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Abstract

Automating routine organizational tasks, such as meeting scheduling, requires a careful balance between the
individual (respecting his or her privacy and personal preferences) and the organization (making efficient use of
time and other resources). We argue that meeting scheduling is an inherently distributed process, and that
negotiating over meetings can be viewed as a distributed search process. Keeping the process tractable requires
introducing heuristics to guide distributed schedulers’ decisions about what information to exchange and whether
or not to propose the same tentative time for several meetings. While we have intuitions about how such
heuristics could affect scheduling performance and efficiency, verifying these intuitions requires a more formal
model of the meeting schedule problem and the scheduling process. We present our preliminary work toward this
goal, as well as experimental results that validate some of the predictions of our formal model. We also investigate
scheduling in overconstrained situations, namely, scheduling of high priority meetings at short notice, which
requires cancellation and rescheduling of previously scheduled meetings. Our model provides a springboard
into deeper investigations of important issues in distributed artificial intelligence as well, and we outline our
ongoing work in this direction.
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1. Introduction

Computer networks that support human organizations provide an infrastructure for
improving group performance through an array of collaboration tools, such as electronic
mail systems and shared file systems. While such tools help people share, access, and
manipulate more information, they can also impair human performance through overuse
or abuse from the propagation of unnecessary information. Techniques from artificial
intelligence (AI) can introduce “intelligent agents” into organizational computing systems,
where these agents use knowledge about the interests and priorities of people to perform
routine organizational tasks such as automatically screening, directing, and even responding
to information (Hewitt and Inman 1991; Malone et al. 1987; Pan and Tenenbaum 1991).

Meeting scheduling is a good candidate for automation because it is often tedious,
iterative, and time-consuming for people. Even when everyone involved in a meeting has
available times to meet, the process of searching for a commonly available time in the
presence of communication delays (either through electronic mail or in contacting by
phone), and in the presence of other meetings being scheduled concurrently, can be
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frustrating and lead to suboptimal solutions. Automating meeting scheduling is important,
therefore, not only because it can save time and effort on the part of humans, but also
because this may lead to more efficient schedules and to changes in how information is
exchanged within organizations (Feldman 1987). Past efforts (Greif 1982; Malone et al.
1987) in developing automated meeting schedulers have met with limited success, although
they are available in a number of office software systems (Grudin 1987; Kinkaid, et al.
1985). Ideas borrowed from experimental studies on how humans handle scheduling
(Kelley and Chapanis 1982) may suggest strategies to be used in more efficient, popular
automated meeting schedulers.

Our work is directed toward developing intelligent agents that can negotiate over
scheduling options on behalf of their associated humans (Sen 1993). Under routine
circumstances, these agents should converge on acceptable meetings unaided, while in
more complex situations (requiring cancellations or complicated tradeoffs) the agents
should aid their associated human users to schedule meetings better and faster. Having
evolved out of a tradition of work in Distributed AI (DAI), our approach views meeting
scheduling as a distributed task where a separate calendar management process is
associated with each person in order to increase reliability and exploit inherent
parallelism. Moreover, giving each person his or her own process enhances privacy and
permits personal tailoring of preference parameters for scheduling meetings. But
because the information about available times is distributed among processes that wish
to minimize how much information they reveal, arriving at meeting times involves
selective, distributed search (Durfee and Montgomery 1991). Our research is concerned
with how to implement and control that search, and in this paper we develop formal
tools for analyzing alternative heuristic strategies that affect the performance and
efficiency of the overall search process.

Before going further, we should also make clear what our research, to date, is not
about. Our DAI emphasis on studying coordination among artificially intelligent agents
that are solving collective problems ignores crucial human factors issues concerning
how to transfer the preferences and constraints of a person into that person’s associated
scheduling process (Dent et al. 1992; Maes and Kozierok 1993). In addition, in this
paper, we do not address the problem of developing a human interface to the system
that will make people want to use it while at the same time limiting their ability to
abuse it. Our hope is that our approach of distributing information and control among
the different processes will both make it easier for a person to tailor his or her own
scheduling agent and make it harder for a person to access or influence processes that
belong to others. Moreover, our research does not involve the modeling of the cognitive
processes used by humans to schedule meetings. We are interested though in building
scheduling agents that use negotiation strategies understandable and acceptable to the
human user. Our probabilistic analysis of alternate heuristic strategies help build
automated agents that can make smarter decisions based on the calendar state, as well
as provide guidelines to users to tailor the scheduling agents to schedule meetings
according to their own preferences. The other point that we need to clarify is that we
are not trying to derive any closed form solution to the dynamically arriving meeting
scheduling problem. Actually, we believe any unique “neat and optimal” solution to
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this problem does not exist. Our effort in this work is in predicting the expected
efficiency of different reasonable scheduling heuristics under a variety of resource
constraints.

When information and control are decentralized, collective achievement of goals
(such as scheduling meetings) is complicated because the agents must exchange enough
information to converge on consistent agreements of how they (or in this case, their
associated users) will behave, and must also decide on how to respond to additional
scheduling requests that arrive while they are scheduling other meetings. To begin with,
we have identified several heuristic strategies that intuitively address these questions
(Section 2). To analyze more fully how the alternative strategies affect performance
and cost of meeting scheduling, however, we have had to model the distributed meeting
scheduling task more formally (Section 3). Our distributed scheduling procedure is
based on the multistage negotiation protocol (Conry et al. 1988) (Section 4). To aid
the choice of appropriate scheduling strategies, we have analyzed the proposed alternative
strategies in detail to justify our intuitive predictions about how they will affect
performance (Section 5). We used a testbed that simulates concurrent meeting
scheduling activities among agents to experimentally verify our predictions (Section
6), and based on our results we have identified important directions for our ongoing
research (Section 7).

