqrt{2} \in F$ and $\beta / \sqrt{2} \in F$; hence

$$
x=a \cdot\left(\frac{\alpha}{\sqrt{2}}\right)^{2}+b \cdot\left(\frac{\beta}{\sqrt{2}}\right)^{2} \in a F^{2}+b F^{2} .
$$

F can be constructed as follows: Let $r_{1}, r_{2}, \ldots, r_{n}, \ldots$ be an enumeration of all the irrational real algebraic numbers. Start with $F_{0}=\mathbb{Q}$. At step $i \geq 1$ in the construction, ask if $T_{i}:=F_{i-1}\left(r_{i}\right)$ contains $\sqrt{2}$ or not (algorithms to decide this are given in $[3, \S 4.5]$; to find minimal polynomials for a given algebraic number one uses [6]). If so, then let $F_{i}:=F_{i-1}$ and proceed to step $i+1$; if not, then let $F_{i}:=T_{i}$ and proceed to step $i+1$. Let $F:=\bigcup_{i \geq 0} F_{i}$.

References

1. Basarab, S. A.: Axioms for pseudo real closed fields, Rev. Roumaine Math. Pures Appl. 29 (1984), 449-456.
2. Basarab, S. A.: Definite functions on algebraic varieties over ordered fields, Rev. Roumaine Math. Pures Appl. 29 (1984), 527-535.
3. Cohen, H.: A Course in Computational Algebraic Number Theory, Springer-Verlag, Berlin, 1993.
4. Gupta, H. N.: An axiomatization of finite-dimensional Cartesian spaces over arbitrary fields, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 13 (1965), 831-836.
5. Gupta, H. N.: On some axioms in the foundations of Cartesian spaces, Canad. Math. Bull. 12 (1969), 831-836.
6. Lenstra, A. K., Lenstra, H. W., and Lovász, L.: Factoring polynomials with rational coefficients, Math. Ann. 261 (1982), 515-534.
7. Prestel, A.: Pseudo real closed fields, Lecture Notes in Mathematics 782, Springer-Verlag, Berlin, 1981, pp. 127-156.
8. Schwabhäuser, W.: The connection between two geometrical axioms of H. N. Gupta, Proc. Amer. Math. Soc. 22 (1969), 233-234.
9. Schwabhäuser, W., Szmielew, W. and Tarski, A.: Metamathematische Methoden in der Geometrie, Springer, Berlin, 1983.
