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I. INTRODUCTION

lLarge-amplitude atmospheric flows past mountain ridges are
investigated. The flows are assumed to be steady and two-dimensional.
Since diffusive and viscous effects are of minor importance in most
atmospheric phenomena, they are neglected. The compressibility of
the alr 1s taken into account. However, effects of dynamic compress-
ibility will be ignored because the Mach number can be assumed every-
where small. This is equivalent to assuming that any change in density
of a particle¥* is entirely due to a change in its elevation.

The larger part of this investigation is devoted to the
study of waves 1n the lee of mountain ridges. The presence of these
waves 1is essentially a result of the non-homentropy and non-homenergy
of the atmosphere. However, the analysis of non-homentropic flows 1is
greatly complicated by the lack of a unique relationship between
pressure and density, valid throughout the whole field of flow.
Several authors (Lyra, Queney, Scorer, Crapper) have studied the
subject by perturbation methods. Therefore, their results are valid
only when the disturbances are small compared with the corresponding
quantities in the undisturbed flow. The major contribution of the
present Investigation consists in the treatment of the large amplitude
motion. In the study to be presented here, the flows are governed by
an equation whose form depends on the conditions far upstream of the

mountain ridge. ©Some of these conditions make the latter equation

*
By a particle is meant a small volume of air.

-1-
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linear provided stratifications of entropy and specific energy are
slight, and the Mach number is indeed everywhere small as assumed.
These particular upstream conditions thus give rise to large amplitude
flows which are still governed by a linear equation. | |

The linearity of the equation imposes some restrictions on
wind profile and stratification of the relevant physical quantities
far upstream of the ridge. However, the method has provén to’be quite
flexible and several flow patterns have been obtained corresponding to
various upstream conditions which are realistic.

In order to investigate the effect of compressibility, two
flow patterns with . equivalent upstream conditions, one for a compress-
ible fluid and the other for an incompressible fluid, were obtained
and compared with each other. A discussion of equivalent upstream

conditions is included.



II. THE GOVERNING DIFFERENTTIAL SYSTEM

The equations of motion for steady two-dimensional flows of

an inviscid fluid are

aul aul 1l ap*
R i (12)
and
ou du 1 Oby
NSt S EG T ey o "6 (10)

The equation of continuity is

a(P*ul) N B(P*u5)
oxq BXB

If diffusive effects are neglgcted the quantity p*/pi 1s constant along
a pathline and, for steady flows, also constant along a streamline., How-
ever, for the flow of a non-homentropic fluid considered here, the value
of p*/pi changes from streamline to streamline. Therefore p, is not a
funetion of Py alone throughout the whole field of flow, and the expression
dp*/p* is not a total differential. This major difficulty can be avoided
by introducing an associated flowfield which is related to the old one

by means of a transformation due to Yih (1960):

1 '
with /
1/
vo= 2% 2oyt
pO p*
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When the above changes of dependent variables are utilized, Equations

(1a) and (1b) become

t 1 <
¢ ou r ou 1 Jp
Uos SRS T T oS (5)
1 %3 Py %1
and 4 1 1
ou ou 1 Jp
vt 2 T2 =%
in which p; now depends solely on p; . Indeed
L]
' P Dy 1/7
o = B2 o Px o 5 (2% (4)
¥R Px (39.)1/7 ° P

Po Py

The equation of continuity becomes

T L |
b(p*ul) . B(p*uz) - o

Equation (5) guarantees the existence of a stream function W;(xl,XB),

in terms of which the velocity components can be expressed as

' '
1 p, OV p oV,
T O EE- ©
* 3 * 1
1 1
' au Bu
With n, = —& - —2 , Equations (3a) and (3b) can be written as
* 6x5 aXl
2
dpy O ay
wn, = - L L (2 (72)
Pygoxq Ox; 2
and 5
1 '
1 1 1 OP% 3 Ax
- 'llln* = "’5‘;’ 8X5 e BXB ( D ) - g}" 3 (Tb)



or, by virtue of Eguations (6),

. oy o'
P S (8)
and
H [ 4

o) oV oI

in which :
: Py 7-1 a
Tt 7Po (_a(:) /7+_*_
(r-1)p, 2, 2

Multiplication of Equation (8) by dx; and (9) by dxz, and addition of
the results produce

f.?. 'r];dllf; = 4aI' + gMxz = dH,, - gxzd) (10)
Py
where H; is now
2
rD oy 7-L/7  q,
(r-L)os 'p, 2
But N and H; are functions of W; alone, Thus
1
Py 1 dx dH,
= Mk t &Xsggm = T (12)
1
Py 111* ay
Finally, with (6), Equation (12) can be written as
12 12 !
Py L (Oex Ok . Opx Ok Py O pS aH,
*‘Jf* - T ' + gXB Z [ - 1
Py Bxl Bxl 8x5 8x5 po av, o v,

(13)
** The fact that H; is constant along a streamline can easily be verified
by showing that DHy/Dt = O.



Aside from the stream function W; s, the density p; is another unknown
appearing in (13). However p; can be expressed in terms of W; by means
of Equation (11). As far as this evaluation is concerned, it is clear
that if the term q;2/2 in (11) is maintained, the resulting equation

for W; would be extremely complicated. We will therefore neglect the

12

term Ay

/2 in the evaluation of p;o This measure is equivalent to
assuming that the change of density is solely due to a change in eleva-
tion, i.e., that the dynamic compressibility is negligible or the Mach
number is small, which is certainly true for most atmospheric phenomena.
Furthermore, we will only consider flows for which the varia-
tion of H; and N is small enough for the assumption of their constancy
in (11) to be justified. This is not in contradiction to the fact that
the terms containing dx/dx];; and dH;/dqf; in (13) are maintained. It is
indeed possible for the quantities dl/dw; and dH;/dw; to be of the order
of magnitude as the remaining terms in (13) and still be such that the
variations of A and H; are small in the whole field of flow. For a
more complete discussion of above assumptions we refer to [13]. Taking
Hy, and \ as constants (A = 1) and neglecting q%e /2 , the density can
be evaluated by
G

X
s

in which
7P

(7-1)o,




Combination of (13) with (14) produces

Hy-gx; 2/7-1 d\

SV
! 1 . g 3 *x =3 —
Viw* Y] Hy-gx; Oxs t oexs () Ay,
B (H;—gx )2/7-1 dH; (15)
= (XE= =
ay,

The functions k(w;) and H;(w;) are to be considered as known and are con-
veniently determined far upstream. (See Section 3).

Equation (15) will be used for the study of two-dimensional,
atmospheric flows past mountain ridges. Except for the obstacle (mountain
profile), the ground will be considered perfectly level which implies
that the stream function W;(lex5) on the level portion of the ground is
equal to a constant and can be taken equal to zero.

The faect that there is no rigid upper boundary for the atmosphere
causes some difficulty. However, due to the very stable stratification
(constant temperature) in the stratosphere, vertical motion in that
layer is somewhat inhibited. If we assume no vertical displacement in
the stratosphere, the interface between the troposphere and stratosphere
may be considered to be a rigid plane. The flows studied under this
assumption are therefore flows in the troposphere. If d 1is the height
of this interface (tropopause), the above assumption is mathematically
equivalent to w;(xl,d) = constant, which is a second boundary condition

for w;(xl,XB). With the dimensionless variables

.o _ %3 v vl Ee
T z vV T TTm " a g’
~1.2/y-1 : 2/y=1 U,
s = (X (Bcflx) ;o (uw) = (w,u5) ,
4 P, Jed



Equation (15) can be put in the form

VEIIJ" ; L @ oy + Bz (l-az)e/y-l-d—)‘;-

y=-1 l-qz Oz ay
= (1~ b
5( Z) d\[f'
The boundary conditions become
¥ (x,0) = 0 (172)

for values of x corresponding to the level portion of the ground, and
v'(x,1) = constant ) (170)
The atmosphere has thus been replaced by a mathematical model (See Figure
1) in which the essential physical features have been retained and should
be quite adequate for the study of atmospheric flows over mountain ridges.
This mathematical model consists of a channel bounded by two rigid hori-
zontal planes located at z = 0 and z = 1 in a rectangular cartesian
coordinate system. An obstacle is present on the lower boundary. The
flow is governed by the system consisting of Equations (16) and (17).
The form of Equation (16) depends on the upstream conditions since they
determine the functions d\/dy' and dH'/dy'. These conditions will be

discussed in some detail in the next section.
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Figure 1. Mathematical Model for the Study of Two Dimensional
Flows in the Troposphere.



III. UPSTREAM CONDITIONS LEADING TO A
LINEAR DIFFERENTTIAL EQUATION

In order to have a clear physical picture of what is meant by
conditions upstream, a uniform flow between the two rigid planes (z =0
and z = 1) with no obstacle present can be considered. It is obvious
that the pressure, density, temperature and velocity profiles do not de-
pend on the section at which they are taken. Suppose that, at a certain
time, an obstacle is introduced. If the resulting unsteady flow tends to
a steady state and furthermore if the introduction of the obstacle does
not alter the distributions of p, p, T, and U sufficiently far upstream,
the conditions far upstream can be considered as pre-assigned.

First of all let it be observed that, out of the four functions,
p(z), o(z), T(z), U(z), only two can be chosen arbitrarily, namely the ve-
locity U(z) and any one of p(z), p(z), and T(z), say p(z). Indeed,

since far upstream the flow is uniform, the pressure p can be obtained

from p by means of the equation %2 = - §2Qg © . The temperature T
Z Do

follows then from the gas law.

If the velocity and density are given (as functions of z) far
upstream, all the four quantities p, p, T, and U are known and A can
be determined from X\ = pp~ 1/7. The specific energy H' can then be evalu-

ated using the relation

- 2
N 1/r (18)

+ — + Az
2 J

in which

7P
(7-1)p ed

-10-
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Furthermore, far upstream, U' = UWfi and ¥' are related by

1 a4y a A Jaoay
gt =— —=— — or U= — — R
o' dz p dz p dz
or else
Z ou
o= £ dz
o

We have thus H', A and V' as functions of 2z far upstream and H' and
A can be determined as functions of V'. The latter functional relation-
ships are valid throughout the whole field of flow and, as pointed out
earlier, they determine the form of the governing differential equation.

In the search for a solvable system we will try to obtain linear
functions of V' for dk/dW‘ and dH‘/dW‘. Clearly, a random choice of
the upstream density p and velocity U would, in general, not lead to a
linear dependence of dH’/dW' and dk/dW' on V¥'. The adopted scheme will
therefore be an inverse one. Since we have the choice of two arbitrary func-
tions (for instance U and p) of z, we shall so choose them as to insure

the linear dependence of dH'/dy' and dA/d¥y' on V¥'. Thus, we put

AX Ay + B (19a)
ay!

and
' = ooy +D . (190)
ay!

Once the constants A, B, C, D are chosen, it is possible to determine the
upstream situation. That this is indeed so can be best shown by determining
the upstream condition corresponding to a certain choice of A, B, C, D

which will now be done.
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Inserting the Expressions (19) for d)\/dy' and dH'/dy' into

Equation (16), we obtain:

2
Py o+ —= a_ ov, 8(1-az)? 1 (az-c)y
7-1 1-0z Oz
2
= 8(1-02)7"T (D-Bz) . (20)

Since the flow far upstream is essentially uniform, the stream function be-

comes a function of 2z alone, say Wi(z), and is governed by

2 ‘ 2
a¥ . X % 8 L a(1-a2)7 T (az-c)y
az2 y-1 1l-0z dz 1

2
= p(1-az)”"t (p-B2) , (21)

which is an ordinary differential equation for Wi(z). Any function Wi(z)
satisfying (21) guarantees the linearity of (16). The actual integration
is done in Appendix I. Once Wi(z) is known, A and H' as functions of

z (far upstream) are easily determined. Indeed it follows from (l9a) and

(19b) that
2
AY!
A= -z%- + BW 42y (22a)
and
2
C 1
H' = b + DY + H' . (22b)
2 1 o

The constant Ao can be chosen to make A =1 at the reference point,

i.e., the point where the pressure and density are Po and Po respectively.
This point has been taken at 2z = 0.5 in our calculations. The constant

Hé has to be taken in such a way as to make cx$=l/H'. Since one of the

earlier assumptions was that the variation in H' is small, «a = 1/H'
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was treated as a constant in Equation (21). By selecting Hé as indicated,
H (slightly varying with height) will be consistent with the value of «
appearing in (21).

It follows from (18) that

Ule _7
H -2z - 5 77+
p = ] . (23)
E
Furthermore
1
-1 d
U =p /7 _\li-]; (24)
dz

The only unknowns appearing in Equations (23) and (24) are p and U'.
Since U’2 is usually very small with respect to the other terms in (25),
the system can best be solved using an iterative scheme. To find p and
U' for a certain value of z, X and H' are computed from (22). With
U' = 0, Equation (23) gives an approximate value for p which, in turn,
can be put into (24) to yield a first approximation for U'. This latter
value of U' can now be used to get, by means of Equation (25), a more
accurate value of p, etc. The procedure can be stopped when two successive
values of p (or U') are sufficiently close together. Once U' and p
are known the velocity U and density p follow then from U = U‘/J}L and
o = apl/7.

The previously obtained pressure p(z) and density p(z) satisfy

the equation of static equilibrium %B = . 80qd o . This is indeed guaranteed
Z Po

by the fact that Equation (21) is the equation of static equilibrium in terms
of the stream function Wi(z).
Since Equation (21) does not uniquely determine Wi(z), the same

set of values of A, B, C, and D corresponds to different upstream conditions
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and therefore leaves this inverse procedure quite flexible. It may there-
fore be hoped that a realistic upstream situation can be found, first by
selecting proper values for A, B, C, and D and further, once a definite
choice has been made, by taking the most suitable solution of (21).

Equation (21) has been solved by a series method. Various realis-
tic upstream conditions have been obtained. Some of them are shown in
Figure 2. 1In all cases the density stratification fits meteorological data
very closely. This density stratification is quite independent of the
values of A, B, C, and D as long as the velocity is kept within reasonable
limits. Furthermore these coefficients by no means determine the stratifi-
cation in entropy and specific energy, but merely establish some relation-
ship between this stratification and the velocity. Roughly an increase in
the velocity leads, for constant A, B, C, and D, +to a greater stratifica-
tion. Entropy-stratification and wind profiles actually occurring in the
atmosphere can be approximated quite closely as can be seen from Figure 2.

