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Abstract

A mechanisms optimization problem involving minimiza-
tion of closure time is solved in this paper using non-
iterative global optimization techniques, whereas most
mechanisms problems in the literature have focused on path
optimization and use iterative methods. Monotonicity
analysis is used successfully to identify active constaints
which reduce the problem to one degree of freedom. The
solution method may be applicable.to a variety of dynamics
problem in which algebraic .relations can be constructed
from the governing differential equations.
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Introduction

Previous optimization work on mechanisms has focused on path
optimization problems. The problem presented in this paper
represents a different class of mechanisms optimization
problems; the objective is to minimize closure time. A simple
design for a fast acting electrical switch, [1], is shown in
Figure 1. Although this design is perhaps artificially simple,
the solution does suggest an optimization method which may be
applicable to more complicated designs.

The simple slider crank mechanism functions as a fast acting
switch in the following way: The helical spring is compressed
initially b7 the piston, which is held in place by a
restraining pin. When the pin is released, link 2 swings shut
to complete the circuit. The mechanism is assumed to be
constructed of rigid parts with uniform cross section. Parts
are connected with rotational contacts. Minimization of
closure time implies obtaining the maximum possible
acceleration over the shortest possible distance. This results
in tradeoffs between the initial spring load (which depends on
the spring constant and deformed spring length) and the spring
shear strength, and also between the length of link 2 necessary
to achieve linear motion of part 2 and the maximum width of the
mechanism.

The optimization problem is originally formulated with thirteen
degrees of freedom and twenty-one constraints. Global
optimization is achieved using the methods presented in [2],
[31, and [4]. The problem is reduced to seven degrees of
freedom by direct elmination, which is used due to the large
number of equality constraints. Monotonicity analysis [4] and
implicit elimination are then used to identify constraint
activity, and the problem is successfully reduced to one degree
of freedom. The optimum is located by mapping the objective
against the remaining degree of freedom on the feasible domain.



Derivation of the Mathematical Model

The objective for optimization of the fast acting switch shown
in Figure 1 is minimization of the closure time, tf.

Initially time is defined only implicity, the motion of the
mechanism being time dependent. Thus, the objective function
is originally undefined because it must be derived from the

differential equations of motion describing the slider-crank

mechanism.

The slider crank mechanism has only a single degree of freedom
and consequently the objective function should be rather
straightforward. Typically the important variables are the
system mass, damping and stiffness and the initial and final
configuration of the mechanism. The optimization problem is
originally stated in the form

min tg
subject to: constraints,

where the constraints are grouped in the following categories:
(1) differential equations of motion, (2) loop equations, (3)

design space and geometry, (4) initial - final configuration,

(5) helical spring and (6) strength of joints.

The differential equations of motion are derived using the
constrained D'Alembert method [5],
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In the analysis several forces were treated as negligible.
Gravitational forces and mass inertial forces on links 2 and 3
were assumed small compared to the rotational inertial forces,
and frictional forces were considered negligible. The model
could be further refined by including these forces, although
the added complexity would make solution for the objective
function very difficult. Details of the derivation of the
equations of motion are given in Appendix A. The result is, in
matrix form,
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The loop equations and their derivatives express geometric
constraints and result in six equalities:

r251n62 + r351n83 =0,

r,cosb, + r

2 2 3cose3 + Py +s -g=0,
rzezsin(e2 - 63) - écose3 =0,
s _ . _ (3)
r363s1n(e3 62) scose2 =0,
r. 8% - 1. B.gi - 22 ..
295 Iy 351n(63 - Qz) - r363 cos(63 - 62) + scose2 = 0,
e B ooz _ _ 2 : "
r 0,5in(0, -0,) - 1,65 cos (8, -65) - r36% + Zcosgy = 0.

Again, the details are in Appéndix A.

The design space is limited, in a two-dimensional sense, to a
rectangular area with height L and width 2L. The total length
of 1link 2, L, is fixed, but the position of the joint with link
3 is variable. Thus,

| Rl: r, <L . (4)
The total width of the mechanism cannot exceed 2L so

R2: g < 2L . )

The angles 92 and 93, measured as shown in Figure 1, are
limited by the design space such that
0 <9

2 <7/2 ,

3n/2 < 63 < 2m .

