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Abstract. Recent scientific advances have revealed the
identity of several enzymes involved in the synthesis,
storage and catabolism of intracellular neutral lipid
storage droplets. An enzyme that hydrolyzes stored tri-
acylglycerol (TG), triacylglycerol hydrolase (TGH), was
purified from porcine, human and murine liver micro-
somes. In rodents, TGH is highly expressed in liver as
well as heart, kidney, small intestine and adipose tissues,
while in humans TGH is mainly expressed in the liver,
adipose and small intestine. TGH localizes to the endo-
plasmic reticulum and lipid droplets. The TGH genes are

located within a cluster of carboxylesterase genes on hu-
man and mouse chromosomes 16 and 8, respectively.
TGH hydrolyzes stored TG, and in the liver, the lipolytic
products are made available for VLDL-TG synthesis. In-
hibition of TGH activity also inhibits TG and apolipopro-
tein B secretion by primary hepatocytes. A role for TGH
in basal TG lipolysis in adipocytes has been proposed.
TGH expression and activity is both developmentally and
hormonally regulated. A model for the function of TGH
is presented and discussed with respect to tissue specific
functions.
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Neutral lipid storage

The ability to store neutral lipids has a critical role in the
ability of an organism to withstand fuel deprivation. Dys-
regulation of lipid synthesis and excessive lipid storage
contributes to the development of diseases such as ather-
osclerosis, obesity and diabetes. Several excellent re-
views regarding lipid storage have been published [1-3].
Most cells and tissues have the ability to synthesize and
store neutral lipids as lipid droplets within the cytoplasm.
This pool of stored lipid can serve specialized functions
in different types of tissue. Heart and muscle store small
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quantities of triacylglycerol (TG) as a reservoir of fatty
acids for oxidation in the working muscle [4]. Low-den-
sity lipoprotein (LDL) uptake and accumulation of neu-
tral lipids by macrophages at the site of vascular injury
promotes the development of atheromas [5]. The liver has
adapted so that TG is stored in advance of its repackaging
as lipoprotein particles, thereby regulating the rate of as-
sembly and secretion in concert with the energy needs of
the body [2]. Following a meal, the liver accumulates
fatty acids from the circulation and stores them as TG.
Later, in the post-absorptive state, stored TG is released
by the liver as very low density lipoprotein (VLDL) [6].
White adipose tissue is quantitatively the most important
tissue for the storage of TG. It serves as a reservoir for ex-
cess energy, as a heat insulator and now is recognized as
an endocrine organ important to the regulation of energy
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intake through the secretion of hormones such as leptin,
among others [7].

Intracellular lipolysis of stored TG

Adipose tissue

In order to derive energy in times of metabolic need, free
fatty acids must be released from stored TG. Intracellular
lipolysis in adipocytes is well described and may be
grouped into two classes, hormonally regulated lipolysis
and the relatively uncharacterized basal lipolysis.

In the adipocyte, hormone-stimulated lipolysis is cat-
alyzed by hormone-sensitive lipase (HSL) that hy-
drolyzes cholesteryl ester (CE), as well as TG to diacyl-
glycerol (DG) and DG to monoacylglycerol (MG) [8, 9].
HSL is activated by lipolytic hormones such as cate-
cholamines and glucagon, by a mechanism that involves
a hormone/G-protein-induced increase in cyclic adeno-
sine monophosphate (cCAMP) that activates cAMP-de-
pendent protein kinase (PKA) to phosphorylate HSL [10,
11]. Phosphorylation of HSL not only increases the ac-
tivity of the enzyme but also causes HSL to translocate
from the cytosol to the lipid droplet [12]. The mechanism
of lipolytic stimulation also involves the lipid droplet sur-
face protein, perilipin, which acts as a barrier in nonstim-
ulated cells, preventing HSL access to the lipid droplet
[13]. Perilipin overexpression promotes TG storage and
decreases the rate of TG hydrolysis [14—16]. PKA phos-
phorylates perilipin and stimulates lipolysis, whereas mu-
tation of the PKA phosphorylated sites on perilipin abol-
ished the ability of lipolytic hormones to stimulate lipol-
ysis [15, 17]. Targeted deletion of the murine perilipin
gene resulted in a lean mouse with higher rates of basal
lipolysis and blunted hormone-stimulated lipolysis [18,
19]. Together, these results demonstrate that perilipin in-
fluences the ability of HSL to interact with the lipid
droplet.

Previously, it was observed that differences in the rate of
basal lipolysis among various fat depots in the rat paral-
leled the amount of HSL protein found in the respective
fat depot [20]. Therefore, it was a surprise that HSL was
not absolutely required for TG lipolysis in the adipose tis-
sue from HSL null mice. Though hormonal stimulation of
lipolysis was blunted both in vitro and in vivo, targeted
deletion of the HSL gene reduced basal TG lipolysis
50%, indicating that substantial residual TG lipase activ-
ity remained in HSL null adipocytes [21, 22].

Liver

The liver has the ability to store neutral lipids within
droplets in the cytoplasm or secrete them into the circula-
tion as apolipoprotein B (apoB)-containing VLDL parti-
cles. Several excellent reviews regarding the mechanism
of VLDL assembly and secretion have been published
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[23—-25]. ApoB is translated on endoplasmic reticulum
(ER) membrane-associated ribosomes. Hepatoma cells
that require incubation with fatty acids in order to secrete
lower-density apoB particles assemble fully lipidated par-
ticles in two distinct steps [26—28]. In the first step, apoB
is partially lipidated with a small quantity of TG, CE,
phospholipids and cholesterol forming a dense particle.
The subsequent addition of the bulk of the neutral lipid to
the small dense apoB particle results in a very low den-
sity apoB particle that is secreted into the circulatory sys-
tem. The transcription and translation of apoB is continu-
ous so that newly synthesized apoB is always available
for assembly with lipids for secretion [29]. Translated and
translocated apoB is also subject to intracellular degrada-
tion [30—32]. Lipid availability determines the percent-
age of apoB that is assembled into secretion-competent
lipoprotein particles versus that which is misfolded and
targeted for degradation [29, 30, 33]. A non-apoB-associ-
ated neutral lipid droplet that was identified by electron
microscopy within the lumen of the smooth ER is thought
to be a source of the bulk of the lipid for the nascent apoB
particle [34]. The bulk lipidation of apoB has been re-
ported to be complete before entering the Golgi appara-
tus in primary hepatocytes and in the rat hepatoma cell
line McArdle RH7777 [35-37].

Exogenous fatty acids taken up by the hepatocyte are not
directly utilized for TG secretion, but enter the intracellu-
lar storage pool as TG [38]. TG stored within the cyto-
plasmic lipid droplet of the hepatocyte is an important
source of lipid for the lipoprotein particles that are se-
creted from the cell [6]. Several groups, using different
experimental approaches, have quantitatively determined
that the TG storage droplet within hepatocytes undergoes
a cycle of lipolysis followed by reesterification. Wiggins
and Gibbons [39] prelabeled the stored TG of cultured
primary rat hepatocytes with *H-oleate and “C-glycerol
and observed the distribution of the labeled TG over a
subsequent 24-h chase period in the absence of exoge-
nously supplied fatty acids. Two significant observations
were made by this study: (i) A 70% decline of the VLDL-
TG 'C label indicated that the original TG-glycerol pool
was diluted with unlabeled glycerol and (ii) the quantity
of hydrolyzed TG that returned to the intracellular storage
pool amounted to 1 pool per day, which was estimated to
be 2—3 times greater than required to maintain TG secre-
tion. Since the original TG-glycerol pool was diluted with
unlabeled glycerol, lipolysis and reesterification ap-
peared to be essential for VLDL-TG assembly. Lankester
et al. [40] used a dual labeling technique to differentiate
between the incorporation of acyl chains into TG that
were derived from exogenous and endogenous fatty
acids. The authors observed exogenous '“C fatty acids
contributed only ~17% of total acyl chains secreted as
TG, indicating that the majority of the acyl chains were
derived from the prelabeled cytoplasmic TG stores. Stud-
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ies by Yang et al. [41, 42] showed that 60—70% of se-
creted TG was derived via lipolysis to DG followed by re-
esterification and 30—40% of secreted TG could have
been derived from de novo TG synthesis. Overall, the data
are consistent with a proportion of the TG stored within
the liver undergoing lipolysis to DG/MG and then under-
going reesterification to form TG that is secreted as
VLDL, or returned to storage pools in a futile cycle.