The present analysis is therefore not without practical value.
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Figure 2,

System.
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IV. METHODS OF SOLUTION

The basic problem can now be stated more accurately. Suitable
values have been assigned to the constants A, B, C, and D, and, out of
the infinity of solutions of (21), an appropriate stream function Wi(z)
has been selected corresponding to realistic upstream conditions. The
problem is then to find a function V¥'(x,z) satisfying Equation (20),
which is equal to zero on the lower boundary (consisting of the level por-
tion z = 0 and the dbstacle) and equal to Wi(l) on the upper boundary
z = 1. Furthermore V'(x,z) should approach Wi(z) for x - - o. Thus,
if we put

viGxz) =9 (2) + vl (x,e) (25)

into (20), the function wé(x,z) has to satisfy the homogeneous Equation

(26), since Wi(z) is a solution of (21). Thus,

1 a . 2/y-1
1 - - P .
sng * T T -;2 + g(1-02) (Az-C)¥y = O (26)

Furthermore Wé(x,z) is subject to the conditions:

1) wi(x,z) =0 on the lower boundary, (27)

2) wy(x,1) =0, (28)

3) lim yi(x,z) =0 . (29)
X = -

Presciption of the obstacle shape leads to a nonlinear boundary condition
for the stream function V'(x,z) and is consequently hard to deal with.
Therefore we will again use an indirect, but exact, method for creating an

obstacle and justify the procedure by the argument that the obstacle shape

-16-
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is of minor importance. Indeed, the main objective of the present sfudy
is the behavior of the atmospheric flows in the lee of mountain ridges
and the general characteristics of these flows should not be affected by
the particular shape of the mountain profile. Two methods have been used
to introduce a barrier. One is due to Yih and is a completely inverse
method. A second method, due to Long, is semi-inverse in the sense that
a barrier of infinitesimal height can be pre-assigned. Both methods in-
volve the solution of Equation (26), subject to the conditions
Wé(x,o) = Wé(x,l) = 0. Of course, these two conditions do not uniquely
determine a solution of (26), if singularities are allowed, so lcng as
they are located inside the barrier. Indeed, the barrier is created by
these singularities.
Equation (26) is satisfied by an expression of the form
+:J&nx
e~ £, (z) (30)

where A, 1is an eigenvalue of the Sturm-Liouville system

2 2/y-1
af 1 @ 4df 4 [p(1-02) /7 (Az-C) + AJf =0 , (31)
dz2  y-1 l-az dz

£(0) = £(1) =0 (32)
and fn(z) is the corresponding eigenfunction. The eigenvalues and corre-
sponding orthonormal functions have been obtained by the use of power-series
expansion and an iterative scheme (see Appendix II). For certain combina-
tions of values of A and C there may be negative eigenvalues. The ex-
ponential term in (30) becomes then a sine or cosine term. All eigenfunc-

tions are normalized according to

Lof,(2)

J.z;:;;;177jf dz = 1. (33)
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In the first method (see [1&]) the function Wé(x,z) is taken as an
infinite series of terms of the type (30) with unknown coefficients

A, Bp, Ch, and D,. However, the coefficients corresponding to x < O
are différent from the ones corresponding to x > 0. Furthermore, since
Wé(x,z) has to approach zero for x - - », no oscillatory terms are
allowed for x < 0, i.e., the summation for x < O begins with the first

positive eigenvalue. Thus,

® J& X
' (x,2) = L Ae T of (z) for x<O0, (34)
amr n=N+1 ° n
Wé+(x,z) = né (B, cos Jlxnx + Cp sin'J}Xn x) fp(z)
% -\hpx
+ 2 Dpe £, (z) for x>0, (35)
n=N+1

in which N is the number of negative eigenvalues of the Sturm-Liouville
system consisting of (31) and (32).

Provided the series converge, both Wé_(x,z) and Wé+(x,z)
satisfy Equation (26) and the conditions (27) and (28). The function
é-(x,z), valid for x < 0, vanishes for x — - o and thus satisfies (29).
The coefficients Ap, Bp, Cn and Dp will now be determined to create a
barrier on the lower boundary. It should be noted that the function
Wé(X,Z), consisting of wé_(x,z) and Y1, (x,z) is analytic for x< O
and x >0 (0 <z < 1), and the only singularities are located at x = O.
The fact, whether there will be singularities on the segment x = o(o <z< 1)
depends, of course, on the choice of the coefficients A, B,, C, and D,.

If we were to select these coefficients in such a way as to make all points

(0, 0<z<1) regular, Wé(x,z) would be analytic throughout the whole
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strip 0 <z <1 and would necessarily have to be equal to zero, since
periodic wave motion has been ruled by the assumption that waves do not
occur far upstream. We will therefore allow the function Wé(x,z) to be
singular on the portion O <z < a of the segment 0 <z < 1. However,
since no singularities can be tolerated in the flowfield, the created
barrier should have a height of at least a at x = 0.

Different types of singularities can be used. For our calculations,

a discontinuity in the x-derivative was introduced. Thus,

¥,.(0,2) = vy, (0,2) for  0<z<1, (56)

o03-(0,2) 33+(02) v por o0<z<a, (37)
ox ox

allfé_(O,Z) _ 8\];é+(0,2) =0 for a<z<1l., (38)

ox ox
Equations (36) and (38) guarantee the analyticity of ¥4(x,2) on the segment
x == 0(a < 2 <1) and therefore in the whole field of flow, i.e., Wé+(x,z)

is the analytic continuation of Wé_(x,z) outside the barrier. The condi-

tions (36), (37), and (38) lead to

0 N o0

n=§4l Aptp(z) = nzi Bpfp(z) + n=§4l Dpfp(z) , (39)
N 0

nza_dllncnfn(z) - nz%;l‘Jin(An + Dp)fp(z) = - g(z). (40)

It follows from (39) that
B, =0 (n=1,2, ..., N)
and

Ap = Dy (n = N+1, N+2, ...) ,
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and from (40) that

1
J;Kncn = - f Eiélfniél__ dz (n=1,2, ..., N)
o] (1_02)1/7—1
and

1
Vag(a, + D) = fﬁﬁz—)ﬁﬁ?)—— dz  (n = N+1, N+2, ...)
o (1-0z)l/7-1

Indeed, the constants JlknCn and J&n(An + Dp) are merely the Fourier
coefficients in the expansion of the function g(z) in a series of eigen-
functions of the Sturm-Liouville system consisting of (31) and (52), The
eigenfunctions corresponding to negative eigenvalues also appear in (40),
i.e., all eigenfunctions must be present to make the expansion possible.

The final expressions for Wé(x,z) are thus

1 o Qo ~ax
V' (x,2) == L e "N (z) for x <0 (41)
and
N
Vo (x,2) = - L n sinN-ax © £, (z)
2+ n=1 -)\n o n
© 2
+L0y 9 e ann(z) for x>0, (42)
2 n=N+1 N,
in which

a
- S(Z)fn(z)
Gy = J e
o (l-az)1/7'l

The upper limit in the above integral has been taken equal to a since
g(z) =0 for a<z<1. By changing the value of p appearing in (25),

the flow pattern can be changed. This value should be taken large enough

so the barrier covers the segment 0 <z <a on x =0. In this way the
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stream function will be analytic throughout the whole field of flow. The

flow pattern is given by

il

V' (x,2) Wi(Z) + ok (x,z2) for x <0 (4k)

and

i

v (oz) = ¥ (2) + wppi(x,z)  for x>0 (45)

In the method used by Long, the field of flow is divided into
three regions (see Figure 3), the middle-region (region II) containing the
barrier. Although it is true that a flow pattern can be found for a barrier
of arbitrary shape (however infinitesimal), we will restrict ourselves to a
barrier of the shape %(l + cos %?)n The reason for this particular choice
will be pointed out later.

In each region, a homogeneous stream function is assumed each

term of which satisfies Equation (26). Thus,

Jinx

ng(x z) = ~%.ﬂAn (z) for x< b, (46)
r = F_( ( s g J-
WEII X,2) = F, z) + Fy z) cos Pl nf:l(Frlcos -N X
. \/- © A }\.nX - \/}—\.nx
+ G, sin —knx)fn(z) + n=§41 (Hne + Mpe )fn(2)
for b<x<Db, (%7)
and
N

WéII£X’Z) = ngi (Bncos~J;knx + Cp sin'Jlknx)fn(z)

+ X Dne- Mot fn(z) for x>b . (48)

n=N+1
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As far as regions I and III are concerned, each term in the series also

satisfies the boundary condition (27), in agreement with the fact that

there is no obstacle in these regions. The terms F_(z) and Fy(z)cos ZX

o
b
appearing in (47) will cause the function W%I(x,z) to be different from

zero on the line 2z = 0. Therefore the line 2z = 0 will not be a stream
line in region II and an obstacle is thus created. Since the functions

F.(z) and Fy(z) cos %? have to satisfy Equation (26),

2 2/r-1
a°F 1 a  dF
° 4 © + g(1-0z) (Az-C)Fg = 0O (L9)
dz2 y-1 1-0z dz
and
2
a°F 1 o 4aF 2/y-1 2
L+ L+ (p(1-02)27™ (az-c) - %] F; = 0. (50)
az2 y-1 1-Qz dz b2

Since the upper boundary (z = 1) has to remain a stream line, Fo(z) and

Fl(z) have to satisfy the conditions
Fo(1) = F1(1) =0 . (51)

Different values for Fo(o) and Fi(o) merely correspond to
different obstacle shapes. It will be seen later that when Fo(o) and
Fl(o) are both taken equal to 1, the convergence of the series in the
Expressions (46), (47), and (48) is the fastest.

We therefore put
Fo(o) = Fy(o) = 1 . (52)

The integration of the Equations (49) and (50), subject to the conditions
(51) and (52) is given in Appendix III. The coefficients Ap, Bn, Cn, Dn,

Fn, Gn, Hn, and Mn are now used to establish continuity of W‘(x,z) and



)

oy! (X}Z)

———=—%~ gt the lines x = -b and x = +b, making the function W'(x,z)

ox
analytic throughout the whole field of flow. In order to accomplish this,

the functions Fg(z) and Fy(z) have to be expanded in a series of eigen-
functions f,(z). Thus,

00

Fo(z) = Zi Cgfn(z) (53)
n:
and
Fi(e) = T Chtn(z) . (54)

The coefficients Cg and C% are given by

o T F(2)fn(2)

= 55
T, (1-0z)1/7-1 2

and 1
ok - Fi(z)fn(z) - (56)

o (l-az)l/y'l
The integrals appearing in (55) and (56) can be evaluated easily be observing
that the functions Fg(z) and Fi(z) satisfy the Equations (49) and (50)
and the boundary conditions (51) and (52). The calculation will be carried
out explicitly for Cg and is analogous to the procedure followed to prove
orthogonality between two distinct eigenfunctions of a Sturm-Liouville system.

i

Now (49) can be written as

4 1 dFoq 4 ;3(1-ozz)l/7_l (Az-C)Fy = O . (491)
dz (l-Otz) 1/7 -1 3z

The eigenfunction fn(z) satisfies

4 N aty . 1/7-1 ] n ..
= e o TP e i =

(311)
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It follows from (49') and (31') that

d 1 af F FT
& (Fo =B _ 5, S0 43y —0n -0, (57)
dz [(l-az)l/7‘l ° 4z e " (l-az)l/7“l

Integrating Equation (57) from O to 1 and observing that fn(o) = fn(l)

= Fy(1) = 0 and Fy(o) =1, we obtain

1
fFo(z)fn(z) . _ 1 ar, (o) . (58)

o (1-az)1l/7-1 4z

Similarly, it can be shown that

1
Fi(z)fp(2 1 dfu (o
f—]—'(—)——%;—)—ldz= - nlo) (59)
o (1-0z)*7" S dz
b2
allf'(X,Z)
The requirement that w'(x,z) and ——g————— be continuous at x = -b and
X

x =b determines the values of the coefficients. These values are

A, =D, = -R, sinhNab  for n>N,

R, -~N2nb

Hy =My =Re 7 for n>0N,

By =0 for n<N,

C, = -2Ry sin-agb for n< N,

F, = Rp cos J:)ﬂb for n<N,

G, = -R, sin-2p for n< N
in which

1
f.(z)
Ry = J [F1(z) - Fo(z)] ————ELEJT‘jI dz ,
© (1-0z)™ 7=
or
2
% af,(o) 1
Rn -~ - —2 n J'[[ ° (60)
b dz Mg + I5)
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Equations (46), (47), and (48) become

® J& X
b (o) == TR simVap e o f.(z) , (61)

N
¥ (x,2) = F(z) + Fi(z) cos ™+ Y R, cos o (b+x)f.(2)

(@) b n=1 n n
> - Vb
+ L Ry e M cosh Vapx « £(z) , (62)
n=N+1
N
¥ (x,2) = -2 % Ry sinv-agb sin-dpx £(z)
2111 n=1
® -~fi X
- T RysimmVabe £ (z) . (63)
n=N+1

The stream function V'(x,z) from which the flow pattern can be obtained

is then V¥'(x,z) = Wi(z) + u¥b(x,2), in which VA(x,z) is taken equal to

Wél(x,z), WéII(x,z), WéIII(x,z) respectively in the regions I, II, and IIT.
It was mentioned earlier that the convergence of the series appear-

ing in the Equations (46), (47), and (48) was the fastest when F (o) and

Fl(o) were both taken equal to each other, say equal to 1. This should

follow immediately from (58) and (59). Indeed, if F (o) = a, and

Fl(o) = aj;, we would have

afp (o) a] - ag © 1
e U e % T e
PN ol (A + )
b2 b2
. . al - ao .
Unless aj = a,, the above expression contains the term - which
Ay t o5

would be responsible for the slower convergence.
The question of the rapidity of the convergence is of paramount

importance since each calculation of an eigenfunction involves considerable
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numerical labor. It may therefore be worthwhile to compare Yih's and

Long's method in that respect.