(6)

With respect to this design, the path of the mechanism can be
left quite arbitrary, so that the initial »nd final conditions
result in the most important constraints on the problem. 1In
‘order for any motion to take place, the spring must be
compressed initially, so that

R3: s(t =0) =5, < S,4q - (7)
The piston also has zero initial velocity

s(t =0) =s_ =0 . (8)
The distance between the end of link 2 and the contact must be
greater than some distance B to prevent arcing of the
electrical signal when the switch is open

R4:62o < W. : (9)



Further constraints are placed on 63, (although the above
will likely be the least npper bound) and 63, by applying the
design space criteria (6) at time t =0

R5:620 < /2 , (10)
. 3

R6‘83O 2 > - (11)

R7:630 < 2r . (12)

Note that satisfactory closure of the switch implies the final
angular position of 1link 2, PPy is

62f = /2 . (13)

Using equation (13), application of the first two loop
equations (3) at the initial and final time leads to

R8: r,sinf, + r3sin630 =0 (14)
R9: r,cosf, + rycosb; +* p, + s - g =0, (15)
R10: ;2 + rysing,. = 0 (16)
R11: r,cosb,. + p, + s, - g =0. (17)

Finally note that
Sf X Snax ° (18)
For an undamped system the spring will oscillate such that

Smax ~ Sua ~ Sud T So- (19)

Rearranging (19) and substitution into (18) yields the
approximate relation

R12: -
| Sf < 2Sud SO . (20)

The only variables with respect to the helical spring are
the spring constant, k, the number of coils, N, and the
undeformed spring length s g:; all other quantities which
affect the spring are treated as parameters. The spring
constant and the number of coils are related by

4
R13: k = .d_%;. . (21)
8D”N



The allowable deformation of the spring is limited by the
spring wire shear strength [6] such that

KSDk(sud - SO)

Rid: 0.17aa>® =t (22
and
R15: S f ;_;“d) <1, (23)
0.17Ad
Geometrical considerations lead to
Rl16: s, > Nd (24)

which is the final constraint derived from consideration of the
helical spring.

Typically in the design of simple mechanisms such as considered
here the joints "between links will be the weakest part. The
reaction forces can be calculated using the method of virtual
work and equilibrium ideas; they must not exceed the joint
strength. The result is
3 1/2
2, [I3%  _ /
r3cose3

[M4s + k(s - sud)]
The details of the determination of reaction force is shown in
Appendix B.

At this point the objective function must be derived, and the
constraints should be put in a form such that the problem is
well posed. This requires elimination of all the differential
qguantities in constraints such as equation (25), and further
solving the differential equations of motion (2) for the
objective function tg. Consider the third of equations (2)

M4s

and note that Xj can be solved for in terms of 62 and 63
by writing a virtual work expression (see Appendix B)

N 1262c0s63 . I,65cos6, ] ]
i r251n(62-63) r 51n(83 —62)

+ k(s = s,q) * A =0, (26)

(27)
3

Then, using the last four of equations (3) to eliminate 52
and 93 in (27), and substituting the result into (26)

m°s + cs? + k(s - s 4) =0 (28)

.. 2
(M4s + k(s - sud)tanGBJ } < Frated'

(25.



where

I c0526 I3c05262
m* =M, + g t o (29)
4 . - i -
r,sin (92 83) r3sin (63 62)
. : 39 . I 0536 cos (6., -6.,)
Izcos 3 3C 2 3 2
r r sin -
'I2c0562 . I cos 63 c0562c0563 .
T2 2 sin4(6 - 8,)
er r3 r2 3 2 3
Since 65 and 63 are functions of time (theoretically they
can be solved in terms of s), and since the s term is squared,
the differential equation (28) is highly nonlinear. 1In order
to simplify the solution of the problem, the equation is
approximated by
m§ + cs + k(s-syg) =0 , (31)
where m~ and c are treated as constants with respect to time
(see Appendix C):
2
.083M.L
m- =M, + 27 4+ .021M (32)
. 4 - 2z 37
r
2
0083M L2 0042M 033M L2 067M
c _ . 2 + . 3 + . 2 + - 3 (33)
3 Iy r 2r r, )
2 2

Equation (31) together with the initial conditions (7) and (8)
has a straightforward solution

S - S - [ 2
s - s =_9 _ud e Ewnt sin(\'l - 52 mnt + tan"l .l__:__€_> (34)

ud
V1-g2 £
where
2 | 2
7. £ = U Un [.0083M2L X .0042M, . .033M,L . .067M3]
: = Tk T 2k 3 r 2 r (35)
2 3 T2 T3 2



and

2

_ k 1/2 .083M,L -1/2
R18: Yp [~ =Kk / My + ——%— 4+ .021M (36)
m 2 3
2

Note that we are concerned with the motion>during, at most,
one-half cycle and thus the decay should be relatively small,
so that
~Ew_t -
e n =1, 0<tc< te - (37)

using the above result and solving for sg in (34)

£ 3

s - s " 1 2
s -s . =-2ud gy (Vl - 52 w t. + tan 1 }—:LEL-> (38)

Finally, the objective function is obtained by solving the
above for tg:

1 s, = S ‘ v y
. o o ——— L -1 f ud V- 2 I R
min t. - 52 - {51n [E;—:—g—— 1 -8 ] - tan __E_E_.. (39)
n

ud

In the analysis a sinusoidal response has been assumed which
implies

R19: £ < 1 . , (40)
Only equation (25) contains differentials; these can be

eliminated by differentiating (38) twice to obtain s and
solving for 63 in terms of s. The approximate result is

s - s
ud o 2 :