The hepatoma cell lines McArdle RH7777 and HepG2
primarily secrete TG that is derived from newly synthe-
sized TG and are deficient in the mobilization of TG
from the intracellular storage pools [43, 44]. Expression
of the cytosolic lipase, HSL, in HepG2 cells directed fatty
acids derived from labeled intracellular TG stores into the
oxidative pathway as opposed to the secretory pathway
[45], indicating that the subcellular localization of lipases
may determine the fate of the lipolytic products. Further-
more, inhibition of lysosomal lipase by chloroquine did
not affect the lipolysis of intracellular stored TG [39].
Since apoB-containing lipoproteins are assembled within
the ER lumen, it is likely that the synthesis of TG for
VLDL assembly must be directed towards that compart-
ment. A lipase that mobilizes intracellular stored TG
would likely be located within the ER in order to channel
lipolytic products towards resynthesis to TG at the site of
VLDL assembly. To that end, two candidate lipases local-
ized to the microsomal fraction of the liver have been
identified and termed a triacylglycerol hydrolase (TGH)
[46] and arylacetamide deacetylase (AADA) [2]. The
transfer of fatty acids into the ER lumen may occur by
several possible mechanisms. One possibility is that
lipolysis occurs at sites where the ER membrane is in
contact with lipid droplets [47, 48]. At these contact
points, lipolytic products would have increased solubility
within the ER membrane and would be preferentially se-
lected by the synthetic enzymes located within the ER
membrane as opposed to being directed towards the ox-
idative pathway in the mitochondria [2].

Purification, enzymology and structure of TGH

TGH was initially purified from porcine liver micro-
somes [46]. Purified TGH had a high specific activity to-
wards short-chain TGs and lower activity towards longer-
chain substrates [46]. It did not hydrolyze phospholipids
or acyl-CoA thioesters [46]. Divalent cations were not re-
quired for optimal lipolytic activity of TGH. The lipolytic
activity of purified TGH was inhibited by the serine-mod-
ifying chemicals diisopropyl fluorophosphate, diethyl-p-
nitrophenylphosphate (E600) and tetrahydrolipstatin, in-
dicating that TGH is a serine esterase [46, 49].

Amino-terminal sequences of the purified porcine TGH
were found to be identical to that of porcine proline-f-
naphthylamidase [50], which belongs to the carboxyl-
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esterase family of enzymes (EC 3.1.1.1). Several iso-
forms of carboxylesterases have been identified in mam-
malian tissues. These enzymes that hydrolyze chemically
diverse substrates, including lipid esters and xenobiotic
compounds, have been shown to have distinct biochemi-
cal, immunological and genetic properties (for a detailed
review of carboxylesterases see [51]). Our group has
cloned human [52], murine [53] and rat [44] TGH com-
plementary DNAs (cDNA) that encoded mouse and rat
proteins of 565 amino acids and a human protein of 568
amino acids (fig. 1). BLAST searches of GenBank and
EMBL databases revealed that TGH is orthologous to the
liver carboxylesterases of other species [51, 53]. The
murine and human TGH proteins share 92 % identity, and
rat and human proteins share 93 % identity at the amino
acid level. The amino acid sequence of TGH has minimal
identity to previously identified lipases, but more than
70% identity to carboxylesterases [53]. Further, phyloge-
netic analysis revealed that the TGH protein belongs to
the CES1A class of carboxylesterases [51]. An alignment
of orthologous murine, rat, rabbit, monkey and human
TGH amino acid sequences showed that catalytic
residues are conserved among a variety of mammalian
species (fig. 1). TGH expression was immunodetected in
livers from humans, rats, mice, hamsters and cows [49].
Given the number of different carboxylesterase proteins
that have been described by different groups, a confusing
number of names have been given to the TGH protein. For
example, the carboxylesterase protein that is identical to
rat TGH has been referred to as RL1 [54], ES10/pl 6.1 es-
terase [55], hydrolase A [56] and neutral cholesterol es-
terase [57]. For simplicity, we will refer to these identical
proteins as TGH.

Several distinct structural and functional lipase/esterase
motifs in the TGH amino acid sequence are apparent.
The protein sequence has an N-terminal 18-amino acid
signal peptide that directs protein synthesis into the lu-
men of the ER where TGH has been immunodetected
[46, 49]. The signal peptide is removed once inside the
lumen by an ER-resident signal peptidase, as indicated
by N-terminal sequencing of the purified protein [46].
The Ser221, Glu353 (354) and His466 (468) residues are
highly conserved (fig. 1) and are predicted to form the
TGH catalytic triad [51, 53, 58]. Two potential N-glyco-
sylation sites were identified at Asn79 and Asn489 in the
murine and rat TGH, while the human protein contains a
single Asn79 glycosylation site. The mature sequence of
murine TGH contains four Cys residues, while the hu-
man TGH encodes an additional Cys at residue 390. The
deduced protein sequence also contains a hydrophobic
stretch of amino acids 414—429 that may be involved in
lipid binding [59—64]. The C-terminal sequence HAEL
in rat TGH has been proposed to function as the ER re-
trieval signal [65]. Similarly, the mouse HVEL and hu-
man HIEL C-terminal sequence TGH may be responsi-
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mouse MRLYPLIWLS LAACTAW-GY PSSPPVVNTV KGEVLGKYVN LEGFTQPVAV 49
rat HRARRRYRAT hkhkhkh_dkk ARk ARRRAkd kAR kAkhkd RRRNRAkwkd 40
rabbit FHACARALAY *hkhkkwkh k[ kRRAkkwDhkd HEhk ke kPRS wwkkRukwhks 40
monkey FHARARVLAT ***Fadd_ & kdkwdkdDhd Hekd ks *kPeS *kdkpakdds 40
human *WARAF*LAT *S*SA*4A*H **#%*+4Dk% Heka*4kFag 50
=0 > s
mouse FLGVPFAKPP LGSLRFAPPQ PAEPWSFVEN TTSYPPMCSU DAVGGOVLSE| 99
rat LR e L L e e -1}
rabbit FhEk kR Rk ARARARAN AR R RAGRAR Rk AR AR ARk h RARSHEMA R 0O
monkey B L L e -1
human ARATHGRARE KRDRARTHAR hkhkhdkdkd ARA kN AMATH *DPKARKLA*| 100
E Lid o>

mouse [CFTRREENIF LOFSEDCOLYL NIYTPADLTK NSRLPVMVWI HGGGLVVGGA 149
rat * * v AxkH * *xxks 149
rabbit Akdkkkkkdk KKAAARMRAR khhkkdkdkd ROVEAARERE RhdkaMrasx 140

key *KL Hh kEEAREEARE KNAREARERS ARFEARRARF 140
human * T+ *KL EREARERERE KNEREAEARE ARRREMERAS 150

2 oo cp L 4]

mouse STYDGLALSA HENVVVVTIQ n&%m TGDEHSRGNW GHLDQVAALR 199
rat FREEKQUARE RAARARARER KARRANRRRF ANRANERAAF KRN RRAAARE 109
rabbit * HREEEE REREREE HEkkk A kA kh KRARAARAR® 100