In Yih's solution, the rapidity of the convergence is essentially
& g(z)fp(2)
determined by the integrals { [ %__l_EL_____ dz}
o (1az)l/7-1

sequence depends of course on the choice of the function g(z) creating

The behavior of this

the singularity. However, one can generally state that, the smaller the
upper limit a Dbecomes, the worse the convergence is. But creating a low
barrier necessarily leads to a small value of a, since the singularities
cannot extend into the field of flow. The method is thus not favorable
for obtaining flows over very low barriers.

It has already been pointed out that the height of the barrier
does not affect the rapidity of convergence in Long's method which can thus
favorably be used for obtaining flows over low barriers. However, the con-
vergence is affected by the width of the obstacle. Indeed, when b 1is
small (short obstacle) the term n2/b2 is large and the expression
L _ behaves essentially as l/}\n for Ay not too large. Further-

O + ;‘_2)

more, the value of dfp(o)/dz is of the order J}ﬁ . Thus the coefficient

R given by (60) behaves like I/Jin . Therefore, in order to obtain a

n
sufficiently accurate representation of the solution, many more terms have
to be taken than in the case of a long obstacle. Indeed, if b 1is large
(long obstacle), the coefficient Rp behaves like l/ln~Jin after only

very few terms. From a practical point of view the method of Long is not

preferable for flows over short barriers.



V. DISCUSSION OF RESULTS

The reference point, at which the pressure and density are equal

to p. and P respectively, has been chosen in the middle of the tropo-

e}

sphere, that is at 2z = 0.5. The following values have been taken for pg,

and Pt

P 410 mm Hg ,

0

.000723 gram/cm)

Po

The height of the tropopause has been taken to be 10 km. The average value
of the specific energy H' wused in the calculations was obtained by evalu-

ating this quantity at the reference point 2z = 0.5,

Ul
H' = 3,198 + 2; = 3.2,

With 7 = 1.4, the coefficients @ and B then become

a = 0.3125 ,

B = 2.3471 .
With the above numerical values, several upstream conditions have been ob-
tained. The density, pressure and temperature profiles approximate the
realistic profiles in the atmosphere closely. This is hardly surprising
if one considers the fact that the stratifications in entropy and specific
energy occurring in the atmosphere are rather slight and we have chosen
the constants A, B, C, and D in such a way as to make these latter con-
ditions satisfied. Although the velocity term ( U’2/2) was included in
Equation (23) to determine the pressure variation (with height), quite
large velocity changes have a rather limited influence on the pressure pro-

file. Various upstream conditions (including the wind profiles) corresponding

-28-
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to various wave formations in the lee are shown in Figures 4, 6, and 10.
All the examples shown correspond to an entropy increasing with height

(or 2 decreasing with height), as is required by static stability (see
Section 6). The essential task is to find some combinations of stratifi-
cations in entropy and specific energy together with compatible velocity
profiles that give rise to either no leewaves or leewaves with one or more
components. By reducing the velocity far upstream and leaving the other
quantities unaltered, it is possible to create more leewave components.
Indeed, once A and C are chosen the number of leewave components (cor-
responding to the negative eigenvalues) is fixed. Decreasing the velocity,
which is equivalent to reducing the stream function, then results in a
smaller stratification. The extreme case (zero velocity upstream and no
stratification) can be considered as the limit case of a flow with several
wave components in the lee.

Figure 5 shows a flow pattern with no waves in the lee. The ob-
stacle is symmetric, as expected. The solution has been obtained by Yih's
method. Mathematically, a solution is allowed for any height of the ob-
stacle in agreement with the fact that there are no leewaves present. In-
deed, once a particular height h of the obstacle has been selected the
coefficient p appearing in (25) is given by

ALY
BT T wlon) o

If Wé(x,z) does not have any nodal lines and therefore Wé(o,z) #£#0 for

0 <z <1, Equation (64) yields a value of u for any height h between

O and 1. In the case of one leewave component (say), the function ¥)(x,z)
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has one nodal line and there exists a number 2z3 between O and 1 such that
Wé(o,zl) =0 .

Equation (64) still yields a value on p provided h < z; . The obstacle
height approaches z1, as p approaches infinity. It is thus impossible
to obtain a steady flow past an obstacle of a height greater than the height
of the nodal line.

Figure 7 represents a flow pattern where the coefficients A and
C have been selected to give rise to one wave component in the lee. The
usual Jet occurring above the barrier and extending upstream is present.
The much stronger wave motion in the lower part of the channel should not
be considered merely (if at all) as a result of compressibility. One of the
reasons certainly is the shape of the velocity profile far upstream. It may
be conjectured that a higher velocity in the upper part of the channel has
a "washing down" effect on the waves. Indeed, as pointed out earlier, in-
creasing the velocity by constant stratification tends to eliminate wave
motion. The influence of the velocity profile on the development of the
waves as a function of height may become clearer by the following considera-
tion. If the velocity increases with height, the graph representing the
stream function Wi(z) upstream is curved downward (see Figure 8). This
means that a moderate value (represented by the segment AB 1in Figure 8)
of the stream function Wé(x,z) will cause a rather large deflection of
the relevant streamline when one considers the lower part of the channel,
while the same value of Wé(x,z) would only cause a small deviation in the
upper part of the channel. This would indicate that such a velocity profile

(velocity increasing with height) favors the wave development near the
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ground. The opposite conclusions are reached if velocity profiles are con-
sidered where the velocity decreases with height.
The isothermal lines corresponding to the flow of Figure 7 are

shown in Figure 9. The temperature can easily be calculated from

pL B 2z (65)

in which the velocity term has been neglected. It can be seen from the
Figures 7 and 9 that an air particle in its up and down motion will have a
varying temperature. These temperature changes are, of course, due to isen-
tropic compression and expansion. A short numerical calculation reveals
that the temperature of a particle following the lower streamline (originat-
ing at 2z = 0.1 far upstream) changes from 15°C to -11°C. This partially
explains the formation of equally spaced clouds as has sometimes been ob-
served in the lee of mountain ridges. If the humidity of the air is such
that the saturation point is reached in the vicinity of the crests of the
waves, apparently stationary clouds would be formed. However, in the case
of humid air, the results are only qualitatively true since the basic assump-
tion, M\ = constant along a streamline, becomes questionable when the mesdium
undergoes a partial change of state.

Figure 11 shows a pattern with two leewave components and was ob-
tained.using Long's method. The formation of two jets, one downward and one
upward, is apparent. The downward jet is more developed for reasons pointed
out earlier. Although no closed cells appear, they could be created by in-
creasing the height of the obstacle. However, the flow inside these cells,

as obtalned by previous analysis, is not a priori justifiable because the






streamlines in the eddies do not originate far upstream and consequently
the upstream conditions do not determine the values of A and H' on
these streamlines. Care has been taken to keep the obstacle height be-
low a certain limit in order to avoid extremely converging streamlines
since these would lead to high velocities and the validity of neglecting

the dynamic compressibility might come into play.



VI. COMPARISON WITH FLOW OF AN INCOMPRESSIBLE FLUID

In order to bring out the effect of compressibility an attempt has
been made to obtain a flow of a compressible fluid and a flow of an incom-
pressible fluid, both with equivalent upstream conditions (what is meant here
by "equivalent" will be explained later). We know that for the governing
differential system to be linear, an inverse procedure has to be adopted as
indicated in Section 3. This makes a complete match of upstream conditions
of two different flows (compressible and incompressible) impossible. Since
the theory dealing with the flow of an incompressible stratified fluid will be
needed, a brief summary of the equations in dimensionless form is given be-
low. For more details we refer to [1L4]. The associated velocity field

(u',w!) is related to the original velocity field (u,v) by means of
u' = u-Jb and w' = w~fb

These two velocity components (u’,w’) can be derived from the stream function

v! (X)Z) by
u' = — and w' o=

The stream function satisfies the equation

Py s g G0 _dH (66)
ay! ay?
in which
H' =p + g (v + w2) + pz . (67)

Equation (66) can again be made linear by assuming linear functions of V°

for dp/dW' and dH‘/dW‘ . The most general, but linear, case leads to

~ho-



=4y

Bessel functions of fractional order. In some cases, however, the solution
can be expressed in terms of trigonometric and exponential functions. This
is the case when far upstream we choose the density as a linear function of
height, and the associated velocity equal to a constant. Thus, far upstream

the conditions are prescribed by

p=1+a (1-22) ,

U=, (68)

where a and Ué are constants as indicated on Figure 12. Then

Wi = Ulz
and
dp d 1 2
.i_ = _Q —_— - _a o (69)
ay’ dz U! u!

The term dH'/dy' becomes

.gl{iz_l_. .@.:(g’g+p+zd_‘g)u};,::zg'gi
] 1 'T°
ay UO dz dz dz Ub dz Ué
So, with %E = - 2a by virtue of (68),
z
di' 2, . _ 2,
ay’ o ur z - yre v (70)
o o
Far upstream, Equation (66) becomes
d2W‘ 2a 2az
——zl t—s V= — (71)
dz Ug Ul
The general solution is
2a
Wi(z) = Cp sin (ET- z + Cp) + Uiz . (72)

o
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Figure 12, Upstream Conditions for an Incompressible Fluid and
Leading to Equation (71).



-43-

The velocity U' 1is given by

U (z) z.é%§ [Cy cos qg?i z + Cp)] + Uy - (73)
o) o

We see that, although Equation (71) was obtained from a linear density strati-
fication and constant associated velocity far upstream, a whole class of
velocity profiles, given by (73), and corresponding density stratifications
lead to the same differential equation for the stream function. Furthermore,
any arbitrary constant may be added to the stream function and will not change
the velocity profile. The stream function is then governed by an equation
which differs from Equation (71) by a constant in the right-hand member. This
flexibility will be used to get a closer match between the incompressible and
compressible flow.

By adjusting the value of the coefficients A, B, C, and D in the
case where compressibility is taken into account, a velocity profile (see
Figure 13) has been obtained which can be matched closely by a function of
the form given by (75), The density variation is of course considerable and
corresponds roughly to normal atmospheric conditions. If we use an incompressi-
ble fluid in an attempt to describe the flow of a compressible one, there is
some question as to what density stratification should be taken far upstream.
It is indeed the combined action of density difference and gravity that de-
termines the restoring forces necessary for the creation of waves. The fact
that the same density stratification in both compressible and incompressible
fluid will give rise to different restoring forces can easily be inferred
from the following reasoning. The density of a parficle of air increases as
the particle goes down (due to compression) and decreases when it goes up

(due to expansion), whereas the density of a particle of an incompressible
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phere Illustrating the Concept of Potential Density,
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fluid is independent of the surrounding pressure and thus independent of
its location.

Besides, the following numerical calculation already predicts
the marked difference in behavior between the flow of a compressible and
an incompressible fluid, the density stratification being taken equal in
both cases.

If we roughly approximate the density stratification, as shown
in Figure 13, by a straight line and the velocity profile by a constant,
we get for the values of a and Ué appearing in Equation (71)

a = 0.485 and Ué = 0.0318 ,

Equation (71) then becomes

éffi + 959 ¥!' = 30.5z

dze 1
This indicates that the resulting flow pattern would contain 9 leewave com-
ponents while the corresponding flow of the fluid being considered compressi-
ble contains only a single wave component! In order to find the appropriate
density stratification (for an incompressible fluid) we have to introduce the
concept of potential density.

In order to get a clear picture of this concept we consider an
ideal compressible fluid at rest in which a certain density stratification
p*(x5) prevails (Figure 14). From this density p*(xj) follows the pres-
sure p*(XB) according to the law of hydrostatics. The gas law then provides
the temperature T*(XE)° Any function of state (i.e., only depending on the

thermodynamic coordinates Pyr Pys T*) can now be evaluated at any height.
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In particular the entropy Sx is shown in Figure 14. The thermodynamic

coordinates at the heights x% and x% will be denoted by pi, p&, Ti
and pi, pi, Ti respectively. We will take a particle located at
x5 = X% and move it isentropically, by some means, to a new location,

say Xz = x% (Figure 15). The particle, originally having the thermo-

dynamic coordinates pi, pi, Ti has now acquired the coordinates

1 1
pi, pi, Ti and its entropy (Si) has remained unchanged. The pressure

prevailing in the particle should indeed be the same as that of its new

. . 2 R, 1 1!
surroundings, i.e., pressure Py - The quantities Py and T* are ob-
tained by letting the particle complete an isentropic change of state from
pressure pi to pressure pi . If the density pi' is different from
the density of its new surroundings, i.e., different from pi , there will
be a net force (buoyancy) acting on the particle. If w is its weight and

AV and AV' its volume in position 1 and position 2 respectively, the

buoyancy force F is
F = gpoAV' - w .

The force f per unit weight is

2
F 9% 1
f = T 1, since w o= gpy AV

Px

02 1
In order to find an expression of ;%T in terms of the entroples & and

o}
e

2
Sx , we apply the relationship

- 1 -
b L (@Y7 oo

Po Do

(po, Pos Sy taken at a reference point) successively to the particle in
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position 2 and to any fluid particle originally at position 2. Thus,

1 l/ 1
o o 1/ s_-Sy/C
T - (Ei) e © P (7h)
Po Po
and
2 2 1/7 2
P P S.=8%/C
X (2 "o %/ P . (75)
Po Po
Division of (75) by (74) produces
1 2
pi ~ S*-S*/Cp
1
Y%
The buoyancy force per unit weight becomes
s%-55/¢,
f=e - 1. (76)

Now for an incompressible fluid, as a particle originally at the

height x; is moved to the height x2 the buoyancy force per unit weight

5 b4

(f;) that the particle experiences in its new location (at X5 = xg) will
depend on the density stratification. We demand that this stratification is

such that the force f;

i 1s the same as in the previous case of the compressi-

ble fluid, i.e., fi =f . The density

eso-s*/cp (77)

S N
Tl po

will satisfy this requirement. Indeed, the buoyancy force fi per unit
weight is
fi =—{-— —l=e "].-

which is identical to (76). The density bq given by (77) is called the

potential density and corresponds to a certain entropy stratification S*(X5>

in the compressible fluid.
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The potential density can be written in the dimensionless form

“

= = = X .
Py Px

°

o

When flows of a compressible and an incompressible fluid were compared, it
was pointed out earlier that the assumption of the same density stratifica-
tion far upstream led to entirely different flow patterns. The reason for
this is that the action of gravity in the case of the compressible fluid is
not correctly accounted for when the former assumption is adopted. It
follows from the previous discussion on potential density that the latter is
a more realistic density stratification for the incompressible fluid. It is
indeed only in this case that the restoring forces will be close to the ones
occurring in the compressible flow.