R20: 1.2 : 5 (M4wn - K) 2 Frated (41)
1 -8

Mathematical Model

Substituting symbols xj;, i = 1,..., 13 for the corresponding
physical variables, the problem can now be stated in normalized
form as:

= - xp @ - %2172
min tF = {sin 1 3 4 xl)
(x5 - x4)
2,1/2
-1 (1 - x.7)
- tan 1 xl 1
1 ’ (l - Xlz)l/zx



subject to:

1

:ox LT <1 -1
R10: -x X, sinx = ]
-1 7 6 11

. <

: 0.5 %10 L <1

. “l - -l =
Ve x5x4 <1 R1l1: XlO [X6cosxll + Py + x3] 1
rox..w Y <1 ' R12: x_[2x, -x.171 <1

: 13 - 3 4 5 -

2 . 3 -4 _ -1 _
¢ %)y = <1 R13: 8D xgXd G - =1
. 371 -1 . -1.m-3 _
1 T Xy, <1 R14: 5.88A ~d KSD XB(X4 xs) <1
1 . -1.m-3 _

7 : 57 %19 <1 R15: 5.88A 4 Ksst(x3 x4) <1
B8: -x_(sinx_..)x -l(sinx )—1 = 1 Ri6' X X —ld <1

: 7 1376 12 - 9°5 -

1. -1 -3.2 -1 -1 2.2 -1
R17: 2% %, "xg [.0083Myx, "L + .0042M3x ™" + .033Myx ™ 5, L% + L067Mx,"11= 1
. -1/2 -2.2 1/2 _
RI18: X,Xg [M, + .083M,x " “L° + .021M,] =1
R19: x; < 1

-1/2 1

2 2 -
R20: - - -
20: 1.2(x, - xg) (1 - x,) (Myx,, xg) Frated <1.



Direct Elimination

Many of the constraints in the mathematical model are
equalities and can be used to eliminate appropriate variables.
In many cases the elimination leads to the derivation of
additional inequality constraints from the equalities in order
to preserve the original feasible domain.

Constraint R10 can be used to eliminate xj33, the final angle
of part 3 1 1

X = sin "~ (- -

ll Sin ( x7x6 ) ’ (42)

which also implies

. -1
RlO0a: X X <1. (43)
Similarly R8 and R9 are used to solve for Xjp and Xj3, the
initial angle of parts 3 and 2, respecively. Solving for these
variables exactly is fairly difficult, however, adequate bounds
can be imposed. Consider _
R8: - i -1 -1 _
X5 (sinx) 3)x, (sinx,,) = =1 . (44)

Since x7x6-l < 1, sinxj3 < -sinxjjso that

. _ -1
R8a: x,5(2m - x,,) <1. (45)
Similarly, R9 implies
R9a: xlo[x7 X+ p, + xs]_l_i 1. (46)

In order to bound xj35 and x33- R8 and R9 must be solved
simultaneously. Use R8 to solve for cosxl3,

-1,2 2 1/2

cosXx = [1 - ('x6x7 )" sin"x.,) ’ (47)

13
and substitute into R9

12

- -1,2_. 2 1/2 . 2 1/2 _
%1o L Llxgxy ™) “sin’xy ] 2 4 xg(1l - sin®xy )T Hpy toxsh = 1 )
or, rearranging,
- . 2 1/2 . 2 1/72 _ o
x7(l—(x6x7 1)251n x12) /2 4 x6(1—51n xlz) X107P4 %5 (49)
Since x7 < Xg, it follows that
(X" - stsinlez)l/2 3_(x72 - x62 sin‘x‘lz)l/2 ' (50)

and

L. =12 . 2 _ _
2x7[1 - (x6x7 ) “sin x12] 5‘x10 Py Xg - (51)



Finally, the following results are obtained:

-1 . _ o -1
X132 cos T [(Xy5 = Py = Xg) (2x7) 71, (52)
. -1 . -1,2 _ _ _ -1.2,1/2
Xl2 i s1in - {(X7X6 ) [(Xlo P4 X )(2 ] } ’ (53)
f.o=1 -1.2,1/2
which can be substituted into R6, R8 and R9, respectively, to
effectively eliminate x32 and x;3,
Variables xg and le can be eliminated easily using the
equalities R13 and R1l1l. From R13
-3 -1.4 :
Xg = .125D Xg dG (55)
and from R1l1l, using equation (42),
_ 2 1/2 o~
*10 = g HY2 4 p, 4 x, (56)
It is advantageous to e11m1nate X2 from the problem using
equality constraint R18: -
x, = %1/ m, + .083M,x,7%0% + .021m,1 /2 (57)

Although this makes the objective function more complicated R18
is a difficult equality to direct, and so using R18 to
eliminate x5 is the best approach.