AF RREEAEARAR RARRRARIES AAERRARARS RRRRALEAEN 100
‘human HRARRARRRE KRR RARARAR kA kR kR ok KRN ARARIRR kR kR kARAER 200

;[GFSVSV LVLSPLAKNL FHRAISESGV 249

mouse WVQDNIANFG GNPGSVTIF

rat L A * 249
rabbit FhkkAkARkAE AR kErEEE HQIRRT RLEFRXTENE EkEkERERER D40
monkey FhAkFRRGHE Ak Rk kdkd E 249
human FhEhFRAGHE A RE E 250
mouse SLTAALITT- DVKPIAGLVAT LSGCKTTTSA VMVHCLRQKT EDELLETSLK 239
rat YVhkShkhkho kGhkrkkkKeThw * 299
rabbit A*LSS*FRE- NT*SL*EEI*T EA***&*ksh Sskkhkdkdd *Er*MAUT** 209
monkey A***AVEVEKG ****L*EQI*I AA**Qr*dwd E TT 300
human A**SVAVEKG ****LAEQI*T TAN****4x% A¥kkskdkss *EX***TTa% 301
mouse LNLFKLDLLG NPEESYPFLF TVIDGVVLPK APEEILAEKS FSTVPYIVGI 349
rat dkdkkkdkkd dkhkdkkkhk kkkkkkkkkdk Thkkkdkwkd wekkkkkdrr 40
rabbit MEFLS***H% De**kNTR**T *hkwwnldeks wukfuewew*l YNML**Mrr*x 340
monkey MEFFS***y#* DARA*H***G *kxk*w[Lw%k TrA*[O*k*RN *Nr*r*Me*F 350
‘human MEFLS***Q#% D¥R**QRLHG **k kML *L* TH**LORXRN *HA**x*Ma*] 351

mouse NEQ FGWIIP TLM-GYPLAEG KLDQKTANSL LWKSYPTLKI SENMIPVVAE 399
rat Fhk [k (RARARE AMA A RRRGEE AR AR kh * 399
rabbit #*Q% |% |w&kdds MOMI, S* TE VNV *EELT**AT* 400
monkey Ak [k [xxkkas MEr_kxkkShh kkkkRkAMA* RRRRRSLVY* AKEL**EAT* 400
human A% [k [#x*Lak MOLMS*A*Sh% QNkak*AMA* **k#**LVC* AKEL**EAT* 402

mouse KYLGGTDDLT PSV IVSRSHRDAG ASTYMYEFEY 449
rat *HPRERRRPA HkkkkAh MEkkkhdkkdhk FDPRFrRARdEc 440
rabbit Hdkd Rk kY [Lukkwks NAAKHhRdkk *PhkkkwYRY 50
monkey kkRkkkRERDPY MeShek®k *EpwHrkenk YPekkwwkOr 450
‘human khRkE R ARV M kTh*% *EPAANhkehs *kDEX**RRO* 452

mouse RPSFVSAMRF KAVIGD GDE IFSVFGSPFL EDGASEEETN LSKMVMKFWA 499

rat T *hk L b4 499
rabbit  ****SADR%k *Thwwx HEE KRRRLERRRE RERRNRAATE thwkrwkxyrr 500
key 5*D T *ae L Bwk% *E IR 500
human EARKGHDREE *Thkx *hk LAKRAERRRE AE *+TR 502
mouse NFARNGNPNG GGLPHWFEYD QKEGYLKIGA STQAAQRLKD KEVSFWAELR 549
rat ke rk Rk Ghhk hkkkARkkdk Rk kkdkdkd AR RAAkEhE AR RGhAE 540
rabbit RRARAERRER ERRKQERANN YHRSRRQEES ThAUAHKARR KRAACRTRAE 550
key *k Ehu*R N E***#Quk% NA***XKA** ***AX*TTHF 550
human E Qu*x N G*K A**TN*F 552
mouse AKESAQRPSH REHVEL 565
rat *RNANEER*K RkAAKK 565

rabbit *NAAK-*ARE TH**I** 568
monkey **KAVEK*PQ T**I** 566
human **KAVEK*PQ T**I** 568

Figure 1. Alignment of amino acid sequences of proteins for the murine TGH with other mammalian liver carboxylesterases. The murine
TGH single letter coding sequence is shown at the top. The sequences for rat, rabbit, monkey and human TGH are aligned below. Amino
acid residues identical to the murine TGH are represented by an asterisk. Nonaligned residues are indicated by their single letter amino acid
symbol. Thick arrows above the sequence indicate regions forming f sheets in the murine TGH protein. Filled rectangles above the se-
quence indicate regions forming « helices in the murine TGH protein. Boxed residues indicate highly conserved residues. NLBD, putative
neutral lipid binding domain; 1, GXSXG catalytic serine motif; 2, catalytic glutamic acid; 3, catalytic histidine.
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ble for retention of the enzyme within the ER lumen (see
below). Analysis of the murine and human TGH protein
sequences with PSI-Pred and Predict Protein secondary
structure prediction programs rendered a succession of
strong and well-defined predictions for 17 « helices and
17 B strands throughout the amino acid sequence (fig.1).
In addition, these elements are strongly conserved
among orthologous carboxylesterases from mouse, rat,
rabbit, monkey and human. A three-dimensional model
for human TGH has been proposed based on the crystal
structure coordinates of acetylcholine esterase and over-
lapping active sites with pancreatic lipase ([58] and fig.
2). The modeled structure shares the overall folding and
topology of the proteins identified in the recently pub-
lished crystal structures of the rabbit [66] and human
[67, 68] carboxylesterases. TGH has a three-dimensional
a-f3 hydrolase fold that is a structural feature of all li-
pases [69]. In general, the structure of TGH may be
viewed as comprising a central catalytic domain sur-
rounded by a-f and regulatory domains [66—68]. In
essence, the a-f hydrolase fold consists of a central f-
sheet surrounded by a variable number of «a helices and
accommodates a catalytic triad composed of Ser, His and
a carboxylic acid. The residues that compose the cat-
alytic domain of human TGH are very highly conserved
among orthologous TGH proteins from different species
(fig. 1). This suggests that the catalytic function of these

Substrate
entry

Triad :
Glu3s

Review Article 1637

proteins is conserved across species. We have recently
shown that mutation of any of Ser221, Glu354 or His468
of the human TGH to Ala abolishes TGH esterase activ-
ity [58]. Indeed, the role of these residues in catalysis is
consistent with their orientation within the active site as
suggested by our modeled structure of human TGH [58]
and the crystal structures of rabbit [66] and human [67]
carboxylesterases. The catalytic triad is located at the
bottom of a deep active site cleft approximately in the
center of the molecule and comprise a large flexible
pocket on one side of Ser221 and a small rigid pocket on
the opposite side (fig. 2).