2. Heuristic strategies

Meeting scheduling is an example of a resource allocation problem, where the principal
resource under consideration is people’s time. Resource allocation in a distributed,
dynamically changing environment is difficult due to the distribution of information
needed for decision making, the dynamic nature of the system (which may lead to changing/
conflicting goals), the limited bandwidth of the communication channel, and
communication delays between parts of the system. Centralizing control in a single
resource allocator suffers from serious drawbacks including a lack of robustness (if the
allocator fails, the entire system collapses) and its communication and computation
demands on a single bottleneck process. To overcome the limitations in centralized
resource allocation, we instead distribute decision making among the processes controlling
the separate resources. Distributed resource allocation, therefore, involves the cooperative
solution of resource allocation problems among a network of decision makers, and falls
into the subclass of DAI known as Cooperative Distributed Problem Solving (CDPS)
(Durfee et al. 1989).

Individual agents in a Distributed Meeting Scheduling (DMS) system have only partial
knowledge of system-wide goals because they do not know about all the meetings that
are currently being scheduled or have already been scheduled by other agents. Hence
they must exchange relevant information to build local schedules that fit into a globally
consistent schedule. To enable information exchange, the agents need a common
communication protocol for negotiating over meeting times. Moreover, because users
must be able to understand and accept how the agents interact, the protocol must be
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well-defined and straightforward while still providing sufficient flexibility. In cases
where the scheduling agents cannot converge using their protocol, they alert their
associated human users who can step outside of the system and use whatever protocol
they desire to schedule their meetings. For our agents, we have chosen to adapt the
multistage negotiation protocol (Conry et al. 1988), which is a generalization of the
contract net protocol (Smith 1980). In our protocol, each meeting has a particular
agent who is responsible for it, called the host. The host contacts other attendees of the
meeting (who are called invitees) to announce the meeting, and collects bids (availability
information). This process could be repeated several times as they search through
different parts of their respective calendars. In between, other meetings could be
undergoing scheduling; in general, an agent can simultaneously be involved in scheduling
any number of meetings, acting as a host for some and an invitee for others.

How well this protocol performs in efficiently converging on good schedules is
strongly impacted by heuristic strategies about what information to exchange and how
to model tentatively scheduled meetings. Strategies for communication must balance
demands for privacy (which lead to exchanging less information) with demands for
quickly converging on meeting times (which can be sped up by exchanging more
information). Strategies for modeling tentatively scheduled meetings can range from
blocking off tentative time(s) for a meeting unless and until the arrangements fall
through, to ignoring tentative commitments about a meeting when scheduling other
meetings. Our initial exploration of DMS has involved analyzing the positive and negative
aspects of these types of strategies, under a variety of conditions. Specifically, we have
embarked on research to develop, analyze, and verify a formal model of DMS to
formulate rigorous, quantitative predictions of the performance of the following types
of heuristic strategies.

Announcement strategies determine how a meeting is announced, and usually involve
proposing some number of possible times. We specifically consider the options called
best (where only the best meeting time from the host’s perspective, ranked by some
heuristic like being the earliest, is communicated) and good (where several times preferred
by the host, 3 by default, are communicated).

Bidding strategies determine what information an invitee sends back based on an
announcement. We consider the options called yes_no (where an invitee says yes or no
to each proposal sent by the host) and alternatives (where an invitee proposes the nearest
later time(s) when it can meet). In this paper, we assume the heuristic of scheduling
meetings as early as possible. Sending an earlier time is useless in this case, because had
that time been available to the host it would have been proposed already.

Commitment strategies are committed (whenever a time is proposed by an agent (host
or invitee), that agent tentatively blocks it off on its calendar so no other meetings can be
scheduled there) and non-committed (times are not blocked off until full agreement on
a meeting time is reached).



269DISTRIBUTED MEETING SCHEDULING

3. A formal definition of the DMS problem

Before presenting a definition of the DMS problem we need to clarify that it is not our
intent to capture all the different constraints, preferences, biases that are possibly used
by humans to schedule meetings. In the following we will try to identify what we believe
is the core of the meeting scheduling problem. For discussions in this paper, we will use
this core model. In other work, we have extended this definition to include cancellation
and rescheduling of meetings, scheduling rooms for meetings, scheduling meeting with
subset of specified attendees, etc. (Sen 1993; Sen and Durfee 1994b).

A meeting schedule consists of a group of meetings for a group of persons. Given
a set of n meetings and k attendees, a scheduling problem is represented as S = (A,M),
where A = {1,2,...,k} is the set of attendees and M = {m
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meetings to be scheduled. A time slot is represented as a date, hour pair <D, H>. A
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 contains a set of possible starting times on the calendar for the meeting. If |S
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gives the starting hour for which meeting m
i
 is scheduled) if the meeting could be scheduled,

and by Ã otherwise.

3.1. Criteria for algorithm evaluation

The DMS problem involves scheduling the meetings in M, subject to all constraints. Any
algorithm used to solve the above problem will incur overhead in terms of communication
cost and time required for scheduling the meeting (since time can be viewed as the resource
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that is being scheduled, time spent scheduling meetings is “wasted”). Hence, the problem
statement can be modified to say that the desired goal is to schedule as many important
meetings as possible in M, expending as little overhead (in terms of communication cost
and processing time) as possible.

We thus evaluate alternative strategies in terms of two first-order metrics, namely,
performance and efficiency. Performance reflects the degree to which the strategy
succeeds in scheduling important meetings. Efficiency reflects the cost incurred for
attaining that level of performance.

In DMS, global performance can be measured by the weighted success ratio in
scheduling n meetings:

where

 1 if m
i
 has been scheduled

ρ
i = 

 O otherwise.

Global efficiency can be measured in terms of two parameters, communication cost
and the total time taken to schedule meetings. Communication cost is proportional
to the number of packets exchanged by the agents while scheduling the assigned
meetings. The time taken to schedule a meeting includes both processing and
communication time, and can be calculated from f

i
 and a

i
 which can be obtained from

system clocks. For simulation experiments, however, we used other rough measures
for time taken to schedule meetings. For most experiments, we use the number of
negotiation iterations taken by agents to schedule a meeting as a measure of time. In
order to roughly estimate the processing time involved in finding intervals to propose,
we used the slots searched metric, that counts the number of calendar slots checked
(to see if an interval of the desired length is free starting at that slot) by all the
attendees of the meeting. The above measures are practical in the sense that, in real
life, some users may not have access to automatic schedulers, or else may decide to
schedule some meetings themselves. Strategies that reduce the number of iterations
and/or the number of proposals required to schedule meetings will be essential for
such systems. In actual practice, then, the efficiency of an automated meeting scheduler
will be calculated as a function of both cost of communication and total time for
scheduling.