The problem can now be reformulated as a seven degreee of
freedom problem in a form much more suitable for monotonicity
analysis. Equality constraints have been used to eliminate six
degrees of freedom. In the reformulation R5 is omitted since
it is apparent that R4 is the least upper bound. Constraint
R15 is redundant (R15 is active if R12 and R14 are both active)
and it is also dropped. Using equations (54) - (57) to
eliminate x5, and xg to xy3, the problem can now be stated

as: -
-1 <x3"x4)(1'x§ )1/2

(X5~x4)

.min t_ = {sin

-1 (1-xi) 1/2 (M4+ 083M2x72L2+ 021M3 )1/2

- tan —
1 (l -x )l /2




subject to:

Rl: x7L’l <1

2 2\1/2 -1
R2: 0.5 [(x6-x7) +p, *+ x3] Ll< 1

R3:

EERTE A

R4: | 2x7cosW 7

. . -1 -1.2 _ o -1, 2, 1/2

R6: 1.51/sin {(xoxg ™) [(x107P4 XS)(ZXG) 1 7} <1
1 . -1 -1.211/2

- = - - r - -
R7: 5 sin ‘l .(xlo p4 x5) (2x6) ] } <1
R8a: ‘cos-l [(x,,=P,—X%x:) (2x )~1][2ﬂ-

a: 10 F47 %5 7

. -1 _ L -7.2]11/2.-1
sin™d - |10 [0xy0mp,mxg) (2xg) 122270 <y
R9a: Xlo(x7+x6+p4+x5)_l <1
RlOa: X X _1< 1
776
R12: x,(2x,-x_) + <1
3'¢%47*g
-1 .m-3 _
R14: 5.88A d KsDx8(x4—x5) <1
R16: .125D 5 xa'lxs‘l a’c < 1
[.0083M.x. °L2+.0042M.x. " 1+.033m.x, Tx_"21%+.067M x. 1]
R17:  x. = 2%7 3%6 2%6 %7 3%7
1 2x81/2 [M4+.083M2x7'2L2+.021M3]1/2
R19 31 <1
2-1/2 , -2.2 N

R20: 1.2(x,-x%c) (1-x]) xg [M, (M, +.083M,x, "L f'021M3) UF ated



Monotonicity Analysis

The monotonicities of the variables in the constraints ¢an

be determined by inspection. However, the objective function
depends on the sine and tangent, which are double valued
functions. Thus a branch and bound technique must be used to
determine the monotonicities.

With respect to the tan"l term no branching need be done

since the feasible domain is limited to the first quadrant and
tan™" is a strictly increasing function in this range.
However, for the sin~l term the feasible domain includes the
second and third quadrants, and the monotonicities of the
inverse sine are opposite each other in these quadrants. Due
to constraint R3 (x5 -X4) is always negative, so that the
sign of (x3 -x4) will determine the monotonicity. Thus,

two cases must be considered: Case I with x3 > x4 and case

ITI with X3 < X4. -

Consider case I first: An additional constraint is implied by
the branching,

-1
R21la: <
2la: x5 "x, <1 (59)
For this case the inverse sine is increasing.
To check the monotonicity of x4 in the objective it is
sufficient to show the monotonicity of x4 with respect to
. -l . - . - .
g = sin (x3 —-x4)(l - xlz)l/2 (x5 - x4) . sin lv (60)
Note that
1 - x )% (xy - xg)
o0xy OV 3%y (1 - vH)t/? (x5 = %,)
Since x3 - X5 > 0, it follows that
a .
3}9?4 >0 (62)

and the objective is increasing with respect to x4,
everywhere.



The monotonicity of x] in the objective is more difficult to
show. However, note that if

1/2 2.1/2
) (L=x+2) L (A% 5)
-1 374 xl - fan ! 11 ° (63)
(X ) xl

w = sin

is increasing or stationary with respect to xj; then the
objective is increasing with respect to x;. The details are
in Appendix D; the result is

aw 1 A 0

ew - 2
¥ Y ahH? (64)

Thus, xr is the only variable in the objective whose
monotonicity depends on the sign of (X3 -Xg) - Recalllng
equation (60) rote that the monotonicity of x5 in the
objective depends on the sign of

2,1/2
(x3 x4)(l-xl )

-x4) (65)

3g  _ 89 v _ _1
BXS oV 3>.<5 (1-v )1/2

(Xg
For case I x3 - x4 > 0 and thus 9x. <0 and x5 is
decre=sing The monotonicities of x3, x7 and xg in the
objective can be determined by inspection.

Before the monotonicities in R17 can be determined, it is
nece~sary to direct the equality. Since xj, is increasing in-
the objective it must be decrea51ng in at least one
constraint. Note that x; is not decreasing in any of the
inequality constraints, and thus the equality can be directed
as follows

-2.2 -1 -1, -2.2 -1
[0083M2x.7 L™ + 0042M3X6 + 033M2X6 X7 L™ + .067M3X7 ]

R17:
“ 1/2 (M,+.083M,% =212 4 L021M,)

A

2X X

28 27

Note further that R7, R8a, and R9a are assumed inactive since
they are dominated by Rl0a.