The orientation and location of the active site provides an
ideal hydrophobic environment for the hydrolysis of a
wide variety of hydrophobic substrates. The small rigid
active site pocket is adjacent to the oxyanion hole formed
by Glyl42/143 and is lined by several hydrophobic
residues [67]. Short acyl chains would be easily accom-
modated within the small rigid pocket. The larger flexible
active site pocket is lined by several nonpolar residues
and could accommodate larger or polycyclic molecules
such as cholesterol. The large pocket is adjacent to a side-
door secondary pore that would permit small molecules
(substrates and reaction products) to enter and exit the ac-
tive site [67]. Longer acyl chains may be oriented for
catalysis in such a way that they extend through the side
door. Indeed, the presence of a hydrophobic residue at po-

Figure 2. Three-dimensional model of human TGH based on coordinates obtained from crystal structures of acetylcholine esterase and

pancreatic lipase. NLBD, putative neutral lipid binding domain.
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sition 423 in mouse and 425 in human is necessary for ef-
ficient hydrolysis of hydrophobic substrates, as mutation
of Met present in position 423 of the related rat lung car-
boxylesterase to Ile increased the carboxylesterase activ-
ity towards a more hydrophobic substrate without affect-
ing activity towards short-chain esters [70]. According to
the X-ray crystal structure of the human carboxyl-
esterase, this residue lines the flexible pocket adjacent to
the side door [67]. Given the wide range of substrates that
carboxylesterases are known to hydrolyze, the large flex-
ible pocket confers the ability to hydrolyze many struc-
turally distinct compounds, whereas the rigid pocket is
much more selective with regard to the substrates that
may be accommodated.

TG hydrolysis by TGH follows a two-step process that is
supported by structural data [66] and is described for en-
zymes containing the a-f hydrolase fold by Ollies et al.
[71]. Glu354 in TGH forms a low-energy hydrogen bond
with His468 that facilitates proton transfer from His468
to Ser221 and nucleophilic attack by the Ser221 residue
through stabilization of the tetrahedral intermediate. In
addition, weak hydrogen bonds between peptide N-H
bonds of Gly141 and Gly142 act to stabilize the tetrahe-
dral intermediate. In the second stage of catalysis, a pro-
ton is removed from His468, thereby forming an acyl-en-
zyme intermediate at Ser221. Once the alcohol product is
released and substituted by a water molecule within the
active site, a hydrolytic step occurs to release the fatty
acid. Compounds other than water can attack the acyl-en-
zyme intermediate, leading to trans-esterification rather
than hydrolysis (see below).

The entrance to the active site cleft of human TGH is sur-
rounded by several a helices that define the regulatory
domain that controls access of substrates to the TGH ac-
tive site. a helix 1 (residues between Cys87 and Cys116)
closes over the active site cleft and acts as a lid (figs 1, 2).
The amino acid sequence of the lid domain is highly con-
served among orthologous TGH proteins, suggesting that
it is necessary for TGH activity (fig. 1). The lid domain
plays a vital role in lipolysis at the the lipid-water inter-
face, by interfacial activation. In the absence of lipid-wa-
ter interface the active site is covered by the lid. In the
presence of hydrophobic substances the lid is opened and
the catalytic site becomes accessible to the substrate. In-
terfacial activation kinetics were observed for both
porcine and human TGH [46, 52]. The a helix 13 contains
a neutral lipid binding motif that is a potential determi-
nant of the affinity of TGH for lipids (figs 1, 2). The
FLXLXXXn (n = nonpolar amino acid residue) motif is
present in several proteins that bind lipids [59—64]. The
FLDLIADV lipid binding sequence is present in human
TGH and shows conservation among orthologous TGH
proteins (fig. 1). Four cysteine residues were identified in
the mature mouse and rat TGH, and five in the human.
Crystal structures indicate that Cys87 and Cys116 form

Triacylglycerol hydrolase: role in intracellular lipid metabolism

one disulfide bridge and Cys273 and Cys284 form an-
other disulfide bridge that stabilize the protein structure
[67]. The Cys87-Cys116 disulphide bridge stabilizes the
lid over the active site, contributing to substrate speci-
ficity and is apparently necessary for activity [67]. Be-
cause of these disulfide bonds, expression in Escherichia
coli resulted in an inactive protein [52], as did expression
in cytosol in mammalian cells by deletion of the signal se-
quence [unpublished results].

Enzymatic activity of TGH

The mammalian carboxylesterases compose a large
multi-gene family that are characterized by their role in
drug metabolism and detoxification and their ability to
hydrolyze ester, thioester or amide bonds [51]. Some car-
boxylesterases were also shown to bind and retain pro-
teins within a specific subcellular compartment [72-74].
Becker et al., [75] claimed that human TGH exhibited
acyl-CoA:cholesterol acyltransferase (ACAT) activity,
although subsequent studies have demonstrated that other
proteins are responsible for catalyzing cholesterol esteri-
fication [76, 77]. Some rat carboxylesterases have been
implicated in the hydrolysis of retinyl esters [78]. A rat
carboxylesterase, identical to rat TGH, exhibited a five-
fold increase in CE hydrolysis activity in the isolated cy-
tosolic fraction when its cDNA was expressed in Cos-7
cells [57]. McArdle RH7777 cells require incubation
with fatty acids in order to secrete lipids, unlike hepato-
cytes that continue to secrete lipids after fatty acids are
withdrawn from the media [44]. Since McArdle RH7777
cells are deficient in the mobilization of TG from the in-
tracellular storage pool [44], it is likely that fatty acids are
trapped in the intracellular storage pool because these
cells do not express TGH [44, 49]. Rat TGH cDNA stably
transfected into McArdle RH7777 cells resulted in deple-
tion of the intracellular TG stores at a level two-fold
higher than empty vector-transfected cells [44]. In addi-
tion, the secretion of TG into the medium was increased
by 25 %, and the secretion of apoB100 in the VLDL range
was increased in rat TGH-transfected McArdle RH7777
cells compared with empty vector-transfected cells [44].
Moreover, inhibition of lipolysis by the irreversible serine
esterase inhibitor E600 and by a specific TGH inhibitor,
4,4 4-trifluoro-2-[2-(3-methylphenyl)hydrozono]-1-(2-
thienyl)butane-1,3-dione, reduced the secretion of TG
and apoB by primary rat hepatocytes and TGH stably
transfected McArdle RH7777 cells [79]. The inhibitors
had little effect on endogenous lipolytic activity in mock-
transfected McArdle RH7777 cell microsomes, indicat-
ing the transfected TGH was the most active neutral li-
pase present [79]. Collectively, the evidence demon-
strates that TGH is involved in the lipolysis of stored TG.
Recently, several reversible inhibitors of TGH were iden-
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tified by a chemical proteomic strategy, termed activity-
based protein profiling. Alkyl/aryl trifluoromethyl ke-
tones proved to be the most selective and potent chemical
inhibitors of TGH [80]. Others have identified tacrine de-
rivatives that selectively inhibit human TGH but not other
carboxylesterases [68]. The therapeutic potential of these
compounds remains to be addressed.