4. Meeting scheduling protocol

In building scheduling agents, our goal is to balance the need to have a flexible routine to
handle a range of situations, while still keeping the routine well-defined and understandable

η = ∑n
i=1

 ωi * ρi

   ∑n
i= 1 

ωi
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enough to be embraced by a user. We have therefore chosen to initially examine the
multistage negotiation protocol. While it does not capture some of the sophistication
that people might employ in exceptional circumstances, it fulfills our initial needs by
providing a flexible algorithm for scheduling routine meetings. In particular, it assigns
ultimate authority for scheduling a meeting to a single process (the host) while still
permitting invitees to have input in the scheduling decisions through the use of
counterproposals.

The protocol given below allows users to block off times for themselves; these requests
are simply processed as single user meetings. We also do not assume that agents are
completely cooperative. They may refuse to accept a proposal from a host even though
the corresponding time slot was available. We are currently studying mechanisms that
can be used to make such decisions using user preferences and biases. The actual protocol
followed by agents is as follows:

1. When a meeting needs to be scheduled, the host tries to find time intervals in its
schedule that suit the constraints of date and time (when these are unspecified, the
host tries to find the earliest intervals in its calendar where the meeting will fit). If it
cannot find any intervals, it fails and the meeting is abandoned. Otherwise, if it is the
only participant in the meeting, it schedules the meeting for the best (earliest) interval.
If there are other participants, the host announces the meeting to them by proposing
one or more of the earliest intervals it found.

2. Each invitee receives the announcement proposal(s), and tries to find local solutions
and send them back as bids to the host. Bids consist of time interval(s) for which the
bidder (the invitee) can schedule the announced meeting. The time interval(s) sent as
bids can simply be the subset of those announced by the host that is (are) free on the
invitee’s calendar, or they can be completely different from those the host announced.
A bid can thus be a counter-proposal for when to meet.

3. The host collects and evaluates these bids. If the bids suggest a common time interval
which is open for the host also, the meeting can be scheduled and the host sends
awards to the bidders. If the meeting cannot be mutually scheduled yet, the host
comes up with new proposals depending on the bids it received and its own calendar
and sends these off to the bidders. It also sends rejections for the bids received.

4. When the bidders receive new proposals they reply as above. On receiving an award,
they check to see if the time intervals are still free. If so, they mark their calendar,
recording the scheduling of the meeting. Otherwise they send back rejections.

The above algorithmic steps are repeated until a satisfactory schedule is arrived at
or it is recognized that the meeting cannot be scheduled (due to an over-constrained
schedule or due to the fact that the meeting could not be scheduled before the
deadline).

A given meeting m
i
 is scheduled through negotiation by |A

i
| processes, one for each

of the attendees of the meeting. The process created by the jth attendee to meeting m
i

is referred to as M
ij
. A process M

ij
 will interact with other processes in two possible

ways. First, because agents attending a meeting must exchange information to converge



272 SEN ET AL.

on a schedule, M
ij
 will interact via communication with other M

ik
 processes – the

processes forked by other attendees of task m
i
. Second, because the same agent may

simultaneously fork several processes to schedule different meetings it plan to attend,
M

lj
 will interact with M

lj
 for other meetings m

l
 that are being concurrently negotiated by

agent j – this interaction takes place in the processes’ contention for the shared calendar
for the corresponding resource. The latter form of interaction can be particularly
detrimental to the quality of schedules generated, and we examine the nature of these
interactions in more detail in the next section.

4.1. Interaction via shared resources

In this section, we identify different modes of interaction between two processes that are
sharing the same resources (an agent’s calendar) to schedule meetings. Scheduling
inefficiency arises due to interaction via shared resources when two such processes try
to use overlapping time intervals to schedule their respective meetings. The particular
scheduling strategy choice that plays a major role in affecting these types of interaction
is the choice of the commitment strategy.

The choice of committing or not committing to a proposed time interval amounts to
either blocking or not blocking valuable calendar resources until complete agreement is
reached. Commitment can cause non-optimal schedules as some meetings block time
intervals that cause other meetings to be abandoned due to lack of uncommitted times
within the meeting’s constraints. Those blocked intervals might be released later. On the
other hand, blocked time intervals prevent attempts to propose overlapping time intervals
for two different meetings, which can save scheduling time and the amount of information
exchanged to schedule meetings. So, although the primary effect of commitment is on
the success ratio performance criteria, this strategy choice also affects the total time and
proposals exchanged in the scheduling process.

Viewing a commitment strategy as affecting the interaction between processes that
require common resources, we can formally represent the resource requirements of
process M

ij
 as a 4-tuple,

·(i, j) = (vij, pij, bij, rij)

where

v
ij
 represents the set of all viable time intervals that could have been proposed for

meeting m
i
 by individual j. It is given by the set of all time intervals of length l

i
 whose

starting slot belongs to S
i
, the set of possible starting times on the calendar for meeting

i.
p

ij
 represents the set of time intervals that have been proposed by individual j and are still

being considered for meeting m
i
. p

ij
 ⊆ v

ij
, since only viable time intervals are proposed.

b
ij
 represents the set of time intervals that have been blocked for probable use by individual

j for meeting m
i
. These time intervals are under active consideration, but at most one of
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these will be used for the meeting. b
ij
 ⊆ p

ij
, since only a subset (possibly empty) of the

proposed time intervals can be blocked.
r

ij
 = T

i
if m

i
 has been scheduled (represents the time reserved for the meeting), and is Ã

otherwise. r
ij
 ⊆ p

ij
, since the finally reserved time interval for a meeting is one on which

all attendees have agreed and hence must have been proposed.
For process M

ij
, v

ij
 represents the static part of resource requirement, p

ij
 and b

ij
 are the

dynamic parts, and, assuming no cancellation, r
ij
 changes at most once (from T = Ã to T ≠

Ã if ρ
i
 = 1) during the lifetime of the process.