In the case of the incompressible fluid, an ideal choice of the
upstream conditions consists of a velocity profile identical to the velocity
profile in the compressible flow (Figure 13), and a density stratification
identical to the potential density stratification (Figure 16) prevailing in
the compressible fluid.

The above quantities can be approximated rather closely by taking
a = 0.01345, Ué = 0.0318, cl = 0.000318 and C, = - 1.0315
in Equation (73). The velocity profile is then given by

U'(z) = 0.00164 cos (5.1576z - 1.0315) + 0.0318.

This profile is so close to the one shown in Figure 13 that the two graphs

practically coincide. The stream function has been evaluated from
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6 DENSITY (OF INCOMPRESSIBLE FLUID)
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POTENTIAL DENSITY

> o

(9]

A ‘\
0]

.96 98 .00 102 104
Figure 16, Approximation of the Stratification of Potential Density
in a Compressible Fluid by the Density Stratification in

an Incampressible Fluid. Both Stratifications Lead to
Linear Governing Equations.
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Equation (72) and is given by

Wi(z) = 0.000318 sin(5.1576z - 1.0315) + 0.0318z

The density stratification then is
o(z) = - %% Wi(z) + Constant = -0.8459 ¥'(z) + 1.0157 .
o}

The above stratification is almost linear and is shown, as a basis for com-
parison, in Figure 16. Inserting the numerical values of a and Ué in

the Expressions (69) and (70), we obtain

de = .0.8459  and (%{,— = -26.601Y"

ay’

Equation (66) becomes
Pyt + 26,601 = 0.8459z . (78)

The resulting flow pattern has been obtained by Long’'s method since this
method allows us to control both the width and the height of the obstacle
(Figure 17). The corresponding flow pattern of the compressible fluid is
shown in Figure 18.

The Sturm-Liouville system resulting from the separstion of variables in
Equation (78) admits one negative eigenvalue and hence, one leewave compo-
nent is present in the flow pattern. It is interesting that the negative
eigenvalue in the case of the compressible fluid is nearly equal to the
negative eigenvalue corresﬁonding to the incompressible flow. Indeed the

latter is

\ = 7 - 26.601 = -16.731
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while the corresponding numerical value in the case of the compressible
fluid was found to be -16.078. This means that the wave lengths in both
flow patterns are nearly equal as can be seen from Figures 17 and 18.
However, in spite of the fact that the obstacles in both cases (compressi-
ble and incompressible) are nearly equal, the wave motion is of larger
amplitude in the case of the compressible fluid. Indeed, the maximum
vertical oscillation of a streamline in the compressible flow is approxi-
mately 0.29 whereas the corresponding oscillation in the incompressible
flow is roughly 0.165. The Jjet extending upstream is markedly more con-
vergent in the compressible flow than in the incompressible one.

It is interesting to observe the behavior of the lower stream-
line (originating at z = 0.1 far upstream) in both cases. Both stream-
lines have approximately the same shape upstream of the trailing edge of
the obstacle. Downstream from the obstacle however, the maximum vertical
oscillation of this streamline is, in the case of the compressible fluid,
more than 3 times as large as the corresponding oscillation in the case
of the incompressible fluid. Thus, if an incompressible fluid is used for
the study of atmospheric flows, the obtained flow pattern becomes questiona-
ble in the lower atmosphere. In particular it may happen that the incom-
pressible flow would not display any eddies while these eddies may be

present in the flow of the compressible fluid.



VII. CONCLUSIONS

Large amplitude motion in steady, two dimensional atmospheric
flows past mountain ridges has been studied. For certain upstream condi-
tions, the governing equation was exactly linear in the case of slight
stratification in entropy and specific energy. These upstream conditions
leave wind profile and density stratification (or the stratification of
any other relevant physiéal quantity) quite flexible and it is possible
to approximate existing atmospheric conditions rather closely.

A general criterion governing the presence of leewaves and ex-
pressed in terms of wind velocity and entropy stratification would be highly
complicated. In a flow where, say, one leewave component is present, it is
possible for the wave length to remain the same and this with varying strati-
fication in entropy. This variation in stratification does not uniquely
determine a change in wind profile, even if the wave length of the wave com-
ponent is to be kept constant. However, roughly we can state that an in-
crease 1ln entropy stratification favors wave development whereas increasing
the wind velocity tends to eliminate wave motion.

All the obtained flow patterns where waves in the lee are present
show one or more jets extending upstream. Furthermore, they (the flow
patterns) exhibit a tendency to develop downstream eddies. The presence of
these eddies depends on the height of the ridge. Increasing this height
may also lead to the formation of closed cells but the flow inside these
cells, as calculated here, cannot be Jjustified since the relevant stream-

lines do not originate far upstream.

5k
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The temperature field corresponding to a particular flow pattern
(one leewave component) shows the existence of cold regions near the crests
of the waves which partly explains the formation of equally spaced clouds
sometimes observed in the lee of mountain ridges.

The comparison between an atmospheric flow, the air being con-
sidered compressible, and a flow of an incompressible fluid reveals clearly
that, in order to approximate the flow of a compressible fluid by that of
an incompressible one, the density stratification for the incompressible
fluid should be taken equal to the stratification of potential density in
the atmosphere. Under similar upstream conditions the flows of the compressi-
ble and incompressible fluids have then the same general characteristics. In
particular, the waves present in both flows have nearly the same wave length.
However, the spacing of the streamlines is more varied in the compressible
flow and the wave is more developed. In particular, the amplitude of the
wave in the lower atmosphere is approximately 3 times as large as the corre-

sponding amplitude in the incompressible flow.



APPENDIX T

INTEGRATION OF EQUATION (21)

The equation is

2 H
a 1 a 2 7"1 2 7"1
Vi + 1 o 4l + p(1-0z) / (Az—C)Wi = g(1-0z) / (D-Bz). (21)
dz2 Y-1 1-0Oz dz

The interval of interest to the physical problem is O <z < 1. All points
of this interval are ordinary poinfs of Equation (21), provided a < 1. It
turns out that physically realistic values of & are in the neighborhood
of 0.32 so that previous requirement (@ < 1) is certainly satisfied. Sub-
stitution of

[o]

¥i(z) = L azn (79)

into (21) produces, after shifting indices,

o] 0 P
% n(n-l)anzn'2 -a X (n—l)(n—E)an_lZn’2 + 2 Zl (n-l)an_lzn'2
n=1 =

n==0 7-1ln
00 n~5 ak
+ AB L L A ] n-2
g n=3 [kzo ki (1-7)k #n-k-3%
e 5
- P ngé [kzb KT (i?7)k ap_x-2 127"
[o9] _2 00 _5 _
= gD X o L7y -2 gy oy & (2) 2
n=2 (n-2)! 1-7 4o n=3 (n-3)! '1-y n-3

It follows that the coefficients a, and a; are arbitrary, in agreement
with the fact that the point 2z = O 1is an ordinary point of the differ-

ential equation.
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The first recurrence relation is

-1 ca l
ap = 5 (BD + BCagy - 7ml) . (80)
For n>53,
O!(n-2) - i n-2 ak 1+
= -1 + C Z — _.l
an o an-1 HTH%IT { k=0 k! (1'7)k 8n-k-2
(81)
n-> k n-2 n-3
D - s AR +p 2= (1% Q- Ay vA RS
k=0 k! 1-7’'y n-k-3 (n-2)! 1-7 o (n-3)1 "1-7"p_3

As far as the physical problem is concerned, there is no loss in generality
in requiring Wi(o) = 0 . Thus we take ag = 0. By varying ajy, we can
now get all possible stream functions corresponding to a set of values of A,
B, C, and D. The value of ay; leading to the mosp,realistic upstream con-
ditions should be chosen.

From a practical point of view, the selection of the most suitable

stream function Wi(z) is much facilitated by taking

v (z) = ¥ (2) + i (2)

>

~
where wi(z) is a solution of the reduced equation and Wi(z) is a particu-

A
lar solution of the complete equation. Both solutions ﬁi(z) and Wi(z) satisfy

~ A
Wi(o) = Wi(o) = 0. By varying the value of the constant G, the most suita-
ble solution of Equation (21) can be selected.

The function @i(z) is represented by (79) where the coefficients

are taken as follows:

a, =0,

constant =1,

o
2(1-7)
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For n > 3, the recurrence relation (81) can be used where B and D are
taken equal to zero. Of course, the function @i(z) is given by (79)
where the coefficients ap are to be computed from (80) and (81) taking

ag =0 and a; =0, for example.



APPENDIX II

CALCULATION OF THE EIGENVALUES AND EIGENFUNCTIONS

The Sturm-Liouville system is

2 -

izg * 7]-.]_ lcj/az g_i: [8(1-02)2/7 l(AZ‘C) +Alf =0, (51)
f(o) =0, (82)
£(1) =0 . (83)

Equation (31) has the same singular points as Equation (21) treated in
Appendix I. Again we can assume a solution of the form

o]

£(z) = X apz® . (84)
=0
The coefficients a, satisfy following recurrence relations:
1 Qa

a2 = 5lag(BC-1) - 7=1] (85)
and (for n > 3)

- 1 n-2

8y = Upfpy n(n-1) {eC kgb Vken k-2

n-3
AB k§o Vkan_k_3 + }\(O.’an_B - an-2)} ]

in which
a(n-2) -2
U, = n 7o (87)
and
o 14y
Vi =7 (i:7)k ) (89

The coefficients a, and aj are arbitrary.
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Condition (82) can be satisfied simply by taking ap = O.
The value of A for which condition (8}) is satisfied is an eigenvalue
of the system and is, of course, independent of aj. Therefore, the co-
efficient aj can, for the time being, be set equal to 1. Its final
value will be determined by the normalization process. The eigenvalues
are the zeros of a function R()) which will be defined as follows. A
certain value of )\ 1is assumed in Equation (31). This equation is then
integrated subject to the initial conditions..f(o) =ay, =0 and
af(o)/dz = a1 = 1. The function thus obtainéﬁ is evaluated at z =1 and

put equal to R(x), i.e.,
R(2) = £(1520)

Note, that for a given A, one integration of (31) produces the correspond-
ing value of R(}).

The zeros of R(A) can now be determined according to the follow-
ing scheme. An initial value of A 1is assumed, say Ay, and the corre-
sponding R(xl) computed; X\ 1is then increased to A, and again R(Xp)
evaluated. If R(kl) and R(lQ) have the same sign there is no zero of
R(x), and hence no eigenvalue between xl and kg, provided the increment
Ap - N\ has been taken small enough. The previous process (incrementing
A and calculating the corresponding R) can be repeated until a difference
in sign in two successive R-values is detected. Let R(XB) and R(ke)
have different signs. Then there must be an eigenvalue between Ao and XB.
This eigenvalue can be approximated to any degree of accuracy by successive
linear interpolations. Interpolating linearly between Ao and l} gives:

AR(A3) - A3zR(2p)
R(23) - R(%p)
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Out of the three quantities R(dp), R(l5) and R(2,), the two having a
different sign are selected, i.e., R(ke) and R(ku) in the case repre-
sented in Figure 19. We now know that the eigenvalue lies between Ay
and A, . A new linear interpolation gives As.

By repeating the previous procedure, the eigenvalue can be
approximated as closely as desired. Once a value of A has been accepted
as an eigenvalue, the whole scheme is repeated to produce the following
eigenvalue, etc.

Mathematically, the method outlined above is straightforward.
However, from a practical point of view a major difficulty arises which
becomes more serious as the eigenvalues grow larger and is prohibitive for
only moderate values of A. Indeed, although the convergence of the power
series is guaranteed mathematically for any value of A, the coefficients
an behave in such a way that an accurate evaluation of £(1) requires
an excessive amount of significant figures in the numerical calculations.
Ultimately the coefficients a, have to decrease as n grows larger since
the series nzl a, 1s convergent. However, before they do so, they in-
crease up to a certain value a) depending on A. The larger 1\, the
larger ay becomes and, as stated earlier, for only moderate A-values the
corresponding ajp becomes so large as to make the method outlined above
inadequate.

The difficulty can be avoided by successively shifting the origin
about which the solution is expanded. To be more exact, to evaluate R())
for a given 1\, the following procedure is adopted. Equation (31) is in-
tegrated as before. However, the resulting power series is only used to

represent f(z) in a portion of the basic interval (0,1), say in the



2

Figure 19,

Iterative Scheme for the Caloulation of the Eigenvalues of the
Stum-Liouville System Consisting of (31) and (32).

» )\
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interval (0,A). The convergence at 2z = A is, of course, much faster than
at z =1 so that only a few terms (depending on the value of A) have to
be taken to maintain a sufficient accuracy. What is more important, the
general term remains much smaller than the previous ay. To continue the
solution analytically beyond 2z = A, we shift the origin to the point

z =4, i.e., we perform the following change of independent variable
z' =2z - A

The differential Equation (31) becomes

a2r | 1 @ 4 [B(p-az')z/y-l(AZ'-C‘) +2lf =0,  (90)
dz'2 7-1 p-oz' dz!
in which
p=1-qah ,
C' =C - AA,

Equation (90) is now integrated by assuming a solution of the form

£(z') = § bpz'™ (91)
n=0

subject to the initial conditions

oo

[£(z)],,g = [£(2)],.n = L apt®

and
af(z® daf (z it
[———(, 5 - (ale) Ly - % na ARL
dz 7 1=0 dz z=A n=1

The coefficients b, are given by

b, = 2 a At
o~ 5 n ’
00
b1 = né nanAP'l ,
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and, for n > 3,

n-2 n-3
U 1
b, = 0b_ ; + —— BC'ZVb---ABZka-k_
n D n-1 pn(n-l) { k=0 k’n-k-2 k=0 n 3

+ Moy, 5 - oo, o)}

in which
a(n-2) - a
U. = Y=1
n n
and 2l _ ok
7-1
o -3 (D)
k = k! P 1-7'g °

The power series (91) represents the analytic continuation of the function
given by (84) beyond the point 2z = A. It will be used to represent the
solution inthe interval (A, 24).