In our hypothetical model of TG mobilization for VLDL
assembly, TGH acts to hydrolyze TG in lipid storage
droplets that are associated with the ER (fig. 3). The lu-
minal lipid droplet is derived from de novo synthesized
TG and from cytoplasmic TG stores in a process that in-
volves microsomal TG transfer protein (MTP). Lipolysis
of TG to DG/MG would make the lipolytic products more
soluble in the membrane, thereby facilitating the efficient
transfer of the acylglycerols for resynthesis to TG by lu-
minally oriented acyltransferases and assembly into the
nascent lipoprotein particle (fig. 3). TG that is not assem-
bled onto apoB may be returned to either cytosolic or lu-
minal storage pools in a futile cycle. Alternately, TGH
may access TG from the cytosol-oriented ER-associated
lipid droplet. Since TGH is luminally oriented, the mech-
anism via which the enzyme could access a cytosolic
lipid droplet is not as obvious. It has been suggested [2]
that this could occur after fusion of a cytosolic lipid
droplet with the cytosolic leaflet of the ER membrane bi-
layer, as depicted in the figure 3. The released fatty acids
and partial acylglycerols may then serve as substrates for
luminal TG synthesis or VLDL assembly.

In addition to its ability to hydrolyze lipids, TGH has
been implicated in xenobiotic metabolism. TGH is one of
a number of hepatic enzymes that can synthesize fatty
acid ethyl esters in vitro, which are toxic metabolites of
chronic alcohol consumption [81—-83], as well as gener-
ate the toxic cocaine metabolite cocaethylene that is

ER

Primordial@ MTP
ApoB partic l

futile cycle

futile cycle
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formed when cocaine and alcohol are taken together [84].
The X-ray crystal structure of human TGH bound to co-
caine and heroine analogs provided structural insight into
the ability of TGH to hydrolyze and inactivate these
chemicals [67]. A great deal of effort has been placed on
enhancing the cytotoxicity of the antitumor pro-drug
irinotecan. The in vivo activation of irinotecan to the
topoisomerase I inhibitor SN-38 (ethyl-10-hydroxycamp-
tothecin) is catalyzed by carboxylesterases. Overexpres-
sion of human and murine TGH resulted in increased ac-
tivation of irinotecan to SN-38 and enhanced cytotoxicity
in a variety of tumor cell lines [85—87]. However, these
studies also showed that there are hepatic car-
boxylesterases with higher irinotecan hydrolytic activity
than TGH.

TGH gene and the carboxylesterase gene family

Both the murine [54] and human [88, 89] TGH genes
span ~30 kb and contain 14 exons. Recently, sequencing
of the mouse and human genomes were completed, en-
abling detailed sequence comparisons. The previously
published sequences of the individual exons, splice junc-
tions, size of the introns and restriction sites within the
murine and human TGH genes are consistent with their
respective genes sequenced by the mouse and human
genome projects. Therefore, the organization of the TGH
gene is evolutionarily conserved in mice and humans.
Previous studies have mapped the human car-
boxylesterase gene to chromosome 16 at 16q13—q22.1
[90, 91]. This region is syntenic to a region of mouse
chromosome 8§ at 8C5 [90]. The murine carboxylesterases
Es22 [92, 93] and Esl [94, 95] have been previously
mapped to chromosome 8. The completion of the mouse

|
Luminal
TG droplet

Figure 3. Proposed model of the role of TGH in apoB-containing lipoprotein assembly. MTP is involved in the formation of the luminal
TG droplet that is mobilized for lipidation of apoB by TGH-catalyzed lipolysis and reacylation by the luminally oriented acyltransferases
(MGAT/DGAT). TG not utilized for VLDL assembly is returned to the storage pool (futile cycle).
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Figure 4. Chromosomal localization of the murine triacylglycerol
hydrolase gene and the murine carboxylesterase gene cluster to
chromosome 8CS5.

genome sequencing project unambiguously demon-
strated that the murine TGH gene was located on the mi-
nus strand of chromosome 8 at 8C5 in a cluster of six car-
boxylesterase genes that spans 260.6 kb in total (fig. 4).
These six carboxylesterase genes are presumed to have
originated from repeated gene duplications of a common
ancestral gene that encoded a carboxylesterase [88, 96],
and subsequent evolutionary divergence occurred. Evi-
dence for their common ancestral origin comes from the
shared structure and size of these genes. These genes en-
code proteins with significant identity to the other car-
boxylesterases encoded by genes within the cluster. The
proteins encoded by Es22 [93] and CES1 [97] are most
closely related, having 76% identity to murine TGH,
while M-LK has 70% [87] and Es1 [95] has 69 % identity
to TGH (fig. 5). A sixth gene, 2310039D24 Rik, does
not code for a complete carboxylesterase protein.
2310039D24 Rik has identity to the 305 C-terminal
residues of murine TGH, but does not contain the
GXSXG catalytic serine motif. If this protein is expressed
in a cell, it would not be expected to have esterase activ-
ity, and its putative function is obscure. The Ser, Glu and
His catalytic residues were conserved in the remaining
five carboxylesterase genes in the cluster, suggesting that
they all have esterase activity [51]. The Esl gene is com-
posed of 13 exons and 12 introns, lacking an exon that
encodes a loop and S sheet in the other carboxylesterase
genes (fig. 5) that form a portion of the active site cleft in
the structure of TGH [67]. It is predicted that Esl has a
smaller active site cleft, making Es1 much more selective
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towards substrates that may be accommodated within the
active site than the other carboxylesterases encoded by
the gene cluster. In addition, the C-terminus of Es1 lacks
an ER-retrieval sequence, causing the Esl protein to be
secreted, as has been demonstrated [98]. The most di-
verged region among the proteins encoded by the genes
in the carboxylesterase cluster is located in the neutral
lipid binding domain (NLBD) represented by the « helix
13 (figs 1, 5). a helix 13 contains an FLXLXXXn motif
in human TGH and LFQXLXXXn motif in murine TGH.
This motif has been proposed to function in binding neu-
tral lipids [58]. TGH, Es22 and CESI are the only car-
boxylesterase genes in the cluster that encode a protein
with similarities in the NLBD (fig. 5). Divergence in
amino acid sequence among the murine carboxyl-
esterases is also observed in the lid domain. The variabil-
ity of amino acids in the NLBD and lid domains may be
responsible for the differences in substrate selectivity and
inhibition profiles of carboxylesterases encoded by genes
in this cluster. At the moment, there is no experimental
evidence that any of these carboxylesterases, besides
TGH, hydrolyze lipid substrates or mobilize TG stored
within the liver for secretion.

To measure the messenger RNA (mRNA) expression of
individual carboxylesterases, reverse transcription poly-
merase chain reaction (RT-PCR) assay was designed that
could accurately distinguish between TGH and the most
closely related murine carboxylesterases, Es22 [93] and
CESI [97]. The ability of the specific primer set to am-
plify a target sequence was determined utilizing 20 ng of
the isolated cDNA sequence and reverse-transcribed liver
mRNA. TGH-specific primers amplified the target se-
quence only from the murine TGH cDNA and a hepatic
cDNA library and not murine Es22 or CES1 cDNAs (fig.
6A). Amplification of TGH was confirmed by sequenc-
ing the PCR product. In addition, Es22- and CES1-spe-
cific primers only amplified their respective cDNAs
(table 1, fig. 6B, C). All primer sets amplified a target se-
quence from reverse-transcribed liver mRNA. Therefore,
we have established specific assays to analyze the ex-

Table 1. PCR primers.