5. Predictions

To aid the process of selection of appropriate heuristic strategies for use, it will be useful
to analytically develop predictions about the performance and efficiency of the protocol
using the different heuristic strategies outlined in Section 2. In this section, we present
the predictions that we have developed to date. To validate that our analytical models
correctly capture the essence of the problem, in Section 6 we describe experimental
work in verifying the predictions.

In the following sections, we examine in turn:

Announcement strategies: If the host proposes more possible meeting times to invitees,
how does this affect the expected number of announcement-bid iterations required to
schedule the meeting? In turn, how does this affect the time and communication needs of
scheduling?

Bidding strategies: If an invitee sends back its best available time(s) rather than just
vetoing the time(s) proposed by the host, what is the expected savings in iterations and
what is the expected communication cost?

Commitment strategies: How will the success ratio be affected by committing to tentative
meeting times, and how will the relative effects depend on characteristics of the scheduling
task?

We now present some qualitative predictions based on our model:

(1) The influence of announcement strategies best and good is reflected in the amount
of information that is exchanged between the host and the invitees of a meeting.
Clearly, the more information the host process has about the states of the other
attendees, the better the quality of its decisions. Similarly, the invitees also get more
information from the host and are able to provide more informative replies which
help in identifying a satisfactory schedule for the meeting more quickly.

(2) The choice of bidding strategies yes_no or alternatives is reflected only in the
amount of information the invitees of a meeting send back to the host. If the host
gets back less information, the quality of its decisions can be affected.
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(3) The choice of commitment strategies committed or non-committed is reflected
by the calendar resources used (·(i,j) for meeting i by attendee j). Commitment to a
proposed time interval involves blocking it off (so that it cannot be proposed for any
other meetings) until one hears back from the other individuals to whom these time
intervals were proposed. Only the committed strategy incorporates blocked times;
for a non-committed strategy, the set of blocked times is always empty. Commitment
is a conservative strategy that avoids overcommitting times, at the risk of
underutilizing resources and, thus, form suboptimal schedules. A non-committed
strategy is more aggressive, often leading to better utilization of time but sometimes
leading to situations where an agent backs out of a proposed meeting, which can
create a chain reaction of meeting cancellations.

For the announcement strategies we develop predictions for the number of iterations
of information exchange required to schedule meetings and the associated communication
cost incurred. The actual time taken to schedule meetings, a criterion we mentioned for
algorithm evaluation in Section 3.1, is directly proportional to the number of iterations
required to schedule the meeting. The actual communication cost, as mentioned in Section
3.1, is obtained by multiplying the communication cost difference (from the following
section) with the number of attendees of the meeting. Similar considerations hold for the
predictions developed for bidding strategies. For both of these strategies, we have
considered only unconstrained meetings (meetings for which neither data nor hour is
fixed ahead of time), and sufficiently long calendars so that they can always be scheduled,
and hence success ratio of scheduling these meetings is 1. For the predictions involving
commitment strategies (Section 5.3), we consider only constrained meetings (date
and time fixed), and develop predictions for the success ratio criterion. The number of
iterations required is always 1 (since there is one interval to check for) and hence the
communication cost is also fixed.

In order to formally characterize the behavior of the heuristic strategies, it was
necessary to resort to certain assumptions and simplifications. We now present some
of these assumptions and simplifications underlying our probabilistic analysis. The
fundamental assumption is that the scheduling strategies used capture a regularity in
information processing that can be subjected to probabilistic analysis. This
assumption may not hold for the scheduling methods used by a human, but becomes
realistic when we use the multistage negotiation protocol for meeting scheduling.
We assume that different iterations used in scheduling a particular meeting are
independent events, and as such, the probability that a meeting could be scheduled in
one iteration is independent of its position in a sequence of iterations. This simplifying
assumption does not strictly hold, and gives rise to the discrepancies observed between
expected and experimental values of certain performance metrics (Section 6). The
densities of the agents’ calendars are assumed to be stable over the negotiation time
for a meeting. Also, given a particular density of an agents’ calendar, the meetings on
the calendar are assumed to be uniformly distributed. We have often used expected
values of random variables instead of probability distributions for comparison of
different strategy choices.
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5.1. Announcement Strategies

5.1.1. Total Time.We begin by determining the number of iterations taken on the average
to schedule a meeting using the best strategy. Because the best strategy transmits exactly
l proposed time per iteration, we represent the number of iterations for this strategy as I

1
.

Let p
x
 be the probability of success that xth meeting could be scheduled in one iteration

using one proposal, and let q
x
 = 1 – p

x
 be the corresponding probability of failure. Let 4

x

= A
x 
– {h

x
} be the set of invitees to the meeting x, and P

l,y
 be the probability that a time

interval of length l is free on individual y’s calendar. Then,

P
x =

 Π      p
lx,k

·

k∈4n

In the above equation we make a simplifying assumption that the free slots on the calendar
of one invitee is independent of the free slots on the calendar of other invitees. This
assumption is violated in practice, and hence we need to run simulations (as presented in
Section 6) to demonstrate the viability of the following analysis.

Let I
x,1

 and I
x,N

 represent the random variables corresponding to the number of iterations
taken to schedule the meeting x by the best and the good announcement strategies
respectively. The probability density function for the number of iterations required to
schedule meeting x this way is given by

and the expected number of iterations is given by

(1)

This equation assumes that the probabilities of scheduling the meeting in different iterations
are mutually independent. This is not true in general, but was used to simplify calculations.
Simulations were run to see the effects of this simplifying assumption on the accuracy of
the derivations, and results from these simulations are presented in Section 6.

Now, let us consider the good announcement strategy where the host of a meeting
sends N proposals per iteration. The probability density function for the number of
iterations required to schedule a meeting this way is given by

and the expected number of iterations is given by

1    1
E[I

x
] = =            .

p
x

1 – q
x

PIx,1
 (i) = p

x
q

x
i – l

P
I x,N

 (i) = (1 – qN
x
)(qN

x
)i–1

     1
E[I

x,N
] =

1 – qN
x
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This equation indicates that, as N gets larger, the expected number of iterations decreases
towards 1 (since q

x
 < 1). That is, as the amount of information about available times that

an attendee sends approaches its entire calendar, the host and invitee will only need to
engage in a single round of message exchange.