For case I the problem can now be expressed in the form:

. + o+ + - - -
min tf(Xl v X34 %, P Xy, Xy, Xg ),



subject to:

. _ il
R2: (x5, x6+, x)7) <1
+ - +
_ s R14: (x4 1 X5 1 xg ) <1
R3: (x4 , x5 ) < 1
f + _ + R16: (x. ) <1
R4: rx -
4 (%37, %c, X, X,0) 1 5 8
+ - - Rl?: - - ? - S
R6: (Xs , x6 , X7+, Xlo ) <1 (Xl ’ X6 " X 0 X8 ) =1
_ - - + R19: &.7) <1
R7: (%570 %7, x07) <1 1
+ + -
+ - - R20: : + +
R8a: (% , Xe x7+, %50 <1 (%) g 0 X5 0 Xy7, X ) <1
. - - - + - +
R9a: (x5 , x6 ' Xq X1 ) <1 R21la: (x3 v X, ) <1

Te

Inactive constraints will not be written in remaining
formulations.

Constraint Activity

Rules of monotonicity analysis state that for a monotonic
variable in the objective there must be at least one active
constraint with opposite monotonicity in that variable (for
minimization) for a well posed problem. If a variable does not
appear in the objective then at least two constraints with
opposite monotonicities in that variable are active, or none of
the constraints containing that variable are active.

Thus, constraint R2 must be active since R17 is decreasing
wrt xg and only R2 is increasing wrt xg. Since tg is
increasing wrt x3, R4 and/or R2la are active. R12 must be
active because of x4, and R14 or R20 must be active because

of xg in the objective.

The problem appears completely bounded by these constraints,
and thus the activity of the remaining inequalities cannot be
determined directly. Implicit elimination is the next step in
attempting to reduce the problem further.



Implicit Elimination

An appropriate branching must be considered here so that all
possible solutions are covered. It has already been shown that
either R4 or R2la is active; now assume R4 is active. R4 is
then used to eliminate x3

_ + - + : )
Xy = ¢,3(x5 1 Xg 1 Xq ) = 2x7cosW-(x62fx72)l/2 + Xg (67)

In order to find the monotonicities in the objéctive and in R2,
x3 must be solved for explicitly and substituted into these
constraints. Substituting (67) into the objective
_ -1 2x7cosw—(x62-x72)1/2+x5-x4 _l(l-xlz)
= {sin pr— - tan — f(xl'x7'X8) .
5 %4 -
1
Only the monotonicity of x5 in the objective cannot be
determined implicity; x5 depends only on the sin~l term,
which can be rearranged as

(68)

-1 _l[2x7cosw—(X62-x72)l/2
g = sin “v = sin — + 1 . (69)
Then
_ 2 . 2,1/2
3 _ 3g av_ _ [ 1 '][ 2% jcosW+ (x =% ") ] 70,
¥, oV X ~ 2.1/2 e 12 ’
5 5 hl-v) J (X =% ,)
and since
2 2,.1/2
2x7cosw—(x6 X ) / >0 , (71)
9
32 <0 (72)
_5
and xg is still decreasing in the objective. Substitution of
x3 from (67) into R2 yields -
‘ -1 :
0.5[2x,cosW + P, + XJL 7 <1 (73)

which is increasing for x5 and x7 as expected, but
independent of xg. The remaining constraints yield to

implicit elimination.
The resulting problem is

. + + - ? L -
Min tf(xl ’ x4 ’ x5 ’ X7 ’ xg )I



subject to:

+ ' -
Rl (X7 ) <1 _ R16 (X5 r Xg ) <1
+ + - - ? -
R2 (%", XGO’ x)7) <1 R17 (%), X, , X7, Xg ) 21
- + + - + +
' - + - + + - + -
R12 (x4 P Xy Xoo4 Xy ) <1 R2la (x4 ¢ Xg o0 Xe o4 Xq ) <1

R14 (x4 r X5 4 Xg ) <1

A significant result arises from the elimination: R2la
must be active due to xg. Thus R2la is always active, since
either R4 or R2la is active and when R4 is assumed active R2la
must also be active. The activity of R2la has a major impact
on the problem (case I); without assuming R4 active, use R2la
to eliminate x3

x3 = x4 = ¢(x4+), (75)

and substitution into the objective yields

oy (-x? 212+ 021m,) /2

e = lretan 1 ) (M4+.083M2xz s
£ ] 2 _ 76
Xy (1-x,) 7 “xg (76)
The problem (case I) is now formulated as:
-min t. (X Tox_oTx )
£¥1 77 8 !
subject to:
+ + - +
Rl: (x7 ) <1 R14: (x4 ¢ Xg 4 Xg ) <1
+ + - - -
R2: (x4 'x6 ,x7 ) <1 R16: (x5 , x8 ) <1
- + - +
R4: (x X X X. ) <1 - - ? -
4 ' %g 1 Tg 1 Fg - R17: (xl v Xe o0 X570, Xg ) <1 (77)
- +
Rl0a: (x X < _
a: | 6 ' 7 ) <1 R20: (x +, X +, X, , X * p 4 +) <1
- + 1 4 5 77 8 —
R12: (x4 r Xg ) <1 —_



Thus, R2 must be active because of xg in R17. Since R2 is
active, either R4 or R12 must be active due to x4. Either
R14 or R20 i< active due to xg.