Gene Primer

DGATIF 5’-ATTCACGGATCATTGAGCG-3’
DGATIR 5’-CTGCCATGTCTGAGCATAGG-3"
DGAT2A 5-CTACGTTGGCTGGTAACTTCC-3’
DGAT2B 5’-AACCAGATCAGCTCCATGG-3’

CESIF 5-CTATTCTTCCATGATGTGGCTCTGTG-3"
CESIR 5’-CAAACATGACTGGGCCTCCTG-3"
Es22F 5’-CCTGTAGCCTCCTACCATGTGC-3"
Es22R 5’-GGGTGAGGCTGACAGAGTC-3

TGHF 5-CACTGCTGCTCTGATTACAACAG-3’
TGHR 5’-GCCTTCAGCGAGTGGATAGC-3’
CYCIA 5-TCCAAAGACAGCAGAAAACTTTCG-3’
CYC2B 5-TCTTCTTGCTGGTCTTGCCATTCC-3"
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Figure 5. Alignment of amino acid sequences of proteins encoded by the genes in the murine carboxylesterase gene cluster. The murine
TGH single-letter coding sequence is shown at the top. The sequences for Es22, M-LK, CES1 and Esl are aligned below. Amino acid
residues identical to the murine TGH are represented by an asterisk. Nonaligned residues are indicated by their single-letter amino acid
symbol. Boxed residues indicate highly conserved residues. NLBD, putative neutral lipid binding domain; 1, GXSXG catalytic serine mo-
tif; 2, catalytic glutamic acid; 3, catalytic histidine.
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cDNAs:

A.

Figure 6. Positive control for specificity of RT-PCR analysis of car-
boxylesterase mRNA expression. The ability of primers specific for
(4) TGH (B) Es22; (C) CES1; (D) cyclophilin to amplify their tar-
get sequences (35 cycles) from either the TGH, Es22, CES1 cDNAs
or a murine liver mRNA library.

pression of individual hepatic carboxylesterases. The
ability to distinguish between individual carboxylesterase
genes will be useful as we begin to explore whether he-
patic carboxylesterases, in addition to TGH, hydrolyze
stored lipids and examine whether these carboxylesterase
genes are subject to individual mechanisms of regulation.

Tissue expression of TGH

TGH mRNA and protein are expressed predominantly in
the liver, with lower levels in adipose, small intestine,
kidney and heart [53]. TGH transcripts and protein were
not detected in brain, spleen or skeletal muscle. These re-
sults agree with previous studies that have detected the
highest level of TGH transcripts and protein in the liver
[54, 56, 87]. In addition, lower levels of TGH transcripts
and protein were detected in macrophages [99], heart [56,
87], kidney [87, 100], intestine [87], testis [87, 101] and
adipose tissues [74].

Function of TGH in the liver

The high level of TGH expression within the liver is con-
sistent with our hypothesis that TGH is involved in the
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Figure 7. Expression of the enzymes of TG lipolysis and reesterifi-
cation in hepatocyte cell cultures depends on the age of the culture.
Cells derived from control mice were harvested at the indicated
time points, and RNA was extracted. Cyclophillin (CYC), DGATT1,
DGAT2, Es22, CES1 and TGH mRNA expression were detected by
RT-PCR (40 cycles).

mobilization of intracellular TG stores for VLDL secre-
tion [44, 79]. Rat TGH could only be detected in liver
parenchymal cells, but not Kupffer or endothelial cells
[102]. Immunocytochemical studies localize TGH ex-
pression exclusively to adult hepatocytes surrounding the
capillary vessels leading to the central vein [49]. This re-
gion of the liver is most likely to be active in lipoprotein
production and secretion. The primary hepatocyte model
is a well-characterized model for measuring the contribu-
tion of the lipolysis and reesterification pathway to TG
secretion [2, 39]. We determined by RT-PCR whether or
not cultured primary murine hepatocytes express mRNAs
for diacylglycerol acyltransferase (DGAT), TGH and
other carboxylesterase enzymes that may be involved in
TG lipolysis and reesterification, and followed the length
of time in culture that hepatocytes maintained the expres-
sion of these mRNAs. DGAT1 mRNA expression could
be detected up to 72 h in cell culture, but declined after
36 h (fig. 7). DGAT2 mRNA expression could be de-
tected in hepatocytes up to 42 h in culture, but DGAT2
expression markedly declined after 30 h in culture (fig.
7). TGH mRNA is expressed for 72 h, but its expression
declines after 48 h (fig. 7). The other closely related car-
boxylesterases, Es22 and CES1, were highly expressed in
hepatocyte culture for 24 h, after which their expression
declined until it was no longer detectable beyond 48 h
(fig. 7). Therefore, we have established that primary
murine hepatocytes are an appropriate model for measur-
ing intracellular TG lipolysis/reesterification up to 30 h
in culture. This work is consistent with experiments of
Bartlett and Gibbons that demonstrated that the rate of
TG secretion by primary rat hepatocytes is linear for
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the first 24 h of culture and then declines markedly up to
72 h [103].

TGH may be associated with the main surface
apolipoprotein component of VLDL, apoB. ApoB was
crosslinked and immunoprecipitated with TGH (im-
munoprecipitated with anti-apoB, then mass spectral
analysis [104] or immunoprecipitated with anti-apoB
then Western blot of TGH [Gilham et al., unpublished]).
Further, apoB-associated TGs on secreted particles from
McArdle RH7777 cells are not substrates for TGH [105,
D. Gilham et al., unpublished]. This suggests TGH is not
delipidating apoB-containing particles during their as-
sembly in the ER, despite residing in the same compart-
ment. It is possible that TGH requires appropriate lipid
droplet coat proteins to facilitate its interaction with a
lipid substrate; however, apoB is not a compatible coat
protein.

Function of TGH in adipose tissue

Adipose tissue forms large intracellular TG droplets. HSL
is involved in the mobilization of fatty acids from
adipocyte TG stores. However, targeted deletion of the
HSL gene eliminated only 50% of the basal TG lipase ac-
tivity of the adipocyte [21, 22]. Currently, the only addi-
tional intracellular neutral TG lipase besides HSL identi-
fied within the adipocyte is TGH, suggesting involvement
of TGH in the mobilization of fatty acids from adipocyte
TG stores [53]. Inhibition of TGH reduced basal free fatty
acid release by 3T3-L1 adipocytes and circulating free
fatty acid levels in hamsters by ~40% [W. Gao et al. and
C. Borg-Capra et al., unpublished]. Therefore, TGH con-
tributes a major proportion of adipocyte basal lipolysis.

Function of TGH in other tissues

TGH has been detected in the small intestine [46, 53].
High levels of TGH expression within murine duode-
nal/jejunal sections of the small intestine correspond to a
previous report that MTP mRNA and protein expression
were greatest in the duodenum and jejunum of the ham-
ster small intestine [106]. We hypothesize that the ex-
pression pattern of TGH in the murine small intestine
suggests a role for TGH in intestinal TG-rich, apoB-con-
taining lipoprotein secretion. It has previously been
shown that TG stored within the enterocyte undergoes a
lipolysis reesterification cycle prior to TG secretion as an
apoB particle [107] much as it does in the liver [39—41].
The kidney [108, 109] and heart [110, 111] have been
shown to express MTP and possess the ability to secrete
apoB-containing lipoproteins. However, a role for TGH
in the secretion of TG-rich lipoproteins from these tissues
remains to be demonstrated.
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When loaded with cholesterol, macrophages accumulate
CE-laden lipid droplets. Macrophages that invade the ar-
terial wall and accumulate CE lead to the development of
atherosclerotic lesions [5]. Removal of stored CE re-
quires the activity of a neutral CE hydrolase, which may
be limiting in macrophage foam cells. It has been re-
ported that HSL is expressed in macrophages [112, 113].
Overexpression of HSL in macrophages increased CE
hydrolysis and cholesterol efflux [114, 115]. Further-
more, sterol loading of macrophages decreases HSL ex-
pression and CE hydrolase activity, suggesting that HSL
represents the major intracellular CE hydrolase activity
[116, 117]. Though macrophage CE hydrolysis is un-
changed in peritoneal macrophages from HSL null mice,
it is unknown whether this is due to a compensatory up-
regulation of alternate CE hydrolase(s) [21, 118]. When
human TGH was expressed in Cos cells, an increase in
CE hydrolysis was observed [99]. Further, expression of
TGH resulted in increased CE hydrolysis and efflux in
CHO cells that have large intracellular CE stores due to
ACAT1 overexpression [119]. However, if TGH has sub-
stantial CE hydrolase activity, the increased human TGH
expression in sterol-loaded macrophages [75, 89] is not
consistent with the observed decrease CE hydrolase ac-
tivity [116, 117].