The ratio of the expected number of iterations required to schedule a meeting using the
best announcement strategy to that of the good announcement strategy is thus given by

A closer inspection of this result suggests that the greater the probability of failure (q
x
) of

scheduling a meeting in any iteration using one information packet, the more the savings in
time that we obtain by using good announcement strategy over the best announcement strategy;
this savings can be increased by sending more and more information packets per iteration.

5.1.2. Communication cost.Let p
x,1

 (i) = PIx,1
 (i) be the probability that the meeting x

could be scheduled in exactly i iterations using one proposal per iteration. Also assume
that if the number of iterations taken to schedule a meeting using the best strategy is i,
then the number of iterations taken to schedule the same meeting using the good strategy
will be i

N. Then the absolute difference between communication costs incurred by the
best and the good (which uses N proposals per iteration) strategies is given by

(2)

This equation implies a periodicity in the communication savings obtained by using the
best instead of the good strategy when scheduling unconstrained meetings. This is because
sometimes, when using the good strategy, all the proposals sent in the last batch are not
needed. If the actual number of iterations while using the best strategy is a multiple of N,
the number of suggestions sent out by the good strategy per iteration, then no
communication savings are achieved. However, as N increases, the likelihood increases
that the best strategy will incur less communication overhead than the good strategy.

5.2. Bidding strategies

Consider the alternatives bidding strategy. Let tai
 be an interval proposed by the host for

meeting i to the other invitees, and trij
 be the interval returned by invitee j in response to

E[I
x,1

] 1 – qN
x

N – 1
= =

∑ 
qi

x
.

E[I
x,N

]  1 – q
x

i=0

C
d

= C
good

 – C
best

= (N – 1) · p
x,1

(1) + (N – 2) · p
x,1

 (2) + · · · + 0 · p
x,1

(N) +

(N – 1) · p
x,1

 (N + 1) + · · · + 0 · p
x,1

(2N) + · · ·
∞∑

 {N – 1 – [(i – 1) mod N]} · p
x,1

(i)
i=1



277DISTRIBUTED MEETING SCHEDULING

this proposed time. Let t
ri

max = max(trij
),¼j,j ∈ (A

i 
– {h

i
}), denote the farthest time from

the proposed time returned by an invitee. It is assumed that the invitees respond with
the closest interval to the proposed interval in which they can meet. So, the earliest
interval that the host should propose in the next iteration is tri

max. Now, consider the
case of yes_no strategy in which the invitees respond with an affirmative/non-
affirmative answer to a proposed meeting time. In the same scenario, the host has no
idea about the nearest available meeting times of the different invitees, and thus has to
step through its own calendar sequentially, announcing in turn every free interval that
can be used for the meeting. This would incur a number of extra iterations which could
be eliminated from the information gathered if the alternatives strategy was being
followed. Effectively, the number of iterations saved (I

s
) is equal to the number of free

intervals of length l
i
 in the calendar of h

i
 in the interval I

i
 = [tai 

(l), tri
max (1)], where t

x
(i)

denotes the ith slot of interval t
x
.

Let nIi ,l i
 be the number of distinct intervals of length l

i
 that can be placed on the

calendar in the interval I
i
. Let I

s
 be the random variable representing iterations saved.

Then, the probability that alternatives strategy will save j iterations over yes_no strategy
is given by

This probability follows a binomial distribution, and hence, the expected iteration savings
is given by

(3)

Hence the expected iterations saved increases as the difference increases between the
original proposed meeting time and the farthest time returned by an invitee in response
to the proposal. Also, the less crowded the host calendar is, the more the expected
savings.

Now, we calculate trij
 from tai

. Let Saij
 be the random variable representing the number

of intervals considered by the invitee j in response to the proposed time tai
, before a free

interval is found. The probability that x intervals were looked at before a free interval was
found is given by:

This probability distribution closely resembles the geometric distribution and the expected
number of intervals looked at is:

 nIi ,l i


p
Is
 (j) =   p j

li,hi
 (1 – p

li,hi
) nIi,l i

 – j ·
   j 

E[I
s
] = nIi,l i

pli,hi
·

Psaij
 (x) = pli,j 

(1 – Pli,j
)x – 1·

  1
E[saij

] =            ·
pli ,j
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Therefore, we have

This implies that as the calendar of the invitee gets more full (Pli,j
 becomes smaller), the

counter-proposal becomes increasingly distant in time from the proposed interval. Given
these expressions we can now calculate nJi,l i

 as following:

The communication cost in this case is directly proportional to the time taken, which is a
function of the number of iterations.

5.3. Commitment strategies

Given the definitions of Section 4.1 for viable, proposed, blocked, and reserved time
intervals, we predict that the following kinds of interactions can take place between two
processes M

x,j
, M

y,j
, x ≠ y in which an individual j is participating:

Possible: ∃X, Y, X ∈ p
xj
, (∃y, Y ∈ p

yj
), X 3 Y ≠ Ã. If overlapping time intervals were proposed

for different meetings by the respective processes, there is a possibility that both these
meetings could be scheduled for these time intervals in which case one of the processes
will fail to schedule its meeting.

Actual: ¼X, ∃Y, X ∈ v
xj
, (∃y, Y ∈ r

yj
), X 3 Y ≠ Ã. This scenario corresponds to the case

where a request for a meeting m
x
 comes in such that all viable time intervals corresponding

to that meeting overlap with reserved time intervals for some other meetings (m
y
). In

such a case the processes M
xj
 and M

yj
 are actually competing for overlapping intervals of

time and this results in a failure to schedule meeting m
x
.

Preemptive: ∃X, Y, Z, X ∈ v
xj
, (∃y, Y ∈ b

yj
, X 3 Y ≠ Ã) .¬(∃z, Z ∈ r

zj
, X 3 Y ≠ Ã). This

scenario corresponds to the case where a request for a meeting m
x
 comes in such that at

least one viable time interval corresponding to that meeting overlaps with a blocked
time interval for some other meeting (m

y
), but does not overlap with any reserved time

intervals. If ¼X, ∃Y, Z, X ∈ v
xj 

(∃y, Y ∈ b
yj
,  X 3 Y ≠ Ã) .¬(∃z, Z ∈ r

zj
, X 3 Y ≠ Ã), it is not

possible to schedule m
x
, which affects the success ratio of the scheduling strategy.