Following the same approach as before, assume R12 is active and
eliminate x4. This yields a physically absurd result, i.e.

+
X, = % = 0(x") (78)
The problem becomes:
. + - -
min tf(xl ’ X7 ’ X8 ) ’

subject to:

o —

Rl: (x7+) <1 R14: (x8 ) =0

+ + - . - -
R2: (X ', Xg ', X5 ) 21 R16: (x5 , %xg ) <1

- + - - ? - (79)
R4 : (X6 , x7 ) < 1 R17: (xl ’ x6 ’ x7 ’ x8 ) <1

- + . o o o, _

Rl0a: (x6 I ) £1 R20: (X1 P Xqy Xg ) =0

If R12 is active, xg cannot be bounded from below as required
by the objective. Thus, the assumption that R12 is active must
be false and thus R4 must be active.

There is one feasible branch for case I left to consider:
either R14 or R20 must be active. Again, we assume the
activity of one of the constraints, in this case R20, so that

| S
x, = 0(x,7, %7, x, %7 (80)

and the problem becomes:
. - + - -
min te(X, , X5, X7', Xg ),

subject to:

+ + - +
Rl: (x7 ) <1 R14: (x4 » X5 4 %g ) <1

+ + - - -
R2: (x4 » Xg o0 Xyq ) <1 R16: (x5 , x8 ) <1

- + - + + - - 2 -
R4: (X4 r Xg o x6 ’ X7 ) <1 R17: (X4' ’ x5 ’ x6 ’ X7', x8 ) <

Rl0a: (x6 ’ x7

The result is similar to the previous result; R14 must be
active because of xg, so that R14 is always active.



Without assuming R20 active, use R14 to eliminate Xyt
- -1.m-3 -1
X, = 5.88A ~g° ; _ + -
4 KSDX8 + xs _-_ ¢,4(x5 , x8 ). (82)

The problem is stated as:

. + - -
| min te(x; -, X5 0 Xg ),
subject to:
+
Rl: < N
(x,7) <1 Rl6: (x. , x.7) <1
R2: (x.', x.7, x7, x.7) <1 i .
. 5) 6, 7’ R: - - ? -
8 17 (% e 0 X0, Xs ) 21 (83)
Re: (%57, x4, x7+. xg') < 1 R20: toxt
8 —_ . (Xl:x7)il
- +
Rl0a: (x6 r Xg ) <1

Since R2 is active, xg must also be bounded from below. Thus
R16 must be active.

Case II, that is, the range for x3 < x4; can be reduced to
exactly the same set of active constraints. For case II, the
problem is initially stated as:

+ + + + - -

min tf(xl P X3 Xy Xgo, Xy, Xg

subject to:

+ .
Rl: (x,) <1 Rl4: (xy, %5, xg) <1
R2: (x.°T + - 1 R16: (x ") <
: X3 0 Xg 4 X5 ) 2 : 5 ¢ Xg ) <1
- + - .+ - - ? -
R4 : (x3 P Xgoe Xg o4 Xg ) <1 R17: (xl v Xg oo Xo Xg ) <1
- + . + + - + +
Rl0a: (x , x,7) <1 R20: x) "y %470 x5 4 x5, xg7) <1
+ - + . + -
R12: (%37, X, , X.) <1 R2lb:  (x57, X, )

R12 cannot be active since case II implies x3 < x4, and
thus R21b is active because of x4 in the objective. Using

R21b to eliminate x3:

s = 0300 (84)

and the problem becomes:

. + - -
min tf (xl', Xq 4 Xg )



Subject to:

Rl1:  (x,) <1
+ +
R2: (x4 ’ x6
- +
R4: (x4 R x5
Rl0a:

R12:
_ R14:

) <1

7 =

R1l6:

+
' R17:
<1 R20:

(X4-r
(x4+,
(XS-'
(x1,

+

(xl ’

Xq ) < 1

S .\ (85)
X6 ’ X’]'l X8 ) <1

+ - +
X4 ’ Xs ' X7. ’ x8+) < 1

This is exactly the form in which case I was reduced after it
was determined that R2la was active, and so the two cases must

reduce to the same optimum.
successfully identified five active constraints:

Monotonicity analysis has

R2, R4, R14,

R16, and R21, with the result that the problem has now one
degrere of freedom, which can be easily mapped to locate the
optimum design point.

Generating an Optimum

The problem has been reduced to a single case with one degree

of freedom.

Thus, the optimal solution can be obtained by
plotting the objective against the independent variable.

Note,

however, that xg (the number of spring coils) must be an
integer value, and in addition the number of coils on a spring
generally should be greater than 3 (practical constraint) so

that Xg 2> 3.