Several cDNAs and expressed sequence tags (ESTs) en-
coding TGH have been cloned from different tissues. In
addition to the tissues where we detected TGH transcripts
by Northern analysis, there is evidence for TGH expres-
sion in the mammary gland, skin, olfactory epithelium,
salivary gland, eyeball, testis, ovary and uterus. A role for
carboxylesterases in the fertility of a diverse group of or-
ganisms has been suggested [120], though a potential
function for TGH in the other tissues is more obscure.
The development of TGH null mice may provide more in-
sight into what roles TGH activity contributes to these
tissues.

Regulation of TGH expression and activity

TGH promoter

To investigate the transcriptional regulation of the TGH
gene, human and murine TGH proximal promoters were
isolated (fig. 8). The murine TGH promoter sequence
[121] shares 59% identity to orthologous rat [122] and
46 % identity to the human [8§9] TGH promoters. All three
promoters share several common binding sites for tran-
scription factors, suggesting that the orthologous TGH
genes have evolutionarily conserved transcriptional regu-
latory patterns (fig. 8). A TATA box does not precede the
transcription start site. Potential binding sites for tran-
scription factors include three Spl binding sites, a NF-1,
a peroxisomal proliferator-activated receptor response el-
ement and three sterol response element-like sequences.
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Figure 8. Putative transcription factor binding sites in the 5’-flank-
ing region of the triacylglycerol hydrolase gene. The promoters
were analyzed using the TRANSFAC database. Blue boxes repre-
sent sterol response elements, SRE; blue circles represent CCAAT
box; red boxes represent glucocorticoid response elements half-
sites, GRE; green boxes represent NF-1; green circles, NF-Y; black
boxes, Spl; and yellow circles represent CCAAT enhancer-binding
protein, C/EBP-f.

Various studies observed increased expression of rat and
mouse TGH mRNA and protein in the liver at the time of
weaning, coincident with enhanced ability to secrete
VLDL [49, 56, 121, 123]. This age-dependent expression
appeared to be related to dietary changes at the time of
weaning and independent of hepatic differentiation, since
TGH expression was unchanged in regenerating liver that
undergoes dedifferentiation and acquires fetal and neona-
tal features following partial hepatectomy [49].

The murine TGH promoter was utilized to determine
whether the increased expression of TGH seen at the time
of weaning was linked to transcriptional regulation and to
identify potential transcription factors and cis-acting
DNA elements that might mediate the observed develop-
mental expression of TGH in liver. Electrophoretic mo-
bility shift assays demonstrated enhanced binding to the
murine TGH promoter of hepatic nuclear proteins from
27-day-old weaned mice compared with 7-day-old suck-
ling mice [121]. DNase I footprint analysis localized
binding of nuclear proteins to two regions within the pro-
moter: site A, which contains a Sp1 binding site, and site
B, which contains a degenerate E-box [121]. Competitive
electromobility shift and supershift assays demonstrated
that site A binds Sp1 and Sp3 transcription factors and
transcriptional activation assays in Schneider SL-2 insect
cells demonstrated that Sp1 was a potent activator of the
TGH promoter [121]. Sp1 is a ubiquitous nuclear protein
that activates the transcription of a wide variety of genes
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[124]. TATA-less promoters have been shown to be par-
ticularly sensitive to regulation by the Sp family of pro-
teins [125, 126].

Alignment of the 5” proximal promoters of the murine, rat
and human TGH genes demonstrated that regions termed
A and B sequences are evolutionarily conserved [121].
Indeed, others have observed that reporter constructs con-
taining the conserved site A sequence activate transcrip-
tion, while their elimination reduces promoter activity
[89, 122]. A role for Spl in the phorbol ester-induced dif-
ferentiation-dependent expression of human TGH in the
macrophage THP-1 cell line has been demonstrated
[127]. The transcription factor(s) that mediates the induc-
tion of murine TGH expression during 3T3-L1 adipocyte
differentiation are not known [128], but are the subject of
current investigation in our laboratory. Since TGH ex-
pression occurs at a late stage of adipocyte differentia-
tion, clearly peroxisomal proliferator-activated receptor
(PPAR)y is potentially involved in the induction of TGH
expression in mature 3T3-L1 adipocytes. We explored
this possibility using a PPARy agonist that exhibited
1000-fold selectivity over the other receptor isoforms
[129]. Though TGH expression was increased when the
PPARyagonist was present throughout the differentiation
process, we did not observe a direct effect of PPARy on
TGH expression [128].

Regulation by fatty acids and sterols

Both the degree of fatty acid saturation and the addition
of cholesterol to a high fat diet modify the impact of the
diet on lipid homeostasis. TGH expression was not af-
fected by supplementation of the diet with 20 % fatty acid,
regardless of the degree of saturation [128]. Therefore, it
appears that a high fat diet does not alter the level of he-
patic TGH-mediated lipolysis.

PPARs are nuclear hormone receptors that utilize poly-
unsaturated fatty acids as natural ligands and regulate the
expression of a range of genes involved in lipid metabo-
lism (reviewed in [130]). PPAR« agonists, such as the fi-
brates, have beneficial effects on the plasma lipid profile
through the increased oxidation of fatty acids, decreased
circulating TG and reduced hepatic and adipose tissue TG
storage [131]. Since TGH is involved in mobilizing fatty
acids from stored TGs and the murine TGH promoter
contains a single PPAR-like response element, we deter-
mined whether or not PPARa agonists could regulate he-
patic TGH expression in the mouse, utilizing wild-type
and PPAR a null mice that had received clofibrate in their
diet for 14 days. Hepatic TGH protein expression and mi-
crosomal esterase activity were not altered by clofibrate
feeding or the targeted deletion of the PPARa gene, sup-
porting the idea that PPAR«a does not directly regulate
TGH mRNA expression [128]. Previously, 5 weeks of ex-
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posure to the PPARa agonist WY-14,643 reduced the ex-
pression of murine liver TGH, though differences in TGH
expression were not observed at 1 and 3 weeks of expo-
sure [132]. Studies utilizing different peroxisomal prolif-
erator compounds, doses and length of administration ob-
served increased TGH expression in rats [133, 134] and
mice [133, 135]. It appears that the changes in TGH ex-
pression were observed only during long-term adminis-
tration of a PPAR« agonist and reflect a secondary re-
sponse.