Note that the scheduling process does not wait to see if the blocked time interval is
actually used or not, but simply signals a failure to schedule the new meeting. This
design decision was incorporated to prevent deadlocks. Of course, the process could
time out after some prespecified time period, but then the scheduling process will
slow down considerably.

 
1

trij
 = tai

 +          – 1.
plij

(   1
)

nIi,l i
 = max    , j ∈ (A

i
 – {h

i
}).p

li ,j



279DISTRIBUTED MEETING SCHEDULING

 We now develop some predictions of the ratio of the available to the total number of
possible intervals of length l that are free on a calendar that contains r reserved hours and
(in the case of committed commitment strategy) b blocked hours out of L hours per
day. This availability ratio will determine the probability of success of scheduling a
constrained meeting (that can be scheduled in exactly one position on the calendar) on
that day of the calendar. The expected availability ratio of scheduling under the committed
commitment strategy is given by

(4)

The expected percentage of actual interactions (conflicts) is given by

(5)

The expected percentage of preemptive interactions (conflicts) is given by

(6)

The expected availability ratio under non-committed strategy is given by

(7)

5.4. Probability of free time intervals

A configuration of meetings on a calendar is given by a set of meetings scheduled in a
particular way on the calendar. For a set of n meetings of length l

i
,i ∈ {1,...,n}, the set {(l

i
,

ÓD, H
1
Ô),...,(l

n
, ÓD, H

n
Ô)} represents a configuration where H

i
 gives the starting hour of the

ith meeting and D is the calendar date. Let I represent a given time interval, and l
~
 represent

a set of free slots representing one or more possible configurations of meetings on the
calendar for the day of the given time interval. Then, the probability that the time interval
I is free is:

(
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where the summation extends over all possible configurations that can be accommodated
in a calendar day.

The conditional probability of the interval being free, given that the configuration I is
present on the calendar, is given by

The probability of a particular configuration, p(l
~
), is the number of ways meetings of

varying lengths can occupy the slots in the calendar day not in l
~
, divided by the number of

ways meetings of varying lengths can be placed on the calendar day. We now present two
simplifying assumptions in order to reduce the complexity of analysis. The first assumption
is that all meetings already on the calendar are of length 1 (longer meetings are simply
combinations of one-hour meetings), and the second assumption is that the density of the
calendar d (fraction of hours occupied) is known and every day is equally dense. Thus

With the above simplifying assumptions we now have p(I) = P
|I|,j

, the probability of an
interval of certain length being free on individual j’s calendar (since the actual position of
the interval on the day does not matter any more). We can now directly calculate the
required probability p(I) as

where l = |I|, is the length of the interval I (the length of the meeting to be scheduled).

5.5. Effect of commitment on unconstrained meetings

The direct effect of commitment is to change the density of the calendar. Let us represent
by d

n
 and d

c
 the densities of the calendar when we are using non-committed and committed

commitment strategies respectively. The effects of the change in densities on the
communication cost incurred and number of intervals required to schedule meetings can
be obtained from the equations in Sections 5.1 and 5.2. In the following we investigate
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∑
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how the probability of successfully scheduling an unconstrained meeting is affected by
commitment, when a limit on the communication cost that can be incurred or the number
of iterations of information exchange that can be performed is predetermined for a given
meeting. Let 4 be the maximum number of iterations allowed to schedule a meeting and
P be the maximum number of information packets that can be send by the host to schedule
the meeting. Actually, from P we can calculate 4 and vice versa (4 =    where N is the
number of intervals proposed per iteration by the host). Given that i is an unconstrained
meeting, the probability that it can be scheduled in 4 or less iterations is given by

From Section 5.1 we know that p
i
 depends on the probability that an interval of length

equal to the length of the meeting to be scheduled, is free on all the attendees calendar.
These probabilities in turn depend on the densities of the calendars of those attendees,
and are affected by the choice of the specific commitment strategy to be used. Since d

c
 ¦

d
n
, the committed strategy, in general, serves to reduce P 4

Ji,N
 and hence leads to a lower

availability ratio given the limits on communication cost and time taken for scheduling.
This is our first attempt at analyzing the effects of commitment on the success of
scheduling unconstrained meetings. Experimental verifications for these results as well
as more comprehensive analytical formulation of the effects of commitment on the
evaluation metrics are forthcoming.

6. Experimental verification

To validate our model, we need to verify its predictions experimentally. This is particularly
true because we made a number of simplifying assumptions while analytically developing
the predictions. In this section, we summarize our preliminary results in verifying some
of the predictions given in the previous section. Our experimental testbed is written in
Common Lisp and the Common Lisp Object System (CLOS), and models concurrent
meeting scheduling activities through discrete event simulation. Because of the
complexity of the concurrent meeting scheduling activities and the interactions between
the effects different heuristic strategy choices have on the performance measures, we
have decided to verify the predictions of each strategy choice in isolation from the others
to begin with.

We have verified the expected values for the number of iterations required for the
alternative announcement strategies, as predicted in Equation (1). While varying between
the best and good strategies, we hold the other two strategies constant at yes_no (for
bidding strategy) and non-committed (for commitment strategy). A controlling routine
takes the density of the calendar and the length of the meeting to be scheduled as input,
and generates all possible calendar configurations corresponding to that density. To keep
computation tractable, we have initially simulated only two agents, the host starting with

 P
N

4               4                           I – qN
I
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P4
Ii,N

 =  
∑
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an empty calendar and the invitee starting with each of the possible configurations
generated. The host is given the job of scheduling an unconstrained meeting of specified
length with the invitee. The average over all of the different runs and the expected values
of the performance measures as predicted by the formal analysis are then tallied.