Treating x5 as the independent variable; and

substituting values for the parameters gives

Rl6: X8

]

R1l4: x4

R2la: x, =

.125D

[588A~

37 %4

_35 -—
a-G x5

a™ 3 px
S

1. 103,
1 -1
gl ~

= 4.739x5

5 x 1

5
Xg

2

= 4,739 x

5
(86)
2.

4L(x3—x5) + 2p4(x5-x3) + X" - Xy

"R4: x., =

7

R2: x6 =

(2L -

2
[(2L-p,-x3) " + X

Py ~

xs)(2cosW)“
211/2

The feasible range can be reduced by noting that x7 < L so

that from R4

x5 > 1.732(.202-L) =

and also that x3 < 2L so that from R21la

2L
4.739

0844m.

.00346m

(87)

(88)



Finally, recall the original form of R16:
-1
XgX, "d <1 . (89)
Thus, substituting (87) and (88) into (89)
1.73 < xg < 42.2; (90)

howevér, xg must be greater than 3 due to the practical
constraint, so the feasible domain for xg consists of all
integer values in the range

3 < xg < 42 (91)

This list can be exhaustively searched; the calculations were
coded due to the large number of feasible designs. The results
are tabulated in Table 1. The minimum closure time is

tg = 18.9 msec at the design point:

x, = .0147 xg = lémm, ¥y = 7 coils,
X, = 84.1 rad/scc, X = 289mm, xlO = 400mm,
x, = 66mn, x, = 56mm, X1 = 348.9° (92
X, = 66mm, | xg = 7,400 N/m, x,, = 354.4°
X5 = 30° .

The optimum design for the fast acting switch is shown, in
scale, for the open and closed positions in Figures 2 and 3,
respectively.

Conclusions

Monotonicity analysis identifies enough active constraints
so that the global optimum is easily determined. The problem
is successfully reduced to one degree of freedom with a
feasible domain that consists of a discrete number of points.
The global optimum was found by exhaustively checking the
feasible domain - a simple task for one degree of freedom.

The active constraints lead to an interesting set of design
rules. Not surprisingly, link 2 initially is positioned at as
large an angle as possible without the risk of arcing (R4).

The active constraints R14, R18 and R21 give information about
the spring design: The spring should be designed to its
ultimate strength and it should be compressed so that the wires



are flush. The final spring length is equal to the undeformed
length so that the spring force always acts in a direction
which tends to shut the switch. The interesting aspect of the
design is that part 3 should be a very long part such that it
is nearly horizontal and its motion is nearly linear; this is
done at the expense of building a longer spring with the
capability for greater deformation and thus greater spring
force (R2). Similarly the joint between parts 2 and 3 is
located very near the pivot point of link 2, again so that the
length of 1link 3 is maximized. By designing part 3 so that its
motion is nearly linear and in the horizontal plane, the spring
force is not "wasted" in driving part 3 vertically.

Typically mechanisms optimization problems involve path
optimization and must be solved numerically. In this paper a
mechanisms problem involving minimization of time has been
successfully solved in closed-form using monotonicity
analysis. Other classes of problems in dynamics could bhe
solved using the approach in this paper, specifically problems
in wihich the governing differential equations can be used to
derive algebraic equations for the objective function and
constraints. Possible examples of such problems include those
in which the frequencies and/or mode shapes are of principal
concern, and those for which an approximate solution to the
differential equations can be constructed.



Nomenclature

Parameters:

L = Length of 1link 2 = 200 mm
p4= One-half piston length = 50 mm

M2= Mass of part 2 = 0.5 kg

M3= Mass of part 3 0.75 kg

M4= Mass of part 4 = 0.5 kg
D = Spring diameter = 20 mm
d = Spring were diameter = 2 mm
A = Spring wire strength coefficient = 1880 MPa
m = Spring wire strength exponent = 0.186
G = Spring wire shear modulus = 207.0 GPa
W = Maximum initial angle on part 2 = 30°(to prevent arcing)
K = Wahl correction factor =1 + 0.5 % = 1.05
Frated = Maximum joint load = 1500N
Variables:
Mathematical Physical
model notation Definition
Xy £ Damping coefficient
X5 Wy Natural frequency
X3 S¢ Final spring length
Xy Sud Undeformed spring length
Xg So Initial spring length
Xg ’ I, Length of part 3
X7 r, Length to joint on part 2

Xg k Spring constant



Variables (cont.)