Cholesterol feeding increased murine hepatic TGH ex-
pression approximately two-fold when diets were supple-
mented with fatty acids [128]. The observed induction of
TGH expression in response to dietary fats supplemented
with cholesterol is consistent with the observed induction
of the orthologous human TGH expression by incubation
of human macrophages with exogenous low-density
lipoproteins [75, 89]. Hypercholesterolemic apoE null
mice have a three-fold higher level of hepatic TGH ex-
pression than wild-type mice [136]. Chronic biliary di-
version and feeding rats cholestyramine increased he-
patic TGH expression two-fold [137]. Although se-
quences that bear some similarity to sterol response
elements exist in the murine TGH proximal promoter, the
functionality of these sequences has not been directly de-
termined [121]. Sequences located within the 5’-up-
stream region of the rat TGH promoter have been demon-
strated to act as sterol response elements in HepG2 cells
and bind a purified sterol regulatory element-binding
protein (SREBP)-2 transcription factor [122, 138]. How-
ever, the enforced expression of a nuclear form of
SREBP-1a in transgenic mice failed to affect hepatic
TGH mRNA expression [R. Lehner and D. E. Vance, un-
published]. Given these contrasting observations, it is un-
clear whether the cholesterol mediated regulation of TGH
expression is due to SREBPs, oxysterol nuclear receptors
or an indirect mechanism.

Hormonal regulation of TGH

We have demonstrated that hepatic TGH is subject to reg-
ulation by glucocorticoids in the mouse [139]. Glucocor-
ticoids cause an increase in circulating TG and increased
TG synthesis and storage [140—143]. Dexamethasone
(Dex) is a potent analog of glucocorticoids (cortisol and
corticosterone) and induces similar effects as natural glu-
cocorticoids [143]. TGH mRNA, protein expression and
hepatic microsomal esterase activity were decreased by
Dex, whereas hepatic microsomal DGAT activity and
DGAT-1 and -2 expression were increased [139]. This re-
sult correlates with decreased hepatic esterase activity
and the results of others that have demonstrated that rat
liver TGH expression was reduced by Dex [56, 144, 145].
We determined that the mechanism involved in the Dex-
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induced decline in TGH expression was a reduction in the
mRNA stability of TGH [139]. Three AU-rich elements in
the 3’-untranslated sequence of the murine TGH mRNA
were necessary to mediate the destruction of the TGH
mRNA in response to Dex [139]. The reduction of TGH
expression resulted in a clear suppression of intracellular
TG turnover in Dex-injected mice [139]. Since the rate of
TG synthesis exceeded the rate of intracellular hepatic
TG lipolysis as well as secretion, TG accumulated within
the livers of Dex-injected mice. It is possible that these
observations are relevant to diurnal changes in hepatic
lipid synthesis and secretion that are associated with pe-
riodicity of circulating glucocorticoid levels [146—148].
For example, prior to a meal intake, glucocorticoid levels
rise, and this would result in a decrease in hepatic TGH
levels and a corresponding increase in lipogenic enzymes
such as fatty acid synthase [149], microsomal phosphati-
date phosphohydrolase-1 [150, 151], DGAT-1 and -2
[139]. Then, during the post-prandial period when circu-
lating nonesterified fatty acid and chylomicron levels are
high, the net synthesis of hepatic TG exceeds its disposal
via secretion or oxidation, and there is a corresponding
increase in hepatic lipid storage [152]. During the post-
absorptive period, glucocorticoid levels fall, and this
would correspond to a decreased rate of TG synthesis and
increased hepatic TGH levels which would be required to
utilize stored TG. In the post-absorptive period, hepatic
TG secreted in VLDL particles originated from stored TG
that had accumulated within the liver post-prandially [2].
Individuals that have elevated levels of glucocorticoids
during the post-absorptive period store higher levels of
hepatic TG [153, 154]. Whether diurnal changes in TGH
expression correlate with diurnal changes in circulating
glucocorticoids will be a subject of further investigation.
It appears, that increased de novo TG synthesis can over-
power the normal regulation of VLDL secretion, as is
observed in insulin-resistant states. We have also ob-
served decreased white adipose tissue TGH expression
in Dex-injected mice and this may contribute to obesity
associated with elevated glucocorticoids [V. W. Dolin-
sky et al., unpublished]. It is unknown whether insulin
can directly regulate TGH expression, though a recent
report showed decreased TGH expression in the livers of
mice with tumour necrosis factor-a-induced insulin re-
sistance [155]. A combination of increased TG synthesis
and decreased TG lipolysis results in hepatic lipid accu-
mulation and altered the balance between the utilization
of stored TG versus de novo TG synthesis to supply TG
for secretion.

Post-translational regulation of TGH activity

Two consensus sites for N-linked glycosylation have
been identified at Asn79 and 489 in murine TGH and
one at Asn79 in the human. Glycan detection assay of
the human TGH indicates that the mature TGH protein
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was glycosylated [58]. However, mutation of Asn79 to
Ala or GIn did not dramatically reduce human TGH
activity, indicating that glycosylation was not necessary
for esterase activity [58, 105, D. Gilham et al., unpub-
lished].

The primary sequence of human TGH contains a putative
Tyr phosphorylation site at Tyr118, as well as seven po-
tential Ser/Thr consensus sequences for phosphorylation
by casein kinase II (CKII). The Tyr118 site is adjacent to
the 1lid domain formed by the loop created by the disulfide
bridge between Cys87 and Cys116, potentially regulating
the opening of the lid and entry of substrate into the cat-
alytic cleft and the active site. Regulation of enzyme ac-
tivity via this mechanism is an area of active study in our
laboratory. Pertinent to TGH, several CKII target proteins
such as the bile salt-dependent lipase are present in the
ER lumen [156]. Reversible phosphorylation of rat TGH
at Ser506 has been reported to increase CE hydrolase ac-
tivity in isolated cytosolic fraction by 100—140% [70].
This mechanism of increased CE hydrolase activity in re-
sponse to hormones associated with the fasted state (e.g.
glucagon) is reminiscent of mobilization of TG and CE
stores from adipose tissue by HSL. Phosphorylation of
Ser506 is predicted to induce a conformational change
that enhances binding of hydrophobic substrates, though
the relevance of the regulation of rat TGH by phosphory-
lation is questionable, since Ser506 is not present in or-
thologous TGH amino acid sequences (fig. 1).

Conclusions and future perspectives

The recent characterization of TGH is a major advance
since relatively little was known regarding the enzymes
that catalyze the lipolysis of stored TG in tissues that do
not express HSL. The experiments of our group and oth-
ers demonstrate that TGH is a lipase, and it hydrolyzes
stored TG in the hepatocyte.

The role of TGH in other tissues requires further investi-
gation, though preliminary data suggests that TGH hy-
drolyzes stored TG within the adipocyte. Others have
shown that TGH could hydrolyze various xenobiotic ester
compounds as well as CE in cholesterol-laden cells.
Given that the X-ray crystal structure explains the mech-
anism whereby TGH could hydrolyze various chemically
diverse compounds, we suggest that endogenous TGH
substrates within the cell are defined by the abundance of
these molecules in a particular tissue as well as the ac-
cessibility to particular substrates as defined by the intra-
cellular location of TGH. When the liver is challenged
with xenobiotics, TGH could act in detoxification
through the hydrolytic inactivation of these compounds.
Given the large number of hepatic carboxylesterases ex-
pressed, further study will be required to identify the en-
dogenous substrates and physiologic functions of these
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enzymes. Currently, we are determining whether other
carboxylesterases and AADA, in addition to TGH, have
the ability to hydrolyze intracellular stored TG. Ulti-
mately, the transgenic mice overexpressing human TGH
and mice harbouring a TGH null phenotype that are cur-
rently being developed in our laboratory will clarify the
role of TGH in physiologic processes such as VLDL as-
sembly.
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