Figure 1 illustrates a representative example from our experiments. To avoid unwieldy
combinatorics in enumerating all the possible initial states of the invitee’s calendar, these
experiments assume a very low meeting density: 8 hours of the 9 hour day are free. Each
experimental data point represents the average number of iterations from an exhaustive
set of runs, where each run corresponds to a different possible configuration of the invitee’s
calendar. Between data points, we vary the length of the meeting that the host is attempting
to schedule, ranging from 1 hour up to 6 hours.

In Figure 1, we have plotted both the expected number of iterations as predicted from
our model and the observed average value as determined experimentally. Over much of
the range of meeting lengths, the experimental values are slightly larger than the expected
values, which can be attributed to the simplifying assumption of assuming mutually
exclusive iterations. Actually, the probability of scheduling a meeting in an iteration varies
by a small amount (depending on the number of attendees of a meeting, meeting length
and the density of the calendars), and this gives rise to the perceived difference between
expected and experimental values.

Figure 1. Expected and experimental values of the number of iterations required to schedule an unconstrained
meeting using best and good announcement strategies when 8 of the 9 hours in a calendar day is free. Bidding
strategy is fixed at yes_no and commitment strategy is fixed at non-committed.
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Given that only one hour per day is filled in the invitee’s initial calendar, meetings of
length 4 hours or less must be schedulable on the first day of the calendar. As the host
attempts to schedule meetings longer than 4 hours and approaching the maximum of 8, it
becomes more likely that additional days will have to be investigated. In fact, because the
yes_no bidding strategy provides so little guidance to the host, scheduling meetings of
length 7 and 8, which require days whose filled hour is very near either the beginning or
the end of the day, becomes too computationally costly when formulating all possible
combinations of hours free over a range of days. For experiments in which meetings of 5
or 6 hours are scheduled, we truncated the calendar to only 2 days; if the meeting cannot
be scheduled at all in a specific run, the run is not counted toward the average. The effects
of restricting the possible calendars is evident in Figure 1, where the trend of exceeding
the analytical expectations established by the experimental results for shorter meetings
is broken for meetings longer than 4 hours.

Because the total scheduling time is directly proportional to the number of iterations
spent scheduling it, Figure 1 provides quantitative results with which to compare our
intuitions (Section 2). We had anticipated that strategies involving more information,
such as good, would converge faster than strategies such as best. Our results bear this
out, but the speed-up can vary widely, from an insignificant amount when scheduling a 1
hour meeting, to a factor of more than 2 when scheduling a 6 hour meeting.

In Figure 2 we present experimental verification of the expected difference in
communication cost for different announcement strategies, as developed in Equation 2.
The experimental setup is identical to that used previously. We have plotted the number
of packets exchanged per meeting using both good and best strategies for scheduling
unconstrained meetings of varying lengths. Also plotted are the expected and experimental
values of the difference in communication cost using the two announcement strategies,
which correlate closely. We would expect each iteration of announcements and bids to
add to the communication overhead, which is confirmed by noting that the communication
cost increases as the ratio of meeting length to available hours per day increases towards
one (which increases the number of iterations as in Figure 1).

Our intuition that communication costs should be greater for strategies like good is
evident from Figure 2. Quantitatively, in our experiments, the good strategy sent 3
proposals per iteration; only when the number of iterations for this strategy is less than a
third of those needed by the best strategy will overall communication be saved. And only
when the number of iterations required by best is greater than the number of proposals
(3) in good can we hope to see the periodicity in communication cost for alternative
announcement strategies predicted in Equation 2. For our experiments, the maximum
expected iterations obtained is just about 3 (Figure 1), and thus the predicted periodicity
is not seen. We are currently extending our experiments to verify this prediction.

Figure 3 presents experimental results to verify the predictions of Equation 3. We
used only unconstrained meetings to verify the predictions and collected data over all
cases with some prespecified hours already reserved in the host and the invitee calendars.
A controlling routine generates all possible host and invitee calendars (limited to 2 days
maximum to maintain tractability) with given densities. These possible calendars are paired
up in all possible ways and then the scheduling algorithm is used to schedule meetings of
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different lengths using both yes_no and alternatives bidding strategies. Annonucement
strategy is fixed at best and commitment strategy is fixed at non-committed. In Figure
3 we present the case where 1 hour per day is already reserved in the host calendar and 2
hours per day are reserved in the invitee calendar.

From Figure 3, we can confirm our expectation that the number of iterations required
to schedule a meeting with yes_no bidding strategy increases at a greater rate than for the
alternatives bidding strategy as the length of the meeting to be scheduled increases.
Hence, we save more iterations and time in scheduling longer meetings using the
alternatives bidding strategy than the yes_no bidding strategy. As in Figure 1 and for the
same reasons, we find that the difference in iterations used by the two strategies obtained
experimentally is a little more than the expected values. Further experiments (not shown
here) confirm our prediction that the denser the schedules, the more closely the theoretical
and the experimental values agree, because the probability of scheduling a meeting in one
iteration changes less over successive iterations.

In Figure 4 we present experimental results to verify theoretical predictions developed
in Equations (4–7). We used only constrained meetings to verify predictions and ran
experiments with a host calendar in which r hours are reserved for agreed upon meetings
and b hours are blocked for only tentatively scheduled meetings. The latter can be thought

Figure 2. Expected and experimental values of the difference in communication cost incurred in scheduling an
unconstrained meeting using best and good announcement strategies when 8 of the 9 hours in a calendar day is
free. Bidding strategy is fixed at yes_no and commitment strategy is fixed at non-committed. The legends for the
different curves are empty circle for best (experimental), filled circle for good (experimental), empty square for
difference (expected), and filled square for difference (experimental).
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Figure 3. Expected and experimental values of the difference in iterations required to schedule an unconstrained
meeting using yes_no and alternatives bidding strategies when 1 out of 9 hours per day is reserved in the host
calendar and 2 out of 9 hours per day is reserved in the invitee calendar. Announcement strategy is best and
commitment strategy is non-committed. The legends for the different curves are empty circle for yes_no
(experimental), filled circle for alternatives (experimental), empty square for difference (expected), and filled
square for difference (experimental).

of as the negotiation density of the scheduling process, which is related to the difference
between the rate at which requests for scheduling new meetings arrive and the rate at
which the process is able to schedule requested meetings. We are looking at a single
individual’s calendar, and whether the new meeting is requested by the owner of this
calendar or by another individual is immaterial to the analysis. By also assuming that all
meetings are constrained for these experiments, we achieve our initial goal of studying
strategies in isolation by decoupling the effects of announcement and bidding strategies
from the commitment strategy.