The previous method can be applied repeatedly to continue the
solution analytically beyond the points 24, 3A, etc. Each power series
represents the solution in one subinterval and the analyticity at the points
z = A, 27, 34, ... is established by matching the value of the function
and its first derivative at these points.

If M 1is the number of sub-intervals and the power series
nzb qngn represents the solution in the last sub-interval [(M-1)A, 1],

0
the value of R()) 1is given by R(1) = an anP .



APPENDIX III

CALCULATION OF THE FUNCTIONS F,(z) AND Fq(z)

The governing equations are

Py, 1@ o o ey B Lo (o2
dz2 7-1 1l-0z dz b2 P
p=0,1

with the conditions
Folo) =1, (93)
F,(1) =0 . (9k)

Let rp(z) and sp(z) be two linearly independent solutions of Equation

(92) satisfying the following initial conditions

dI‘p(O)

I'p(O) = l, qXz =0 ’ (95)
sp(o) = 0, ngﬁgl =1 . (96)

The function Fp(z) can be expressed in terms of rp(z) and sp(z) as

follows:

r (l)
Fp(z) = rp(z) - gﬁTIT Sp(z) . (97)
The solutions rp(z) and sp(z) can easily be obtained using a power series
method. One can then evaluate Fp(z) either by direct application of
Equation (97) or by integrating Equation (92) subject to the initial condi-
tions

Fplo) =1
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and
- T
dz sp(l)

When using a digital computer, either method gives rise to some difficulty.
This difficulty is largely due to the exponential growth of rl(z) and
s1(z) in case the width is small, i.e., =/b 1large. Indeed, an error in
de(o)/dz, although beyond the accuracy of the computer, will cause Fp(l)
to be different from zero by an amount which cannot be tolerated.

The situation can again be remedied be dividing the basic interval
(O, 1) into a number (say 10) of sub-intervals. The adopted scheme in then
the following. A solution of the form (97) is computed but only considered
valid throughout the first sub-interval (0 < z < 0.1). In that interval,
the solution is sufficiently accurate. Indeed, although the error grows
exponentially, the length of the sub-interval is chosen small enough as to

make the error in F_(z) below a certain tolerable limit. The value of

b
Fp(z) and its first derivative de(z)/dz can now be evaluated at the end
of the first sub-interval (i.e., at z = 0.1). If we were to continue the

solution beyond z = 0.1, using previous values of F_(0.1) and de(O.l)/dz,

o
the error would be propagated and amplified in the second sub-interval.
Although the error in de(O.l)/dz is still tolerable, it has grown to such
an extent that it can be recognized by the computer and is therefore sus-
ceptible to correction. This correction can be done by re-evaluating
de(O.l)/dz as follows: given Fp(0.1), find the value of de(O.l)/dz
that gives rise to a solution of Equation (92), vanishing at the end of the

interval (z =1). This problem is similar to the one already treated in

this appendix and will not be repeated. The new value of de(O.l)/dz will
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be slightly different from the former one and again, its error will be at
the edge of the accuracy of the computer. The solution can now be continued
into the second sub-interval (0.1 < z < 0.2) by the use of Fp(O.l) and
the corrected value of dFP(O.l)/dz.

The previous process can be repeated to obtain the solution in all
sub-intervals and consequently in the basic interval (O, 1).

It was tacitly assumed that (pn/b)2 is not equal to an eigen-
value of the Sturm-Liouville system consisting of (31) and (32). It would

then indeed be impossible to find a solution of (92) satisfying conditions

(93) and (94).



APPENDIX IV

Tables I, III, V, VII, IX, XI, XIII, XV, XVII
Eigenfunctions of the Sturm-Liouville system consisting of (31) and (32)

with « = 0.3125, B = 2.34k71, 7 = 1.k,

Tables II, IV, VI, VIII, X, XII, XIV, XVI, XVIII
Numerical values of the quantities necessary for the calculation of a flow
pattern according to Long's method and Yih's method (@ = 0.3125, g = 2.3471,

7 = 1.4).
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TABLE III
A=0, C=10 A=0, C=-20
% £,(2) £,(z) £3(z) £,(z) £5(z) z £y(z) £o(z) £3(z) £1,(2)
[¢] 85 06 0 (3)962 06 C’B g o 3 ° X ¥
. 0.1659 . 0.6102 0.8029 0.9730 0.0 0.3427 0.4772 0.6618 0.8364
0.10 0.3258 0.7u8L 1.0805 1.29el 1.3706 o.xg 0.21;66 o.egga 1.1233 x.ggga
0.15 0.k790 1.0302 1.3227 1.3032 0.9913 0.15 0.8953 1.1160 1.2781 1.1838
0.20 0.6237 1.2189 1.29k2 0.8463 0.0737 0.20 1.0808 1.2077 1.107h 0.6006
0.25 0.7573 1.2992 1.0072 0.1032 -0.8473 0.25 1.2020 1.1425 0.6Th45 -0.2012
0.30 0.8764 1.26h6 0.5270 -0.6468 -1.2513 0.30 1.2629 0.9426 0.0996 -0.8909
0.35 0.9776 1.1190 -0.0417 -1.1272 -0.9285 0.35 1.2711 0.6435 -0.47hs -1.2048
0.ko 1.0571 0.8770 ~0.5769 -1.1696 -0.0910 0.ko 1.2358 0.2872 -0.9180 -1.0425
0.45 1.1116 0.5629 ~0.9663 -0.TT46 0.7616 0.45 1.1668 -0.0833 -1.1k12 -0.4919
0.50 1.1383 0,208k -1.1310 -0.1071 1.1390 0.50 1.0735 ~0.4295 -1.,1102 0.2187
0.55 1.1359 -0.1507 ~1.0k32 0.5703 0.8435 0.55 0.9641 ~0.7202 -0.84T8 0.8169
0.60 1.1009 -0k -0.7315 1.0003 0.0747 0.60 0.8459 ~0.9339 -0.4233 1.08%5
0.65 1.0361 -0.7401 -0.2733 1.0296 -0.7010 0.65 0.724k -1.0585 0.0668 0.9558
0.70 0.9420 -0.9121 0.2236 0.66k4 -1.0325 0.70 0.6039 -1.0916 0.5206 0.4866
0.75 0.8215 -0.978k 0.6L461 0.0623 -0.7hT2 Q.75 0.487k -1.0383 0.8514 -0.1323
0.80 0.6787 -0.9356 0.9020 -0.5335 -0.0407 0.80 0.3766 -0.9106 1.0033 0,674k
0.85 0.5188 -0.7925 0.94 -0.8932 0.6536 0.85 0.2725 -0.7242 0.9591 -0.95kk
0.90 0.3478 -0.5690 0.7632 -0.8887 0.9296 0.90 0.1754 -0.4977 0.7395 -0.8905
0.95 0.1726 -0.2936 0.4206 -0.5397 0.6466 0.95 0.0848 ~0.2502 0.3963 -0.5248
1.00 0 0 0 0 1.00 [ 0 0 0
x £g(z) 2,(2) 1g(z) £g(z) £10(2) x 1g(2) 24(2) £5(z) fo(z)  £14(z)
0 gz 0 2125 & ° : 0 gﬂ oau 0.6039 %e " 5 y
. . 0.5941 0.7496 0.822 . 0.5 - 0.681 0.7563 .82
0.0k 0.9478 1.0693 1.2590 1.32)‘? 0.0k 0.9627 1.0789 1.1788 1.2606 3.3223
0.06 1.2480  1.3398 1.3765 1.3210 0.06 1.2518 1.3336 1.3692 L.357L 1.297h
0.08 1.3743 1.3573 1.0720 0.8224 0.08 1.3519 1.3217 1.2098 1.0223 0.7707
0.10 1.3119 1.1233 0.4450 0.0226 0.10 1.2517 1.0506 0.7470 0.3696 -0.0453
0.12 1.0721 0.6847 -0.3081 -0.7729 0.12 0.9700 0.5781 0.1031 -0.3894 -0.8309
0.1k 0.6900  0.1259 -0.9547  -1.2650 0.1k 0.5513 0.0003 -0.5564 -1.0135 -1.2838
0.16 0.2199  -0.4kT2 -1.2986 -1.2732 0.16 0.0592 -0.5683 -1.0654 -1.3086 -1.2356
0.18  -0.2725  _0.9277 -L.2391  -0.8020 018 o33 -l.0072 -1.2990 11878 -0.7135
0.20 -0.T195  -1.2272 -0.8007 -0.0366 0.20 ~0.8555 -1.2616 -1.2035 -0.6962 0.0739
0.22 -1.0604  .1,2927 .0.1241 0.7299 0.22 ~1.14Th -1.2579 -0.8087 0.0054 0.8200
0.24 -1.2500  -1.1155 0,575k 1.2085 0.2k -1.2658 -1.0116 -0.2188 0.6937 1.2398
0.26 -1.2643  _0.7326 1.0931 1.2233 0.26 -1.2084 -0.5756 0.4158 1.1538 1.1785
0.28  -1.10k2  _0.2189 1.2623 0.7762 0.28 -0.9756 -0.0345 0.936k 1.2h61 0.6681
0.30 -0.7945 0.3270 1.0k0h 0.0427 0.30 -0.6079 0.5030 1.2157 0.9486 -0.0887
0.32 -0.3802  0.8023 0.5023  -0.6927 0.32 -0.1602 0.9352 1.1889 0.3609 -0.7988
0:3h 0.07T9% 1.1 .0.1811 J1l1k7 0.3k 0.3024 1.1813 0.8684 -0.3289 -1.1925
0.36 0.5201 1.2192 -0.7969 -1.1723 0.36 0. 7Lkk 1.1981 0.3389 -0, -1.1257
0.38 0.8810 1. ~1.1564 -0.T463 0.38 1.0187 0.9868 -0.2651 -1.1899 -0.6323
0.50 1.1131 0.7553 .1.1531 -0.0455 0.k0 1.1746 0.5918 -0.7931 -1,1016 0.0926
0.k2 1.1864  0.2855 -0.7943 0.6601 0.42 1.1633 0.0916 -1.1168 -0.6740 0.7696
0.4k 1.0933  -0.22 -0.1967 1.1032 0.k 0.98%6 ~0.4170 -1.1603 -0.0458 1.1428
0.46 0.8k95  -0.6923 0.4508 1.1206 0.46 0.6811  -0.8378 -0.918k 0,585k 1.0766
048 0916  -1.0158 o.9k13  oimze 048 o283k -1.0930 -0.4558 1.0246 0.6042
0.50 0.0716  -1.1b13 1.1k22 0.0430 0.50 0,246k -1.1379 0.1100 1.1402 ~0.0880
0.52 -1.0486 0.9805 .0.6312 0.52 -0.5480 -0.9682 0.6385 0.9027 ~0.73k44
0.5k 0.7591 0.5186 -1.0536 0.54 ~0.8665 -0.6200 1.0013 0.3921 -1.0916
0.56 -0.3312 -0.0950 1. 0.56 ~1.0597 -0.1621 1.1133 -0.2296 -1.0304
0.58 0.1515 -0.6678 -0.6780 0.58 ~1.1033 0.3176 0.9521 -0.7691 -0.5821
0.60 0.5 -1.0230 -0.0375 0.60 ~0.9947 0.7289 0.5623 -1.0626 0.0770
0.62 0.9154 -1.05k7 0.6050 0.62 -0.7517 0.996 0.0432 -1.0250 0.6946
0.64 1.0617 -0.7592 1.0055 0.64 -0.4106 1,0732 -0.4764 -0.674k 1.0392
0.66 0.999 -0.2342 1.016k4 0.66 -0.0199 0.9490 -0.8704 -0.1242 0.9865
0.68 0.7487 0.3531 0.6412 0.68 0.3658 0.6508 -1.0460 0.4532 0.56kk
0.70 0.3603 0.819k4 0.0297 0.70 0.2378 -0.96k49 0.8809 -0.0613
0.72 -0.0889 1.022} -0.5809 0.72 0.9218 -0.2111 -0.6521 1.0313 -0.6516
0.7h -0.5123 0.90kk4 -0.9586 0.74 1.0198 -0.6120 -0.1880 0.8643 -0.9859
0.76 -0.8295 0.5082 -0.9643 0.76 0.9777 -0.8917 0.3121 0.4373 -0.5441
0.78 -0.9823 -0.0377 -0.603h 0.78 0.8042 -1.0011 0.7268 -0.1142 -0.5497
0.80 -0.9u4T -0.5606  -0.0205 0.80 0.5257  -0.9236 0.9580 -0.6197 0.0b24
0.82 07277 -0.8988 0.5582 0.82 0.1820 -0.6776 0.9538 -0.9264 0.6065
0.8k 0.3765 -0.9510 0.9126 0.8k -0.1790 -0.3119 0.7202 -0.9452 0.9321
0.86 0.0392 -0.7067 0.9125 0.86 -0.5085 0.1035 0.3184 -0.6765 0.9027
0.88 0.4387 -0.2482 0.5652 0.88 -0.7626 0.4911 -0,1513 -0.2082 0.5368
0.90 0.7h58 0.2776 0.0104 0.90 -0.909L 0.7803 -0.5T48 0.3132 -0.0216
0.92 0.9039 0.7059 -0.5365 0.92 -0.9307 0.9202 -0.8513 0.7286 -0.5600
0.94 0.8859 0.9055 -0.8673 0.94 -0.8273 0.8886 -0.9178 0.9142 -0.8777
0.96 0.6989 0.8195 -0.8609 0.96 -0.6155 0.6950 -0.7631 0.8189 -0.8617
0.98 0.3625 0,181 -0.5270 0.98 -0.3263 0.3785 -0.h291 0.4779 -0.5248
1.00 > ° 0 1.00 ) 0 0 0 0
TABIE 11 TABLE IV
A= = o
A=0, C=10 2 o ©m R
.2 .3 . .
N agy(0) ML - cos 10 Tz £, (2)az fl - cos 6.6671z £ (2)az n Ap dfgio) fl-eos 10;(1 2, (2)az fﬂ% £,(z)az
s dz S (1-az)(1/%-1) S (]_-ﬁz)(l/)’-l) n (1z) 71 o (1l-az)
228,378 3.3809 0.0709 0.1629 1 -12,395  7.0853 0.1382 0.2944
50.9682 8.1767 0.1596 0.3343 2 18.337  9.9957 0.1812 0.3497
100.h1 12.858 0.2228 0.3973 3 7.285  1h.152 0.2275 0.370k
169.51 17.423 0.2542 0.3501, L 136.19  18.419 0.2485 0.3061
258.34 21.937 0.2535 0.2286 5 224,93 22,745 0.2418 0.1849
366.50 26.427 0.2246 0.0850 6 333.kk  27.105 0.2102 0.0519
495.21  30.903 0.1751 -0.0325 7 b6L.7L 31.487 0.160k4 -0.0515
643.25 35.371 0.1145 -0.0364 8 609.713  35.884 0.1013 -0.1029
811.03 39.833 0.0531 -0.1053 9 TT7.50  40.290 0.0426 -0.1038
998.56 kit.292 -0.0003 -0.0779 10 965.01  Lh,703 -0.0078 -0.0732
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TABLE V TABLE VII
A=0, C= -5 A =10, C=10

z £,(2) £5(2) £3(z) £,(z) £5(2) z () £5(z) £3(z) £,(2) ts5(z)