Mathematical Physical e
model : notation Definition

Xg N Number of spring coils

X710 g Width of mechanism

Xqq O1f Final angle of part 3

Xqo 830 Initial angle of part 3

X1 820 Initial angle of part 2
6, = ez(t) Angular orientation of part 2
éz Angular velocity of part 2
52 Angular velocity of part 2
93 = eB(t) Angular orientation of part 3
é3 Angular velocity of part 3
53 Angular acceleration of part 3
s = s(t) Length of spring at time t
s Velocity of piston

s Acceleration of piston



APPENDIX A

Equations of Motion

The constrained D'Alembert Method [5] is

igj : i
=1 =

where F: are the m applied forces, P4 are vectors from
ground %o the point of application o% Fy, gj are the
generalized coordinates 63, 63 and s, Ak are the chord

forces necessary to maintain superposition and ¢ are the k
independent closed loops. The only forces considered are the
spring force and the D'Alembert forces on each part. Three
equations are derived as follows:

q; = 6,: 1262 + Aljrzcosez - xlir251n62 =0 (94)

i 3° 363 + Aljr3cos€33 - Alir3sm63 =0 (95)

Y r Ay =0 (96)

3¢k

(93)

Q
i
@

L]

i s : M4s + k(s - sud

Q
il

Equations (94 - 96) are easily assembled into the matrix
equations (2).

Loop Equations

The loop equations are dervied from a vector sum around the
closed loop in the mechanism. This vector sum can be
differentrated twice to yield additional equalities.
Geometrical considerations lead to

> -> -> -> ->

r, + I, + Py + s + g = 9 (97)
Taking the dot product of (97) with 1 and j yields the first
two of equations (3). Differentiation of (97) gives

é (k x r ) + 6 (k x r ) + 85 = 0 (98)

Dotting (98) with rj and r3 results in the th1rd and fourth

of equations (3), respectively. Differentiating (97) a second
time '

2

(};x—f‘)-ér +.S:§=0 (99)

6, (k x ¥,) - 6 3 3¥3

2 2

The last two of equations (3) are derived by taking the dot
product of (99) with ro and r3, respectively.



APPENDIX B

From equilibrium considerations it is easily shown that the
magnitude of the reaction force is the same for every joint.

To determine the reaction force between parts 3 and 4, hold

part 4 fixed and consider a virtual displacement of part 3, 6B81i.
To compute the horizontal component of the reaction force, the
virtual work done is summed to zero

f1262682 - 1383663 + H6B =0 (100)

where 667 and 864 are related to 88 by

~-8BcosH

3
86, = : —
2 r251n(62 83)
(101)
--<SBcose2
664 = ; =8
3 rBSln(63 2 (102)

Substituting (101) and (102) into (100) and, cancelling §8 and
solving for H the result is

3 ) 1363c0592
51n(62-63) r351n(63—62

_ Izezcose

- . (103)
r, )
A similar analysis to determine the normal component of the
reaction force yields
N - —126251n93 _ 1363 31n62
‘r251n(62—63) Iy 51n§93i9

) (104)
2

Note further that H and N are just equal to A; and A
respectively. The magnitude of the reaction force is simply

Fo = (2 + n%)1/2

R . (105)



APPENDIX C

The differential equation (31) can be simplified by treating
the coefficients m~ and ¢ as constants with respect to time.
These coefficients are in fact complicated functions of time as
given by equations (29) and (30). By considering the expected
variations in 63 and g3, m” and ¢ can be parameterized by
making an average approximation.over the time range of
interest. The angles 67 and 63 can be expected to vary
from 30° ‘to 90° and 350° to 315° respectively. Also note that
1
12 MpL?
N 2
I3 =712 M3r3

.

I
(106)

Substituting equations (106) into equations (29) and.(30) énd
replacing the 6 dependent terms with a qualitative
approximation for the average value, the result for m” and c is

. 2
M,L ‘
. 172 1 (107)
2
2 : ' 2

M.L M M,L M :

172 173 1 172 173

=123 DAty (O tmptg o (A (8 . 108)
r, : 3 . 273 - 2

It is important to note that the accuracy of the average values
used to eliminate the 6 dependence does not greatly affect the
solution since it does not affect the monotonicity of the
variables, and consequently the active constraints are not
changed. .



APPENDIX D

The monotonicity of xj; in the objective depends on

-1 (x,-x,) (1-x 2)1/2 (l—x'2)1/2
w = sin 3 4 1 -1 1
xX.-x.) - tan "
5 74 ) 1
- -1 (109)
= 8ln Vv - tan "y =k - ¢
Partial differentiation yields
ow _ ok v _ 3R 3y (110)
axl v axl oy Bxl
1 —xl(x3-x4) 1
X = +
1-{ 3 %4\ (1-x.%) |12 (x.x ) (1-x. 2)1/2 (1-x. 4172 (111)
X —x 1 5 74 1 1
5 74 .
Therefore dw 0 if
9x —
1 .
*1
X57%4\? 12 = A (112)
) - a-x %
X37X, 1 | | |
Constraint R14 can be manipulated to give
X5'-X4 2 -
x3—x4 Z
so that
X
1
=1 (113)

Therefore %%w > 0 and the objective 1is increasing wrt 3

everywhere 1
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Ficure 1, FAST AcTiNG SwiTcH - NoTATION
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Ficure 2. OQpTiMuMm DesieN - QpeN PosiTioN
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Ficure 3. 0prtimuM DesieN - CLoSED PosiTion
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