A generating routine takes as input the number of reserved and blocked hours and the
length of the meeting (l) to be scheduled. It then generates all possible calendar days
satisfying these constraints and for each day attempts to place the meeting at each of the
L – l + 1 feasible times (recall L is the number of hours per calendar day). If the new
meeting overlaps with any reserved hour, a failure to schedule the meeting is signaled for
both commitment strategies. On the other hand, if the new meeting only overlaps with
blocked times, then a scheduling failure is signaled only for the committed strategy. The
percentage of conflicts with reserved hours (actual interaction) or only with blocked
hours (preemptive interaction) is also recorded. These data for calendar days in which 2
hours are reserved and 1 hour is blocked are plotted in Figure 4.
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Figure 4. Availability ratios and conflict percentages obtained with different commitment strategies when 2
hours are reserved and 1 hour is blocked out of 9 hours in a day. The expected and the experimental values match
exactly for all the measures and hence only one curve per measure is drawn. In the top figure, the availability
ratios obtained with the two different commitment strategies is presented. In the bottom figure, the percentage of
actual (conflict with reserved hours) and preemptive (conflict with blocked hours) conflicts out of all scheduling
tasks are shown.



287DISTRIBUTED MEETING SCHEDULING

As expected, the availability ratio of the non-committed strategy is greater than for
the committed strategy. Also, as the ratio of the meeting length to the number of free
hours per day increases towards one, the availability ratios decrease considerably because
conflicts with reserved hours greatly increase. One interesting observation is that,
because preemptive interactions (conflicts with blocked hours) take place only when
actual interactions (conflicts with reserved hours) do not, preemptive interactions
actually decrease as meeting lengths increase beyond 3 hours. Because committed
takes its greatest toll on performance (lower availability ratios decrease the probability
of success in scheduling constrained meetings) when the number of conflicts with
blocked hours is greatest, committed is worst relative to non-committed when the
percentage of preemptive interactions is greatest (Figure 4). When meetings to be
scheduled are much longer or shorter than 3 hours, the availability ratios of the two
strategies become closer.

While our preliminary experiments have confirmed some of the predictions from our
model, much experimental work remains to be done to confirm the predictions under
different meeting densities and with more agents. Due to the computational intensity of
the experimental work, our approach has been to verify our model with simplistic studies
first; more extensive testing is an ongoing activity.

7. Conclusion

While qualitative predictions about heuristic strategies for controlling meeting
scheduling can be based on intuitions, we have argued that a more detailed analysis of
the process of DMS can yield well-founded, quantitative, and testable predictions. In
this paper, we have outlined our preliminary work toward developing and testing a formal
model. Quantitative predictions can be crucial in building a workable system. For
example, results like those in Figures 1 and 2 show how cost/performance tradeoffs
vary with the types of meetings to be scheduled, as do the results in Figure 4. Rather
than holding to static heuristic strategies, a good system should assess the current
situation and adopt appropriate strategies. Analyses like those in this paper provide the
foundation for making informed decisions about alternative strategies. Our ongoing
work involves extending the range of predictions we can make and verify. We have also
extended our model and protocol to initiate a second phase of negotiation when all the
viable time intervals for a new meeting is found to be occupied by other meetings. This
additional negotiation phase allows us to develop a structured mechanism for
cancellation and rescheduling, so that higher priority meetings can “bump” lower priority
meetings, if it is found useful by the scheduling agents to do as such (taking into account
rescheduling costs) (Sen and Durfee 1993).

At the same time, we are also working on expanding the formalism to be applicable
in a broader context. From the DAI perspective, bidding protocols like contract-net
have emphasized the decomposition and distribution of large tasks in a network, but
little work has gone into more formal studies of how tasks that are simultaneously
available for distribution lead to conflict and inefficiency. In other words, how many
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tasks should an agent be allowed to bid on, and what happens if it is awarded too many?
Such questions are fundamental to our model of concurrent scheduling processes that
interact through messages and shared memory, possibly using alternative commitment
strategies.

A second direction that we are pursuing involves enriching the protocol to improve
the quality and efficiency of scheduling. Building on our work using hierarchical protocols
(Durfee and Montgomery 1991), in which we view coordination as a distributed search
process, we are looking at alternative representations for abstracting temporal intervals,
to enable agents to negotiate abstractly in early phases to converge with less
communication. For example, they could first identify intervals of their calendars where
each is relatively free (equivalent to saying, for example, “My schedule is pretty light
next week.” ), and then converging on a meeting by narrowing choices within larger intervals
(Sen and Durfee 1995) .

This work represents the first significant step to addressing the complex problem
of formally representing and evaluating heuristic strategies for contract-based
distributed scheduling. Based on the work presented in this paper, we have recently
proposed a design for an adaptive meeting scheduling agent that can choose appropriate
scheduling heuristics based on current environmental conditions (Sen and Durfee
1994a). Design considerations presented in the above-mentioned paper and other
experimental results obtained in the distributed meeting scheduling domain (Sen and
Durfee 1994b) suggests that we need to extend our probabilistic model in two
important directions:

(1) we need to develop reasoning techniques with more abstract probability measures
that are easier to obtain than exact probabilities used here,

(2) we need to incorporate more dynamic information in our protocol, which enables
agents to adapt to changing circumstances.

In summary, the problem of scheduling meetings is a time-consuming, repetitive, and
essential part of the daily chores in an organization. The use of DAI techniques can
facilitate automating such a process to relieve the members of the organization of
this tedious process. In this paper, we have developed a formal model for distributed
meeting scheduling, which we used to make predictions about the impact of various
heuristic strategies. Our preliminary experiments have verified some of these
predictions. Future work will help us to develop a formal theory to address a wider
class of problems of interest both to organizational computing systems and distributed
AI.
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