[ 0 0 Q 0 0 0 0 0 0 0 0

05 0.5303 0.5319 0.6956 0.8609 1.0097 0.05 0.1594 0.3870 0.6039 0.7988 0.970k4
10 0.9692 0.9222 1,1280 1.2624 1.28k2 0.10 0.3143 0.7339 1.073h 1.2907 1.3730
15 1.2792 1.1037 1.1798 1.0443 0.6825 0.15 0.4647 1.0154 1,321k 1.3107 1.0032
20 1.4525 1.0662 0.8697 0.3523 -0.3455 0.20 0.6090 1,208 1.3026 0.8641 0.0911
25 1.5029 0.8436 0.3208 -0.k702 -1.1131 0.25 0.74k2 1.2960 1.0253 0.1250 -0.8341
30 1.4560 0.4959 -0.2941 -1.0591 -1.1544 0.30 0.8665 1.2694 0.5512 -0.6285 -1.2496
35 1.3412 0.0911 -0.8090 -1.1859 ~0.4881 0.35 0.9716 1.1308 -0.0169 -1.1184 ~0.9380
4o 1.1863 ~0.3091 ~1.1067 -0.832 0.4k31 0.40 1.0552 0.8933 -0.5568 -1.1717 -0.1

45 1.01hk ~0.6570 -1.1380 -0.1713 1.0763 0.45 1.1133 0.5806 -0.9537 -0,7842 0.7520
50 0.8426 -0.922 -0,9209 0.526k4 1.0650 0.50 1.1427 0.2246 -1.1264 -0.1187 1.1371
55 0.6823 -1.092k -0.5237 1.0020 0,4545 0.55 1.1410 -0.1379 -1.0447 0.5615 0.

60 0.5397 ~1.166% -0.0k20 1.1020 -0.3802 0.60 1.1073 -0,4693 -0.7360 0.9962 0.0801
65 0.h175 -1.1559 0.4256 0.8182 ~0,9705 0.65 1.0k -0.7357 -0.2781 1.029% -0.6976
70 0.3158 -1.0748 0.7967 0.2733 -1.0147 0.70 0.9b -0.9108 0.2202 0.6658 -1.0316
75 0.2327 -0.9412 1.0168 -0.3350 -0.522 0.75 0.8243 -0.9788 0. 6kkk 0.0636 -0.7475
80 0.1658 -0. 1.0641 -0.8070 0.2168 0.80 0.6800 -0.9366 0,901k -0.5330 -0.0409
85 0.1120 -0.5831 0.9469 -1.0039 0. 0.85 0.5189 -0.7933 0.9405 -0.8931 0.6537
% 0. -0.3858 0.6979 -0. 0.9617 0.90 0.3475 -0.5693 0.7629 ~0,8885 0.9296
95 0.0320 -0.189k4 3644 -0.5065 0.6267 0.95 0.1722 -0.2937 0.4204 -0.5395 0.6465
00 0 0 0 0 0 1.00 0 0 a 0

x 2g(z) !7(:) 29(2) £20(2) % £g(x) f.r(!.) fe(:) fg(l) tm(z)
0 0.535 o 2129 % g » o 0 0 0 0 0 \88 o8
02 «5351 . 0. 0.83 02 0.5112 0.5930 0.6723 0.7 0.8223
ol 0.9753 1.0869 1.2613 1.3208 0,04 0.9460 1.3231 1.1729 1.2588 1.3245
06 1.2519 1.3253 1.3366 1.2728 0.06 1.2470 1.3396 1.3837 1.3783 1.3236
08 1.3246 1.283 0.9720 0.7189 0.08 1.3757 1.3602 1.2582 1. 0.8273
10 1.1868 0.9761 0.2953 -0,1115 0.10 1.3167 1.1297 0.8314 0.4519 0.0290
12 0.8651 0.k72h -0.4669 -0.8847 0.12 1.0806 0.6940 0.2107 -0.3005 -0.767h
b 0.4139 -0.1201 -1.0655 -1.2968 0.1k 0.7017 0.1369 -0.4509 -0.9491 -1.2629
16 -0,0940 -0.6786 -1.3100 -1,1924 0.16 0.2335 -0.4365 -0.9926 -1.2971 -1.2758
18 -0.5793 -1.0907 -1.12685 -0.6222 0.18 -0.2589 -0.919% -1.28k7 -1.2426 -0.8089
20 -0 -1.2765 -0.5877 0.1819 0.20  .0.7077 -1.2233 -1.2602 -0.8085 -0.0453
22 -1.2054 -1.2036 0.1323 0.9020 0.22 -1.0522 -1.2940 -0.9298 -0.1338 0.7227
24 -1.2577 -0.8923 0.7983 1.2596 0.24 ~1.2k65 -1.1218 -0.3787 0.5707 1.2056
26 -l.1220  -0.k0g93 1.1995 1.1228 0.26  .1.2662 -0.7428 0.2554 1.0881 1.2257
28 -0.8228 0.1463 1.21h0 0.554 0.28 -1.1110 -0.2311 0.8165 1.2624 0.7830
30 -0.ko79 0.6638 0. -0.2187 0.30 -0.8051 0.3153 1.1688 1.0455 0.0522
32 0.05%4 1.0431 0.2159 -0.8 0.32  .0.3931 0.7931 1.229% 0.5106 -0.6858
3 0.5101 1.2134 -0.4701 -1.2152 0.3h 0.0662 1.1135 0.9883 -0.1723 -1.1518
36 0.8798 1.1h62 -0.9972 -1.0651 0.36 0.508% 1.2189 0.5096 -0.7903 -1.17h2
38 1.1172 0.8598 -1.2038 -0.5107 0.38 0.8722 1.0927 -0.0857 -1.1538 ~0.7519
Lo 1.1918 0.4138 -1.0322 0.2288 0.50 1.1082 0.7626 0,649} -1.15k9 0,052k
42 1.0967 -0.1033 -0.5431 0.8682 0.k2 1.1856 0.2 -1.0439 -0.7 0.6545
by 0.8h93  -0.5917 0,105} 1.1668 0.4 1.0963 -0.2210 11750 -0.2034 1.1008
46 0.4878 -0.9595 0.7099 1.0181 0.k6 0.855k -0.6854 -1.0151 0. 1.1219
k80,0650  -l.lkoL 1.0848 0.4872 0.48 0.h992 -1.0116 -0.6 0.9437 0.7172
50 -0.3591 ~1.1038 1.1196 -0.2179 0.50 0.0796 ~1.140 -0.0 1.1416 0.0479
52 -0.7261 -0.8620 0.8105 -0.8281 0.52 -0.3434 -1,05 0.4 0.982¢ -0.6273
sl -0.9872 -0.4643 0.2592 -1.1159 0.54 -0.7104 -0.7629 0.9152 0.5224 -1.0519
56 -1.1094 0.0120 -0.3611 -0.9796 0.56 -0.9708 -0.3359 1.1036 -0.0910 -1.0693
58  -1.0792 0.4773 0.8598 -0.479L 0.58 -1.0899 0.1468 1.0164 -0.6647 -0.680k4
60 -0, 0.8460 -1.0879 0.1912 0.60 -1.0535 0.5925 0.6803 -1.0216 -0.040k
62 -0.6118 1.0526 -0.9818 0.TTTh 0.62 -0.8694 0.9171 0.1828 ~1,0550 0.6028
64 -0.2432 1.0630 -0.,5806 1.0627 0.64 -0.5665 1.0609 -0.3502 -0. 1.0045
66 0.1506 0.8795 -0,0118 0.9473 0.66 -0.1895 0.1000 -0.7865 -0.2361 1.0167
68 0.5168 0.5400 0.5495 0.4822 0.68 0.2068 0.7498 ~1.0201 0.351k 0.6422
70 0.8079 0,109k 0.9345 -0.1526 0.70 0.5661 0.3618 -0.9972 0.8184 0.0309
T2 0.987k -0.3325 1.0313 -0. 7184 0.72 0.8384 ~0.0875 -0.728% 1.0221 -0.5800
Th 1.0345 ~0.7058 0.8170 -1.0073 0.7k 0.98 -0,5112 -0,2850 0.9045 -0.9582
76 0.9462 -0, 9k9 0.3625 -0.918k4 0.76 0,9928 -0.8289 0.2199 0.5086 -0.9643
™  0.7372 -1.0103 -0.1912 -0.4926 0.78 0.8583 -0.9619 0.6602 -0.0373 -0.6036
80 0.4374 -0.8941 -0.6765 0.1059 0.80 0.6051 ~0,9445 0.9282 -0,5604 -0,

82 0.0875 -0.6212 ~0.9504 0.6532 0.82 0.2715 ~0.7276 0.9612 -0.8987 0.5581
B4 .0.2664 -0.2437 -0.9360 0.9492 0,84 -0.0935 -0.3763 0.7558 -0.9508 0.9126
8  -0.5788 01691 -0.6kk0 0.8907 0.86 -0.4377 0.0395 0.3677 -0.7065 0.9124
88  -0.8111 0.5433 -0.1671 0.5070 0.88 -0.7126 0.4389 -0.1031 -0.2480 0.5651
90  .0.9356 0.8138 0.34%0 -0.05kL 0.90 -0.8807 0.7460 -0.5384 0.2779 0.0102
.92 -0.9391 0,935k 0.7509 -0.5834 0.92 -0.920k 0.9040 -0.8311 0.7061 -0.5367
.94 -0.8243 0.8904 0.922h -0.8882 0.9 -0.8288 0.8859 -0.9118 0.9056 -0.8674
.96 -0.608h4 0.6905 0.8181 -0.8622 0.9 ~0.6217 0.6989 -0.765L 0.819% -0.8609
98  .0.3211 0.37kk 0.4751 -0.5225 0.98 -0.3311 0,382k -0.4324 0.4806 -0.5270
00 0 0 0 0 1.00 0 0 0 0 0

TABLE VIII
TABLE VI A =10, C=1C
A=0, C= -5 az,(0) .2 .
.2 .3 n Ay o 1-cos 10nz L-cos 6.667 xz o (, daz
\ ar, (0) fl-ccs 1012 . (z)az f 1-cos 6.667x z £, (2)as dz 6f ._1Tfn<1)u § (L-nﬂ.)h;s -1) a()
az n Laaz) (/-] B (142) 7~
° (1 ~‘u)ﬁ o (1

-52,118 11,094 0,204k 0.4106 1 15.693 3.2418 0.0685 0.1585
-12,582 11.315 0.1893 0.3327 2 46,80k  T.9760 0.1567 0.3302

35.457 15,102 0.2241 0. 3 96.357 12.707 0.2217 0.3977
103.67 19,249 0.2392 0.2589 k  165.49 17.309 0.2542 0.3529
192.05  23.461 0.2286 0.1h27 5 254.33 21.846 0.2543 0.2320
300.36  27.729 0.1953 0.0217 6 362.90 26.352 0.2258 0.0879
428.50 32.036 0.1458 -0.0678 7 k9.2l 30.839 0.1763 -0.0306
576.44 36,372 0.0886 -0.1077 8 639.26 35.315 0.1157 -0.0955
Tsk.15  40.729 0.0325 -0.101k 9 8o07.04 39.783 0.0541 -0.1052
931.62 45,102 -0.0148 ~0.0683 10 99k.57  Lh.2h7 0,000k -0.0781



-T1-

z fl(z) fz('z) f;:’(z) fk(z) fs(z) z £,(2) £5(z) fj(z) £3,(z) f5(z)

[¢] 0 [¢) 0 0 0 0 0 0 0 0 0
0.05 Q. 3292 0.14715 0.6573 0.8332 0.9918 0.05 0.51k5 0.5290 0.6924 0.8585 1.0080
0.10 0.6237 0, 8581 1.1200 12871 1. 3356 0.10 0.9439 0.9211 1.1276 1.2644 1.2883%
0,15 0. 8684 1, 1131 1.2822 1.193%6 0.8514 0.15 1.2522 1.109%6 1.1878 1.0554 0.6952
0.20 1.0552 12129 L1217 0.6189 -0, 1286 0.20 1.4305 1.0818 0.8870 0.3704% -0.3307
0.25 1.1816 L1572 0. 6969 ~0. 1810 -0, 9925 0.25 1.4898 0.868 0.3438 -0.4526 -1.1060
0.30 1.2501 0. 9656 0.1250 -0.8767 ~1,2315 0.30 1.4529 0.526 -0.2715 ~1.0k97 -1.1595
0.35 1,266k 0.6716 -0, 4521 -1,201k4 ~0. 7350 0.35 13471 0.1226 -0.7925 ~1.1876 -0.5012
0.ho 1.2386 0.3166 -0, 9029 -1, 0492 0.1702 0.ko 1.1989 -0.280k ~1.0991 -0. 8429 0.4308
0.45 1.1755 -0. 0562 -1.1349 -0, 5040 0. 9380 0.45 1.0312 -0.6342 -1.1390 -0,1845 1.0711
0.50 1.0681 -0, k071 -1.1113 0.2071L 21,1326 0.50 0.8610 -0.9065 -0.9278 0.5157 1.06Th
0.55 0.9789 ~0. 7037 -0, 853k 0.8095 0.6719 0.55 0.7003 ~1.0829 -0.5329 0.9965 0.4607
0.60 0. 8610 -0, 9229 -0, 4301 1, 0870 ~0, 1487 0.60 0.5561 ~1.1627 0.0505 1.1013 ~0.3749
0.65 0. 7386 -1, 0521 0.0611 0. 9566 ~0. 8476 0.65 0.4315 -1.1551 0.4195 0.8200 ~0.9681
0.70 0.616% -1, 0882 0. 5169 0. hagh -1.0399 0.70 0.3271 -1.0758 0.7932 0.275k -1.0145
0.75 0. boTh -1, 0367 0, 8496 ~0,1311 -0, 6456 0.75 0.2u14 ~0.9427 1.0152 ~0.3339 -0.5230
0,80 0, 382 -0, 9096 1.0026 -0, 6740 0. 0855 0.80 0.1721 ~0.7735 1.0633 ~0.8067 0.2167
0.85 0.2779 -0. T34 0.9587 ~0, 9544 0.7330 0.85 0.1163 -0.5837 0.9463 -1.0038 0.8088
0.90 0.1787 -0. 4970 0. 7390 -0, 0.9477 0.90 0.0710 -0.3860 0.6972 -0.88k2 0.9618
0.95 0. 0863 -0, 2kg7 0. 3959 -0, 5245 0.637h 0.95 0.0332 -0.1694 0.36k0 -0.5062 0.6265
1.00 0 0 0 0 1.00 ) 0 0 0 0

z £g(z) f7(z) 2g(z) f9(z) £0(2) L £5(2) 2(x) £g(x) f4z)

0 0 0 0 0 0 0 0 0 0 0
0,02 0.5232 0. 6029 0, 6805 0. 7556 0.827% 0,02 0.5340 0.6120 0.7620 0.8333
0.0k 0. 9612 1.0779 1,1782 1. 2604 1.3230 0.0k 0.9740 1.0 1.2612 1.3209
0,06 1.251% 1.3340 1.370% 1.3589 1.2997 0.06 1.2517 1.3260 1.3385 1.2751
0.08 1.3538 1 3250 L2139 1.0270 0. 7755 0.08 1.3270 1.2869 0.9767 0.7238
0.10 1.2571 10572 0. 7540 0. 376k -0, 0391 0.10 1.1925 0.9827 0.3020 -0.1055
0.12 0.9788 0. 5874 0.1118 -0, 3822 -0, 8257 0.12 0.8741 0.4816 -0.4601 -0.
0.1k 0.5629 0. 0109 -0, 5482 -1, 008! -1,2822 0.14 0.4253 ~0.1100 -1.0611 -1.2957
0,16 0.0722 -0, 5584 ~1, 0600 ~1.3079 -1,23688 0.16 -0.0817 ~0.6696 -1.3100 -1.1960
0.18 -0, 4210 ~1,0102 ~1.2961 -1,1919 0. 7206 0.18 -0.5680 -1.0850 -1.1333 -0.6295
0.20 -0, Bu54 -1,2591 ~1.2077 -0, TO3 0.0653 0.20 ~0.9603 -1.2755 -0.5961 0.1736
0.22 -1, 1414 -1, 2607 -0, 8172 -0, 0042 0.8134 0.22 ~1.2015 -1.2078 0.1229 0.8960
0,24 -1,2687 -1,0191 -0, 229k 0. 6856 1,2377 0.2k -1.2588 -0.9008 0.7909 1.2583
0.26 -1,2125 -0, 5854 0, k057 1.1497 1.1817 0.26 -1.1281 -0.4206 1.1965 1.1268
0.28 -0. 9842 -0, 0466 0.9292 1. 2473 0.6753 0.28 -0.8329 0.1346 1.2163 0.5617
0.30 ~0, 6197 0, kg21 1,2132 0. 9545 -0, 0803 0.30 -0.420k 0.6539 0.8515 ~0.2105
0,32 ~0. 1734 0. 9274 1.1915 0. 3695 ~0, 7924 0.32 0,046k 1.0369 0.2247 -0.
0,34 0, 2898 1.1780 0. 8751 ~0. 320k -1, 1904 0.34 0.4985 1.2118 ~0.4620 -1.214%0
0.36 0. 7041 1.1995 0. 3478 ~0.8968 -1.1284 0.36 0. 1.1493 -0.9922 -1.0685
0.38 1,018 0.9923 -0, 2562 ~1,1883 -0. 6383 0.38 1.112h 0.8665 -1.20%2 -0.5171
0. ko 11719 0. 6000 ~0. 7865 ~1.1043 0.0857 0.50 1.1912 0.4226 -1.0357 0.2220
0. 42 1, 1646 0, 1007 ~1. 1137 -0.6798 0, 7644 0.k2 1.1000 -0.0943 -0.549% 0.8636
0. b4 0.9943 ~0. ~1, 1611 -0, 0525 11411 0.4k 0.8556 -0.5841 0.0987 1.1658
0.46 0.6882 -0,8318 -0, 9223 0.5797 1.0785 0.46 0.4958 -0.9545 0.TOLT 1.
0.48 0.2916 ~1,0901 -0, k616 . 0216 0. 6085 0.48 0.0735 ~1.1384 1.0825 0.4918
0.50 -0. 1384 ~1,1381 0.1039 1, 1403 ~0.0832 0.50 -0.3514 -1.1050 1.1204 -0.2132
0.52 -0, 5413 -0, 9710 0.6336 0. 905 -0, 7308 0.52 -0.7201 -0 0.8136 -0.8h9
0.5k ~0.8617 -0, 6244 0. 9987 0. 3961 ~1. 0903 0.54 -0.9834 -0.4692 0.2634 -1.1151
0.56 -1, 0571 -0, 1670 1,1130 -0, 2255 -1.0315 0.56 -1.1078 0.0070 -0.3572 -0.9811
0.58 -1,1029 0,3131 0. 9557 =0, 7663 -0, 5847 0.58 -1.0797 0.4730 -0.8573 -0.4819
0.60 -0. 9959 0. 7255 0. 5651 ~1,0616 0.0741 0.60 - b 0.8430 -1.0872 0.1883
0,62 -0, 7541 0. 9945 0. 0463 -1,0256 0 592ﬁ 0.62 -0.6146 1.0512 -0.9826 0.7755
0. 64 -0, 4135 1,0728 -0, 4739 0. 6760 1,038 0.6k -0.2463 1.0630 -0.5824 1.
0.66 -0, 0228 0. 9497 -0, 8689 -0, 1262 0. 9870 0.66 0.1477 0.8805 -0.0138 0.9479
0.68 0.3634 0.6522 ~1,0454 0, 4516 0. 5655 0.68 0.5145 0.5415 0.5480 0.4
0.70 0.6924 0, 2394 =0, 9652 0.8800 -0, 0601 0.70 0.8063 0.1110 0.9337 -0.1514
0.72 0.9207 -0.2098 -0, 6528 1,0311 -0, 6508 0.72 0.9865 -0.3312 1.0312 -0.7176
0. Th 1,0193 -0, 6110 -0.1888 0,8645 -0, 9856 0.4 1.0341 -0.7049 0.8173 -1.0070
0.76 0.9775 -0. 8912 0,3115 0. 4377 0. 92 0.76 0.9461 =0.Ghhh 0.3629 -0.9185
0.78 0.8042 ~1,0009 0, 7264 -0, 1139 ~0, 5499 0.78 0.7372 -1.0101 ~0.1908 -0.4928
0.80 0.5257 -0, 9235 0.9578 -0,6195 0. ob2: 0.8 0.4373 -0.8939 -0.6763 0.1058
0.82 0.1819 -0, 677k 0.9536 -0, 9263 0. 606 0.8 0.0873 -0.6210 ~0.9503 0.65351
0.8k -0, 1792 -Q. 3117 0. 7201 -0, 9451 0.9320 0.84 -0 -0.2434 -0.9359 0.9491
0.86 ~0.5087 0.1038 0.3182 -0,6763 0.9026 0.86 <0,5791 0.169% -0.6438 0.8906
0,88 -0, 7629 0. bg1h =0.1516 -0.2080 0.5366 0.88 -0.8113 0.5436 -0.1669 0.5068
0.90 ~0, 9093 0. 7805 -0.5750 0.3135 ~0.0219 0.90 -0.9357 0.8140 0.3493 -0.05kk
0,92 -0, 9307 0. 9203 -0,8514 0. 7287 -0,5602 0.92 -0.9392 0.9355 0.7511 -0.5837
0.9% -0.8272 0. 8886 -0. 9178 0.9142 -0,8780 0.94 -0. 8242 0. 0.9225 -0.8883
0.96 -0, 6154 0. 6949 ~0, 7630 0.8189 ~0,8616 0.96 -0.6083 0.690k o.818 -0.8622
0.98 ~0. 3262 0.3785 -0, 4291 0. 4779 ~0, 5247 0.98 -0.3210 0.3743 0.4751 -0.5224
1.00 0 0 0 0 0 1.00 0 0 0 0

TABLE XTI
TABLE X
A =10, C = -20 A =210, ¢=-50
ar (o) # ) 6.66 ary(0) 2 6.66
a / l-coslOnz _ fl-cos . 6671z n * ) 1-coslOxz o (,)ay 1-cos 6.667xx ¢ (y)ax
N - s a7 1 n(z)az S —-—7—'L(l’m)1 o1 fn(2)az = J fipa @ J a1 m )

1 -16.833 6.7946 0,1335 0.2863 1 -56.196 10.747 0.1993 0.4

2 14,135 9.859%6 0.4799 0.3496 2 -16.915 11.236 0.18%4 0. ;3?3

3 63.195 14,033 0.227L 0. 3724 3 31.315 15.012 0.2243 0.3318

b 1321k 18,321 0.2489 0. 3093 4 99.59% 19.165 0.2399 0,262k

5 220, 90 22,663 0.2428 0, 1882 5 188.00 25.387 0.2296 0.1%60

6 329,k2 27.035 0.2114 0.0545 6 296.33 27.663 0.1965 0.02h1

7 457,70 31, k26 0.1616 -0, 0499 7 42k k8 31.978 0.1470 0. 066k

8 605,73 35.830 0. 1025 -0.1023 8 572.43 36.320 0.0897 -0.10T1

9 T73.50 ho, 2h2 0, 0435 -0,1038 9 Tho.1k ho.683 0.0334 -0.1015
10 96102 L4, 659 ~0. 0071 -0. 0735 10 9%27.61 45.060 -0.0141 -0.0686
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TABLE XV
TABLE XITI
A =20, C=10 A=20, C=-20
£ (z) £5(2) 5(z) 2,(2) £5(x) z ,(z) £5(2) £5(2) £,(2) £5(z)
0 0 0 0 0 0 0 0 0 0 0
7.1532 0.3780 0.5975 0.7957 0.9678 0.05 0.3162 0. 4654 0.6526 0.8295 0. 9897
0.3034 0.7195 1.0661 1.2891 1.375% 0.10 0, 6015 0.8504 1.1163 1.2874 1,%388
0.4512 1.000% 1.3196 1.3180 1.0150 0,15 0,8423 1,1091 1.2859 12031 0.8638
0.5950 1.1976 1.3104 0.8813 0.1085 0.20 1, 0302 12169 1.1355 0.6371 ~0,1123
0.7317 1.2922 1.0429 0.1467 -0.8207 0.25 11615 1.1707 0. 7191 ~0. 1606 -0,9821
0.8569 1.2736 0.5750 -0.6100 -1.2477 0.30 12372 0. 9875 0.1503 -0, 8623 -1.2332
0.9658 1.1419 0.0077 -1.1094 -0.9473 0,35 12614 0.6 -0. k296 ~1.1978 =0, T465
1.0534 0.9089 -0.5366 -1.173%6 -0.1181 0,40 1.2408 0.3453 ~0, 8876 -1,0557 0.1569
1.1150 0.5976 ~0.9411 -0.7937 0.7423 0.45 1.183%6 -0, 0295 ~1,1283 ~0,5160 0.9303
1.1469 0.2k03 -1.1217 -0.1302 1.1351 0.50 10982 -0. 3849 ~1,1122 0.1954 11328
1.1467 -0.1256 -1.0460 0.5527 0.8515 0.55 0. 9930 -0, 6872 -0,8589 0.8020 0.6772
1.1133 -0.4612 -0.7405 0.9921 0,0856 0,60 0.8756 ~0. 9120 ~0, 4369 1. 0846 -0, 1431
1.0472 -0.7316 -0.2829 1.0291 -0,6941 0.65 0.7522 -1, 0457 0.0553 0.9575 -0,
0.9505 -0.9097 0.2167 0.6672 -1.0307 0.70 0. 62681 -1 0.5132 0. kgo2 -1,039%
0.8268 -0.9795 0.6L426 0.0649 -0. 7479 0,75 0,5070 =1.0351 0,8478 =0,1299 -0, 6460
0.6810 -0.9378 0.9009 -0.5%25 -0.0412 0.80 0. 3914 -0, 1,0019 =0, 6736 0. 0854
0.5189 -0.79%42 0.9%03 -0.8930 0.6537 0.85 o, 2829 =0, 7226 0,9582 -0, 9543 0. 7332
0.3469 -0.5698 0.7627 -0, 0.92 0.90 0.1817 ~0. 4962 0. 7385 ~0. 8902 0, 9477
0.1718 -0.2938 0.k201 ~0.5393 0.6463 0.95 0. 087 -0, 2/ 0. 3955 -0,5243 0. 6372
0 0 0 0 1,00 0 0 0 0 0
£4(x) f-,(z) tg(s) fg(x) 2,5(x) z £6(2) £.(z) £g(z) £4(2) £0(2)
0 0 0 0 0 0 0 0 0 0
0.5098 0.5919 0.6714 0.748L 0.8216 0.02 0.5219 0.6019 0.6796 0.7549 0.8273
0.9442 1.0670 1.1722 1.2585 1.3246 0. 0k 0.95% 1. 0769 11776 1, 24 1,3231
1.2462 1.3398 1.3848 1.3 1.3258 0.06 12509 1,334 L3717 1.3608 1. 3020
1.3772 1.3632 1. 1.0812 0.8 0.08 1.3558 1,3282 12180 10316 0, 7804
1.3215 1.1360 0.8384 0.4589 0.0353 0.10 1,2624 1. 0637 0. 7610 0, 3833 ~0. 0329
1.0891 0.7034% 0.2196 -0.2930 -0.T619 0.12 0.9877 0.5967 0, 1205 ~0,3750 -0, 8206
0.7133 0.1480 -0.4421 -0, -1.2607 0,14 0,574 0, 0215 ~0.5399 -1, 0035 -1,2806
0.2471 -0.h257 -0.9862 -1.2955 -1.278 0.16 0.085 ~0. 5485 -1 054 ~1.3070 -1,2k19
-0.2451 -0.9111 -1.287 -1.2460 -0.8157 0,18 -0, -1.0032 ~1.2972 ~1,1961 -0.7277
-0.6958 -1.2192 -1.2634 <0.8162 -0.0539 0,20 =0. 8352 ~1,2566 ~1,2118 =0, 7124 0,05
-1.0438 -1.2951 ~0.9376 -0.1435 0.7155 0.22 -1.1351 ~1.2633 ~0, 8256 -0, 0138 0.806
-1.2429 -1 -0.3892 0.5619 1.2025 0.2k -1, 2675 -1, 0266 =0, 2401 0. 6775 1.2355
-1.2679 -0.7529 0.24h7 1.0830 1.2280 0.26 -1,2165 -0.5963 0,3955 1,157 L
-1.77 -0.2432 0 1.2625 0.7897 0.28 ~0. 9928 ~0, 0586 0. 9220 1,2485 0.6825
-0.815T 0.3035 1.1648 1.0506 0.0607 0,30 ~0, 6315 0.14811 1,2106 0. 9604 -0, 0719
-0.4060 0.7838 1.2305 0.5189 -0.6788 0.32 =0, 0. 91 1.19%0 0.3781 -0, 7860
0.0530 1.1083 0.9940 -0.1635 -1.1488 0,34 0,277 117 0, 8818 -0,3119 -1.1883
0.k 1.218 0.5181 -0.7836 -1.1760 0.36 0.6936 1.2008 0. 3568 =0.8929 ~1.1310
0.8633 1.0 ~0.0765 -1.1511 -0.7575 0.38 1. 0049 0.99 =0, 2473 -1, ~0, 61k
1.1032 0.7699 ~0.6419 -1.1566 ~0.,0593 0.k 11690 0.6081 =0, 7T ~1,1069 0,0788
1.18:8 0.3033 -1.0396 -0.8046 0.6489 o0, 42 1.1658 0.1098 ~1.11 -0, 6855 0.7593
1.0992 -0.2123 -1.1746 -0.2101 1.0984 0. b4 0.9990 -0, 4005 ~1.1618 -0, 0593 1,139k
0.8612 ~0.6784 -1.018 0.4387 1.1232 0.46 0.6952 ~0., 8257 -0, 3265 0.5741 1. 080!
0.5067 <1.0075 -0.6140 0.5400 0.7212 o.48 0.2997 ~1,0870 =0, 4674 1,0185 0.6129
0.0876 ~1.1392 -0.0659 1.1410 0.0528 0.50 -0, 1304 ~1,1382 0. 097 1,140k ~0. 0783
-0.3361 ~1,0522 0.4883 0.98:8 ~0.6234 0.52 =0,5345 -0, 9737 0. 6268 0, 9081 ~0,7272
-0.70h7 ~0.7667 0.5119 0.5262 -1.0502 0.5k -0. 8569 0. 6288 0. 9960 0 ~1.0891
-0.9672 -0.3407 1,1026 -0.0869 -1.0700 0,56 ~1. 0545 -0, 1720 1, 1227 -0, 2215 -1, 0326
-1.0885 0.1422 1.0176 ~0.6616 -0.6827 0.58 -1, 1024 0. 3085 0.955% -0, 7635 ~0,5873
~1.0539 0.5888 0.6829 -1.0201 -0.0432 0,60 -0, 9972 0.7221 0.5679 -1, 0605 0.0713
~0.8713 0.9147 0.1859 -1.0552 0.6005 0.62 ~0. 7565 0.9927 0.0493 ~1, 0262 0. 6905
~0.5691 1.0600 -0.3475 ~0.7621 1.0035 0. 64 -0, 4164 1,072 ~0, 4713 -0, 6776 10376
-0.1924 1, -0. T84T -0,2381 1.0170 0.66 -0, 0257 0, 9504 ~0.8673 ~0,1261 0.9874
0.2042 0.7510 -1.0193 0.3497 0.6433 0,68 0. 3609 0.6536 ~1.0 0. 4500 0.5667
0.5641 0.3633 -0.9973 0.8173 0.0322 0,70 [ 0. 240 ~0, 965 0,8790 -0, 0589
0.8371 -0.0861 -0.7290 1.0218 ~0.5791 0.72 0.9196 ~0, 208! -0.6536 1.0309 -0.6
0.9861 -0.5101 -0.2858 0.904 -0.9578 0,74 1,0187 -0, 6101 -0,1897 0, 86/ -0, 9852
0.9925 -0.8282 0.2192 0.5090 -0.96k4 0.76 0.9774 ~0, 8906 0. 3108 0. 4381 -0, 9hh2
0 8582 -0.9816 0.6597 -0.0369 -0.6038 0.78 0. 8042 -1, 0. 7260 =0, 1135 ~0.5500
0.6051 -0, bl 0.9280 -0.5601 -0.0208 0.80 0.5257 ~0. 9234 0.9576 ~0,6193 0. 0421
0.27115 -0.7275 0.9611 -0.8985 0.558 0,82 0,181 ~0. 6773 0.9535 -0, 9262 0.6063
-0.0936 -0.3762 0.7557 -0.9507 0.9125 0.8k ~0, 17 ~0.3115 0.7199 =0.9 0.9320
-0.4379 0.0397 0.3675 -0.7064 0.9123 0.86 ~0,5089 40,1050 0.3180 -0, 6762 0. 9025
-0.7128 0.4391 -0.1033 -0.247T 0.5649 0.88 ~0, 7631 0, 4916 ~0.1519 ~0.2077 0.5364
-0.8808 0.7462 +0.5386 0.278 0.0099 0.90 ~0, 909 0.7807 ~0,5753 . 3138 =0, 0221
-0. 920k 0.9041 -0.8312 0.706: -0.5369 0.92 0. 9307 0. 9204 -0,8516 0.7289 ~0.5604
-0.8287 0.8858 -0.9118 0.905% -0.8675 0.94 -0, 8271 0.8885 -0, 9179 0.9143 ~0, 8781
-0.6216 0.6988 -0.7651 0.8194 -0.8609 0.96 -0, 6153 0. 6948 -0.7630 0.8189 ~0, 861
-0.3310 0.3824 -0.4323 0.4806 -0.5270 0.98 =0, 3261 0. 3784 ~0. 4290 0. 4779 ~0, 5247
o 0 0 0 0 1,00 0 ) 0 [ o
TABLE XIV TABLE XVI
A =20, C=10 A=20, =20
afn(0) £ 1-c0810 '}1 6.66 3 "R -co86. 66
A n f.;mz_ £n(z)de f;ce;..__l_g £(2)az o afp(0) 1-coslOnz ., ()ys, [L-cos6.667nz o (),
dz S (1-02)1/7-1 J Qa7 * az s (Taz)i/r=1 "2 S (Taz)i/7-T ®
11.000 3.1103 0.0663 0.154k 1 -21.290 6.5155 0.1290 0.2784
42.616 7.7118 0.1539 0.3261 2 9. 9346 9. 7175 0.1786 0, 3491
92.306 12,554 0.2205 0.3980 3 59.104 13.912 0,2267 0.3743
161.47 17.193 0.2543 0.3557 I 128. 09 18,222 0. 2493 0. 3126
250.33 21,754 0.2551 0.2354 5 216,87 22,580 0. 2437 0.1916
358.91 26.275 0.2270 0.0908 6 325,41 26. 965 0,2126 0.0572
487,22 30.774 0.1776 -0.0288 7 453,70 31365 0.1629 -0, 0482
635.27 35.258 0.1169 -0.0947 8 601. 73 35. 776 0.1037 -0,1016
803.05 39.733 0.0551 -0.1051 9 769.50 40,193 0, 0bks -0,1038
990.58 kb 201 0.0012 -0.0784 10 957. 02 44, 616 ~0, 0064 -0, 0738
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TABLE XVII

A=20, C=-5

z fl(z) f2(z) fi(z)
0 0 0 0
0,05 0. 4989 0.5259 0, 6892
0.10 0.9187 0.9195 11270
0.15 1.2251 1.1148 1.1954
0.20 1. ko081 1. 0966 0. 9042
0.25 1. h761 0.8923 0. 3669
0.30 1. ko1 0.5563 ~0,2487
0.35 1.3523 0,1542 -0. 7756
0,50 1,2110 ~0,2515 -1.0912
0. 45 1. 0475 -0, 6107 ~1,13
0.50 0.8791 ~0. 8901 ~0. 9345
0.55 0, 7182 ~1.0751 -0,5420
0.60 0,572k -1,1581 -0, 0589
0.65 0. #hs55 ~1.1542 0, 413k
0,70 0, 3384 -1,0768 0. 7897
0.75 0.2502 -0, 9lth2 1,0135
0.80 0.1785 ~0. TT47 1, 0625
0.85 0.1207 ~0.5844 0. 9457
0.90 0. 0736 ~0, 3862 0.6966
0,95 0, 03k ~0, 189k 0. 3635
1,00 0 0 0
z f6(z) f7(z) fs(z)
0 0 0 [}
0.02 0.5329 0.6110 0.6873
0. 0k 0. 9726 1,0851 1.1819
0.06 1.2516 1, 3266 1.3569
0.08 1. 3294 1.2903 1,1723
0.10 1.1982 0. 9894 0. 6835
0.12 0. 8831 -0. -0 02k2
0.1k 0. 4368 ~0. 0998 -0.6310
0,16 -0, 0693 -0. 6606 -1.1122
0,18 =0, 5566 -1,0792 ~1.2!
0.20 ~0. 9518 -1, 27k ~1.1481
0.22 -1, 1974 -1,2118 ~0. 7060
0.2k -1.2598 ~0. 9093 ~0. 0908
0.26 -1, 1341 -0. 4318 0.5372
0,28 ~0. 8429 0. 1228 1,0185
0.30 ~0, 4329 0. 6440 1,234k
0.32 0.033k 1,0306 1.1359
0,34 0, 1868 1.2101 0. 7540
0.36 0. 8623 11522 0. 1501
0.38 1.1075 0.8732 -0, 4114
0,40 1.1905 0. 4314 -0, 9002
o0, k2 1.10%2 -0, 0852 -11575
0. 44 0.8618 ~0, 5764 -1, 1243
0. 46 0.5038 -0, 9495 ~0.8150
0,48 0.0819 ~1.1365 ~0, 3112
0.50 ~0, 3437 ~1.106% 0.2596
0.52 =0, 7141 ~0,8692 0.7567
0.54 ~0. 9796 =0, b7kl 1, 0606
0,56 ~1.1063 0, 0019 1.1026
0.58 ~1, 0802 0. 4687 0.8753
0.60 -0, 9084 0, 8401 0, k22
0.62 -0, 6175 1,0498 -0, 0891
0,64 -0, 2494 1,06%0 ~0.5889
0.66 0.1448 0,8816 ~0. 9382
0.68 0.5122 0.5431 ~1. 0457
0.70 0.80k47 0,1125 =0, 9213
0.72 0, 9856 ~0, 3299 -0,5697
0. 74 1.0337 -0.7 -0, 0902
0.76 0. 9460 ~0. 9439 0, bo11
0.78 0. 7372 ~L 0.7879
0.80 0, 4373 -0,8938 0.9814
0.82 0.0872 ~0, 6209 0.9
0,84 -0, 2668 -0, 2432 0.6801
0,86 -0. 579% 0. 1697 0, 2662
0.88 -0,8116 0.5439 ~0,2011
0.90 -0, 9359 0.8142 ~0.6116
0.92 ~0. 9392 0. 9356 ~0.8713
0. 94 ~0. 8242 0. 8904 -0, 9233
0.96 ~0, 6082 0. 6903 -0, 7605
0.98 ~0, 3209 0.37h2 -0, k256
1.00 0 0
TABLE XVIII
A =20, C=-50
.2
ag,(0) &/‘l-COSIOKZ
B *a az (1oz)i/7-1
o]
1 -60. 300 10, ko6 0.1943
2 -21,239 11,152 0.189k
3 (27.176 1k, 919 0, 2245
4 95.515 19. 080 0. 2406
5 183.95 23,313 0.2307
6 292,29 27.598 0.1978
7 420, 46 31,920 0.1483
8 568, k1 36,268 0. 0908
9 736.13 40,636 0. 0343
10 923,61 45,017 =0, 0135

£,(z)

o
0.8560
1.2662
1, 0665
0. 3886

-0, k349
-1, 0399
~1.1891
-0, 8532
-0, 1977
0.5049
0. 9909
1, 1005
0.8218
0.2775
~0.3327
~0. 8064
~1.0038
-0. 8839
~0.5059
0

f9(2)

0
0.7614
1.2611
1. 3404
0.981%
0.3088

~0. 4532

fn(z)dz

.3
1~cosb6.667nz
5 (1t

£5(2)

0
- 1. 0064
1.2923
0.7079
-0, 3158
-1, 0987
-1, 1644
-0,51k42
0. 4183
1.0657
1,0698
0. 4668
-0, 3695
-0, 9657
~1. 014k
-0,5236
0.2166

0.9618
0, 6264
0

flo(z)

[o]
0.8327
1,3211
1.2775
0.7286

-0, 0994

i1 fn(z)dz

0. 3949
0.3378
0.3348
0.2659
0. 1492
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